
 

 

 
 

 
 

 

 
  

 

 

 

 
 

 

 
  

    Hidden Markov Model 

Introduction: 
There are different Japanese text parsers available, two of them are the Chasen morphological 
analyzer and the MeCab parser. The Chasen morphological analyzer is based on the Hidden 
Markov Model while the MeCab parser is based on the Conditional Random Field. In my 
project, I will need a parser that will separate the Japanese text/kanjis entered by the user. 
Japanese texts are different from English texts in that, there are no word boundaries in Japanese 
texts. Still, the parsing techniques for Japanese text are also dependent on the Hidden Markov 
Model. In this report, I am going to explain what HMM is, why it is used, working of the HMM 
and the Viterbi algorithm giving my example. 

What HMM is? 

• The Hidden Markov Model is based on the Markov model. The Markov Model is a finite 
automata model which is used to find out what will be the next state depending on the current 
state. Hence to predict the future, you do not have to look at the past history of states of the 
model. 

   e.g. Consider the sentence “The monster swallowed ________”. In this sentence, after 

   the verb swallowed, it is less likely that the next word will be a verb again. Hence by    

   looking at the current word which is say “swallowed”, we can say that next word will

   be the most     likely some article such as “a”, followed by noun such as “boy” The

   purpose of Markov Model is to find the next word with the highest probability. The

   transition probability is assigned to each path. It is better to follow the path of 

   traversing from one state to the other with the highest probability.
 
• The Markov Models are basically used to model sequence of events. These sequence of events 

could be fixed or not. The deterministic flow of events can be traffic lights turning from Green 
to Yellow to Red. The non-deterministic flow of events can be analyzing weather conditions. 

• In the Markov Model, the output i.e., sequence of events/observations is simply the sequence 
of states visited. 

• In the HMM, the states that the model is passed through is unknown to us. We only know the 
observation sequence, probabilities of transitioning from one state to other, the probability that 
for the current state what are the chances that given observation state will be generated. 

• Hence, in the HMM, our purpose is to find the most likely sequence of states which could yield 
the observed sequence of symbols. 

Why it is used? 

• The HMM can be used in various applications such as speech recognition, part-of-speech 
tagging etc. 

• I will explain POS (Part-Of-Speech) tagging with the HMM. In English, there are different 
types of POS tags such as DT(determiner), N(noun), V(verb) etc. Consider the sentence: The 
chocolate is sweet. 



 
 
 
     

 

 

 

 
 

 
 

 
  

  

 

 

  

 

   

  

   Here, the => DT, 
chocolate => N 
is => V 
sweet => ADJ 

We would like to find out what is more likely the tag sequence. We want to find out the best 
tag sequence. The HMM will be used to find the sequence of states that will lead to the highest 
probability of tag t for given word sequence w. Hence, as per the Markov assumption, the word 
wi depends on tag ti and tag ti depends on tag ti-1 

How the HMM works?: 
• In the HMM, we know what the observable sequence is but we do not know what states it is 

been travelled to get this sequence. 
• In the HMM, the states are not observable. We know some probabilities that the model will 

pass through. 
• The HMM works as any other finite state machine having a set of hidden states, observable 

states, transition probabilities, initial state probabilities and output probabilities. The current 
state is not observable but each state produces an output with a certain probability. 

• The HMM consists of a set of states as in any other finite automata model. Say states {q,r}, 
transition probabilities i.e., traveling from the state q to r for the given observation state, a set 
of observations such as string “aabb” and the probability of getting a symbol “b” for the 
current state say “r” 

• The problem with the HMM is how to find out the state sequence that best explains the given 
set of observations?  Because it is possible to have more than one state sequences that will lead 
to the same observation sequence. This problem could be solved with the use of the Viterbi 
algorithm. 

• The working of the Viterbi algorithm is based on the dynamic programming approach. In the 
dynamic programming, the problem is divided into subproblems and the after solving each 
subproblem, the algorithm saves its answer in the table that could be used to solve the actual 
problem. The dynamic programming algorithm is used for solving problems having more than 
one possible solutions. The dynamic programming helps to find out the optimal solution for the 
given problem. 

• Similarly in the Viterbi algorithm, the purpose is to find the best path sequence that will lead to 
the given observation states. 

• My example for the Viterbi algorithm for given HMM is as follows:
   Sentence: Eye drops off shelf. 

As per the HMM,
   Set of states = {q, r}
   Set of observations = {eye, drops, off, shelf} 

As the Viterbi algorithm follows the dynamic programming approach, it is required to 
store the best path and its probability for each possible state. 



 
Figure 1: Example of HMM 



  

 

 
  

 
 

  
  

 

 
 

 

  
 

 

   

 

 

   
 

 

HMM Training 

We have seen that what the HMM is, why it is used and how it works. Basically there are three
 
problems with the given Hidden Markov Model.
 
They are as follows:
 
1.	 Given the Hidden Markov Model and a sequence of observations, we would like to know 

what is the sequence of hidden states that leads to the given set of observations? This 
problem as described above can be solved using the Viterbi algorithm. 

2.	 Given the Hidden Markov Model as well as emission and transition probabilities, what will 
be the probability of a given sequence of observations? This problem can be solved using the 
Forward algorithm. The Forward algorithm is similar to the Viterbi algorithm except the 
purpose of the Forward algorithm is find the sum of all possible ways to get to some end 
state. Thus, in the Forward algorithm, the probability of reaching to some end state is the 
total of product of all the probabilities of paths leading to that end state.

      In simple words,
      Forward Probability at timestep (t + 1) = Sum of (Forward Probability at timestep t * 
      transition probability that will end up in that state)
     Consider the above example of the Viterbi algorithm. 

Time ticks 1 2 3 4 5 

input ϵ eye eye drops eye drops 
off 

eye drops 
off shelf 

Forward 
Probabilit 
y of state

q at 
timestamp

t 

1.0 0.28 0.0876 0.0149 0.0023 

Forward 
Probabilit 
y of state r

at 
timestamp

t 

0.0 0.12 0.0444 0.007 0.0012 

Total 
Probabilit 

y 

1.0 0.4 0.132 0.0219 0.0035 

Table 1: Forward probabilities for “eye drops off shelf” 
As explained earlier, given the observation “eye”, what is the total probability i.e., sum of the
 
probabilities of all paths that one will end up in state “q” or in state “r”
 
Hence, in above example,
 



 
 

 

  
 

 

   

 

 
 

  

forward probability of state q at time 2 
= (forward probability of state q at time 1 * transition probability from q -> q * emission 
probability for observation eye from state q) 
+ (forward probability of state r at time 1 * transition probability from r -> q * emission 

probability for observation eye from state r) 

= (1.0 * 0.7 * 0.4) + (0.0 * 0.6 * 0.2) 

= 0.28
 
Similarly, we can calculate the forward probability for other states and at different timestamps. 

As we are moving forward in the sequence, this is called as forward probabilities.
 
We can also use the Backward algorithm instead of the Forward algorithm. The difference
 
between the Backward algorithm and the Forward algorithm is, in the Backward algorithm we
 
calculate the probability of sequence by working backward.
 

Time ticks 1 2 3 4 5 

Input eye drops 
off shelf 

drops off
shelf 

off shelf shelf ϵ 

Backward 
probabilit
y of state

q at 
timestamp

t 

0.0035 0.0083 0.032 0.1 1 

Backward 
probabilit
y of state r

at 
timestamp

t 

0.0105 0.018 0.3 1 

Table 2: Backward probabilities for “eye drops off shelf” 

Hence, in the above example,
 
the backward probability of state q at time 2 

= (backward probability of state q at time 3 * transition probability from q -> q * emission 

probability for observation drops at state q)
 
+ (backward probability of state r at time 3 * transition probability from q -> r * emission 

probability for observation drops at state q) 

= (0.032 * 0.7 * 0.3) + (0.018 * 0.3 * 0.3) 
= 0.0083 



  
  

 

 

 
 
 

 

 

   
   
   

3.	 Given an output sequence O, what HMM transition probabilities maximize the likelihood of 
the sequence? i.e We have the model and a set of all observations, how can we adjust the 
parameters to increase the probability of the observations given the model? This problem can 
be solved using the Forward-Backward algorithm, also known as the Baum-Welch algorithm.

      Using an initial parameter instantiation, the Forward-Backward algorithm iteratively 
      re-estimates the parameters and improves the probability that given observations are
      generated by the new parameters. So, we need to re-estimate three parameters: 

• initial state distribution 
• transition probabilities 
• emission probabilities 

How HMM training works? 
• The purpose of using the HMM training is to find the HMM that maximizes the probability of 

the given observation sequence. We know the observation sequence, we have to find the three 
parameters as described above. 

• To achieve this we will use the Forward-Backward/Baum-Welch algorithm. We follow the hill 
climbing approach. So we start with some random HMM model and iteratively make small 
changes to the solution, improving it a little each time. When there is no more improvement 
possible, the algorithm terminates. 

• So we do not know what the model is. We can work out the probability of the observation 
sequence using some randomly chosen model. By looking at it, we can see which state 
transitions and emissions were probably used the most. By increasing the probability of those, 
we can choose a revised better model which gives a higher probability to the observation 
sequence. Thus, we are following the process of maximization which is referred to as training 
the model. 

• Hence, we will guess randomly transition probabilities from state q to state r. But then how can 
we find the new re-estimated probability?

   New probability from state q to r = (forward probability from state q at timestamp t * 
backward probability from state  r at timestamp t+1 * 
transition probability from state q to state r for the given 
observation) 

• We will use this newly calculated probability for re-estimating start probabilities, transition 
probabilities and emission probabilities. Consider following diagram for guessed HMM: 



 

  
 

 

   

 

   

 

  
 

 

 

Figure 2: Guessed HMM 

Time 
ticks 

t1 t2 t3 t4 

Input eye drops off shelf Total P New P 

q -> r
for 

observa 
tion eye 

0.003 0 0 0 0.003 0.23 

r -> r for 
observa 

tion 
drops 

0 0.001 0 0 0.001 0.08 

r -> r for 
observa 
tion off 

0 0 0.005 0 0.005 0.38 

r -> q
for 

observa 
tion 
shelf 

0 0 0 0.004 0.004 0.3 

0.013 
Table 3: New probabilities for “eye drops off shelf” 

Thus, in the above example,
 
Total probability from state q to state r for observation eye =
 



 

forward probability of state q at time t1 * 

transition probability from state q to state r for observation ‘eye’ *
 
backward probability of state r at time t2
 

= 1.0 * 0.3 * 0.0105
 
= 0.00315 

≈ 0.003
 
Similarly, we can calculate the new probability for other observations as well. After calculating 

all the total probabilities for remaining transitions, we calculate its total i.e. Summation(Total P). 

This is nothing but the expected number of transitions from one state to the other state.
 

New probability from state q to state r =
 
Total P from state q to state r / Summation (Total P)
 

= 0.003 / 0.013
 
= 0.23
 

Our purpose of calculating total probabilities is we would like to find out the new probability that
 
will be greater than the previous probability. If we think that the new probability and old 

probability are somewhat similar, we will stop iterating through the HMM and that will be our 

new re-estimated parameters.
 


