

 Hidden Markov Model

Introduction:
There are different Japanese text parsers available, two of them are the Chasen morphological
analyzer and the MeCab parser. The Chasen morphological analyzer is based on the Hidden
Markov Model while the MeCab parser is based on the Conditional Random Field. In my
project, I will need a parser that will separate the Japanese text/kanjis entered by the user.
Japanese texts are different from English texts in that, there are no word boundaries in Japanese
texts. Still, the parsing techniques for Japanese text are also dependent on the Hidden Markov
Model. In this report, I am going to explain what HMM is, why it is used, working of the HMM
and the Viterbi algorithm giving my example.

What HMM is?

• The Hidden Markov Model is based on the Markov model. The Markov Model is a finite
automata model which is used to find out what will be the next state depending on the current
state. Hence to predict the future, you do not have to look at the past history of states of the
model.

 e.g. Consider the sentence “The monster swallowed ________”. In this sentence, after

 the verb swallowed, it is less likely that the next word will be a verb again. Hence by

 looking at the current word which is say “swallowed”, we can say that next word will

 be the most likely some article such as “a”, followed by noun such as “boy” The

 purpose of Markov Model is to find the next word with the highest probability. The

 transition probability is assigned to each path. It is better to follow the path of

 traversing from one state to the other with the highest probability.

• The Markov Models are basically used to model sequence of events. These sequence of events

could be fixed or not. The deterministic flow of events can be traffic lights turning from Green
to Yellow to Red. The non-deterministic flow of events can be analyzing weather conditions.

• In the Markov Model, the output i.e., sequence of events/observations is simply the sequence
of states visited.

• In the HMM, the states that the model is passed through is unknown to us. We only know the
observation sequence, probabilities of transitioning from one state to other, the probability that
for the current state what are the chances that given observation state will be generated.

• Hence, in the HMM, our purpose is to find the most likely sequence of states which could yield
the observed sequence of symbols.

Why it is used?

• The HMM can be used in various applications such as speech recognition, part-of-speech
tagging etc.

• I will explain POS (Part-Of-Speech) tagging with the HMM. In English, there are different
types of POS tags such as DT(determiner), N(noun), V(verb) etc. Consider the sentence: The
chocolate is sweet.

 Here, the => DT,
chocolate => N
is => V
sweet => ADJ

We would like to find out what is more likely the tag sequence. We want to find out the best
tag sequence. The HMM will be used to find the sequence of states that will lead to the highest
probability of tag t for given word sequence w. Hence, as per the Markov assumption, the word
wi depends on tag ti and tag ti depends on tag ti-1

How the HMM works?:
• In the HMM, we know what the observable sequence is but we do not know what states it is

been travelled to get this sequence.
• In the HMM, the states are not observable. We know some probabilities that the model will

pass through.
• The HMM works as any other finite state machine having a set of hidden states, observable

states, transition probabilities, initial state probabilities and output probabilities. The current
state is not observable but each state produces an output with a certain probability.

• The HMM consists of a set of states as in any other finite automata model. Say states {q,r},
transition probabilities i.e., traveling from the state q to r for the given observation state, a set
of observations such as string “aabb” and the probability of getting a symbol “b” for the
current state say “r”

• The problem with the HMM is how to find out the state sequence that best explains the given
set of observations? Because it is possible to have more than one state sequences that will lead
to the same observation sequence. This problem could be solved with the use of the Viterbi
algorithm.

• The working of the Viterbi algorithm is based on the dynamic programming approach. In the
dynamic programming, the problem is divided into subproblems and the after solving each
subproblem, the algorithm saves its answer in the table that could be used to solve the actual
problem. The dynamic programming algorithm is used for solving problems having more than
one possible solutions. The dynamic programming helps to find out the optimal solution for the
given problem.

• Similarly in the Viterbi algorithm, the purpose is to find the best path sequence that will lead to
the given observation states.

• My example for the Viterbi algorithm for given HMM is as follows:
 Sentence: Eye drops off shelf.

As per the HMM,
 Set of states = {q, r}
 Set of observations = {eye, drops, off, shelf}

As the Viterbi algorithm follows the dynamic programming approach, it is required to
store the best path and its probability for each possible state.

Figure 1: Example of HMM

HMM Training

We have seen that what the HMM is, why it is used and how it works. Basically there are three

problems with the given Hidden Markov Model.

They are as follows:

1.	 Given the Hidden Markov Model and a sequence of observations, we would like to know

what is the sequence of hidden states that leads to the given set of observations? This
problem as described above can be solved using the Viterbi algorithm.

2.	 Given the Hidden Markov Model as well as emission and transition probabilities, what will
be the probability of a given sequence of observations? This problem can be solved using the
Forward algorithm. The Forward algorithm is similar to the Viterbi algorithm except the
purpose of the Forward algorithm is find the sum of all possible ways to get to some end
state. Thus, in the Forward algorithm, the probability of reaching to some end state is the
total of product of all the probabilities of paths leading to that end state.

 In simple words,
 Forward Probability at timestep (t + 1) = Sum of (Forward Probability at timestep t *
 transition probability that will end up in that state)
 Consider the above example of the Viterbi algorithm.

Time ticks 1 2 3 4 5

input ϵ eye eye drops eye drops
off

eye drops
off shelf

Forward
Probabilit
y of state

q at
timestamp

t

1.0 0.28 0.0876 0.0149 0.0023

Forward
Probabilit
y of state r

at
timestamp

t

0.0 0.12 0.0444 0.007 0.0012

Total
Probabilit

y

1.0 0.4 0.132 0.0219 0.0035

Table 1: Forward probabilities for “eye drops off shelf”
As explained earlier, given the observation “eye”, what is the total probability i.e., sum of the

probabilities of all paths that one will end up in state “q” or in state “r”

Hence, in above example,

forward probability of state q at time 2
= (forward probability of state q at time 1 * transition probability from q -> q * emission
probability for observation eye from state q)
+ (forward probability of state r at time 1 * transition probability from r -> q * emission

probability for observation eye from state r)

= (1.0 * 0.7 * 0.4) + (0.0 * 0.6 * 0.2)

= 0.28

Similarly, we can calculate the forward probability for other states and at different timestamps.

As we are moving forward in the sequence, this is called as forward probabilities.

We can also use the Backward algorithm instead of the Forward algorithm. The difference

between the Backward algorithm and the Forward algorithm is, in the Backward algorithm we

calculate the probability of sequence by working backward.

Time ticks 1 2 3 4 5

Input eye drops
off shelf

drops off
shelf

off shelf shelf ϵ

Backward
probabilit
y of state

q at
timestamp

t

0.0035 0.0083 0.032 0.1 1

Backward
probabilit
y of state r

at
timestamp

t

0.0105 0.018 0.3 1

Table 2: Backward probabilities for “eye drops off shelf”

Hence, in the above example,

the backward probability of state q at time 2

= (backward probability of state q at time 3 * transition probability from q -> q * emission

probability for observation drops at state q)

+ (backward probability of state r at time 3 * transition probability from q -> r * emission

probability for observation drops at state q)

= (0.032 * 0.7 * 0.3) + (0.018 * 0.3 * 0.3)
= 0.0083

3.	 Given an output sequence O, what HMM transition probabilities maximize the likelihood of
the sequence? i.e We have the model and a set of all observations, how can we adjust the
parameters to increase the probability of the observations given the model? This problem can
be solved using the Forward-Backward algorithm, also known as the Baum-Welch algorithm.

 Using an initial parameter instantiation, the Forward-Backward algorithm iteratively
 re-estimates the parameters and improves the probability that given observations are
 generated by the new parameters. So, we need to re-estimate three parameters:

• initial state distribution
• transition probabilities
• emission probabilities

How HMM training works?
• The purpose of using the HMM training is to find the HMM that maximizes the probability of

the given observation sequence. We know the observation sequence, we have to find the three
parameters as described above.

• To achieve this we will use the Forward-Backward/Baum-Welch algorithm. We follow the hill
climbing approach. So we start with some random HMM model and iteratively make small
changes to the solution, improving it a little each time. When there is no more improvement
possible, the algorithm terminates.

• So we do not know what the model is. We can work out the probability of the observation
sequence using some randomly chosen model. By looking at it, we can see which state
transitions and emissions were probably used the most. By increasing the probability of those,
we can choose a revised better model which gives a higher probability to the observation
sequence. Thus, we are following the process of maximization which is referred to as training
the model.

• Hence, we will guess randomly transition probabilities from state q to state r. But then how can
we find the new re-estimated probability?

 New probability from state q to r = (forward probability from state q at timestamp t *
backward probability from state r at timestamp t+1 *
transition probability from state q to state r for the given
observation)

• We will use this newly calculated probability for re-estimating start probabilities, transition
probabilities and emission probabilities. Consider following diagram for guessed HMM:

Figure 2: Guessed HMM

Time
ticks

t1 t2 t3 t4

Input eye drops off shelf Total P New P

q -> r
for

observa
tion eye

0.003 0 0 0 0.003 0.23

r -> r for
observa

tion
drops

0 0.001 0 0 0.001 0.08

r -> r for
observa
tion off

0 0 0.005 0 0.005 0.38

r -> q
for

observa
tion
shelf

0 0 0 0.004 0.004 0.3

0.013
Table 3: New probabilities for “eye drops off shelf”

Thus, in the above example,

Total probability from state q to state r for observation eye =

forward probability of state q at time t1 *

transition probability from state q to state r for observation ‘eye’ *

backward probability of state r at time t2

= 1.0 * 0.3 * 0.0105

= 0.00315

≈ 0.003

Similarly, we can calculate the new probability for other observations as well. After calculating

all the total probabilities for remaining transitions, we calculate its total i.e. Summation(Total P).

This is nothing but the expected number of transitions from one state to the other state.

New probability from state q to state r =

Total P from state q to state r / Summation (Total P)

= 0.003 / 0.013

= 0.23

Our purpose of calculating total probabilities is we would like to find out the new probability that

will be greater than the previous probability. If we think that the new probability and old

probability are somewhat similar, we will stop iterating through the HMM and that will be our

new re-estimated parameters.

