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ABSTRACT

JAPANESE KANJI SUGGESTION TOOL

by Sujata Dongre

  Many times, we can see that if we enter a misspelled search term in any of the 

search engines like Google, it will provide some help with "Did you mean:...." In my 

project, I am providing some suggestions for the wrong Japanese text entered by a user.

 The Japanese language has three types of writing styles - hiragana, katakana and the 

most difficult, kanji.  A single kanji symbol may be used to write one or more different 

compound words.  From the point of view of the reader, kanji symbols are said to have 

one or more different "readings."  Hence, sometimes it becomes very difficult to 

understand what the kanji symbols are and how to read them even if you know the 

Japanese language.There are different translation tools available nowadays that provide 

translation help.  However, none of them provides any good suggestions for the incorrect 

Japanese words.  In my project, I am developing a tool that will help users to correct their 

Japanese words by suggesting to them the correct word.

Keywords: Japanese, Hidden Markov Model, suggestions, natural language processing, 

find-as-you-type

iv



ACKNOWLEDGEMENTS
 

 I would like to thank my project advisor Dr. Chris Pollett for his support and 

guidance throughout this project. I would also like to thank my committee members, Dr. 

Robert Chun and Dr. Mark Stamp, for their valuable suggestions on my project work. I 

would also like to acknowledge my Japanese language professor, Inaba Sensei and my 

Japanese friend Tomoko san for their inputs in my project. 

 I am also very thankful to my parents, my husband and all my friends for their 

encouragement throughout my master’s degree program. 

v



Table of Contents

1. Introduction                                                                                                                  1

2. Prior work of keyword suggestions in Japanese                                                          3

2.1. JUMAN Morphological Analyzer                                                                        3

2.2. TANGO algorithm                                                                                                5

2.3. Search engines suggestions                                                                                  5

3. Hidden Markov Model of text parsing                                                                        8

3.1. Markov model definition                                                                                      8

3.2. Property of the Hidden Markov Model                                                                9

3.3. The Hidden Markov Model training                                                                    12

3.4. Working of the Hidden Markov Model                                                               15

4. N-gram approach of text parsing                                                                                20

4.1. N-gram definition and its use                                                                              20

4.2. N-gram model                                                                                                      21

5. Design and implementation                                                                                        21

5.1. Japanese language processing                                                                             22

5.2. Hidden Markov Model program description                                                       23

5.2.1. Number of iterations and observations                                                       23

5.2.2. Number of states                                                                                         23

vi



5.2.3. Japanese corpus                                                                                          24

5.2.4. The software                                                                                               25

5.2.5. The GUI - the Nutch web crawler                                                              25

6. Experiments and Results                                                                                            28

6.1. The HMM for English text                                                                                  28

6.1.1. Goal                                                                                                            28

6.1.2. Results                                                                                                        28

6.2. The HMM for Japanese text                                                                                29

6.2.1. Goal                                                                                                            29

6.2.2. Results                                                                                                        29

6.3. Tanaka corpus programs for parsing                                                                   30

6.3.1. Goal                                                                                                            30

6.3.2. Results                                                                                                        32

6.4. Precision and recall                                                                                             34

6.4.1. Goal                                                                                                            34

6.4.2. Results                                                                                                        34

7. Conclusion                                                                                                                  39

8. References                                                                                                                  42

Appendix 1: HMM program results for the Japanese text                                               44

vii



Appendix 2: HMM program results for the English text                                                 64

viii



List of Figures

1. Example of morphological analysis                                                                             4

2. Google search keyword suggestions for the word “あなむ”                                       6

3. Yahoo search keyword suggestions for the word “あなむ”                                         7

4. Bing search keyword suggestions for the word “あなむ”                                           8

5. Example of HMM                                                                                                       10

6. An alternate view of the search for the best path                                                        11

7. Guessed HMM                                                                                                            18

8. Instant query suggestion                                                                                             27

9. Link displayed for “Did you mean:”                                                                          27

10. Search results after user clicks on “Did you mean” link                                            28

11. Binary Search Tree Experiment                                                                                  32

12. Dictionary experiment with window of length three                                                  33

13. Experiment of creating Japanese word dictionary                                                      33

ix



List of Tables

1. Forward probabilities for “eye drops off shelf”                                                          13

2. Backward probabilities for “eye drops off shelf”                                                       14

3. New probabilities for “eye drops off shelf”                                                                19

4. Precision and recall experiment results                                                                      35

x



1. Introduction

 In this multilingual world, everyone comes across different words in different 

languages.  Japanese is a language spoken by over 130 million people in Japan and in 

Japanese emigrant communities [13].  There are several websites that provide online help 

with Japanese text which translates given Japanese text to any other language, and vice 

versa.  The problem with these websites is if you enter an incorrect combination of 

Japanese words, then you will get either a meaningless translation or a “no search results 

found” message.

 The Japanese language is written with a combination of three scripts: hiragana 

characters, katakana characters, and kanji symbols [12].  The total number of hiragana 

and katakana characters is around 90, while the total number of kanji characters is much 

larger but common-use kanji symbols number almost 2000.  Like many other Asian 

languages, Japanese text is written without any spaces in between, which makes it hard to 

recognize the boundary between words.  Therefore, it becomes necessary to figure out 

which words are present in the text and where these words begin and end.  If you do not 

know which is the right combination of characters, you will probably end up getting 

some error message.

 The “JUMAN” morphological analyzer [6] is one tool used for Japanese text 

segmentation.  Rie Kubota Ando and Lillian Lee [10] tried an n-gram approach to the 

segmentation. Each of these approaches has some pros and cons [10]. I will explain later
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how these analyzers and other algorithms for the Japanese language segmentation work. I 

will also look at how existing search engines provide help for the Japanese language.

 My goal in developing a tool is to provide suggestions to people who have a very 

basic knowledge of the Japanese language. Even if they make mistakes while typing the 

Japanese characters, my tool will suggest to them the string that they might be looking 

for. This tool makes use of a Hidden Markov Model(HMM), which is trained on a corpus 

of Japanese text.  The most commonly used Japanese corpus is the Tanaka Corpus [3]. 

The Tanaka Corpus was compiled by Professor Yasuhito Tanaka at Hyogo University and 

his students [3].  The Hidden Markov Model suggests the character with the highest 

probability for given input.  Suppose a user enters the string as “C1C2C3”, then the HMM 

will suggest the string as “C1C2C4” assuming the user might have entered C3 incorrectly.  

Then it might also suggest “ C5C2C3” assuming user might have entered C1 as the wrong 

character.  Once the HMM suggests a string, it is given to the Nutch web crawler, which 

outputs the list of search results with the given suggested search string.

 This project is divided into two main deliverables: The first deliverable was to 

develop a Japanese word segmenter using a HMM. This deliverable includes a HMM 

program that makes use of the Tanaka Corpus to provide probabilities for observations. 

Connected with the first deliverable, I also tested working of the HMM and Viterbi 

programs with different states and iterations.  Then I compared results of HMM with the 

n-gram binary tree program. The second deliverable was to study and install the Nutch 

web crawler and incorporate existing HMM into the Nutch web crawler.
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 This report describes how programs were developed and experiments were 

conducted.  It is structured as follows: Section 2 describes prior work about keyword 

suggestions in the Japanese text.  Section 3 gives information about HMM for parsing 

Japanese text, followed by section 4 which provides the n-gram approach of text parsing.  

In section 5, I will explain the design and implementation of the project.  Section 6 

describes various experiments that are carried out and results of those experiments.  At 

the end, section 7 gives the conclusion.

2. Prior work of keyword suggestions in Japanese

 In Japanese language processing, the first key step is to find out accurate word 

segmentation because Japanese is written without delimiters between words.  Many 

previously proposed segmentation methods for Japanese text make use of either a pre-

existing lexicon or a substantial amount of pre-segmented training data.  There are 

existing Japanese text analyzers like JUMAN morphological analyzer and TANGO 

algorithm.

2.1. JUMAN Morphological Analyzer

 JUMAN is a morphological analyzer [6] for the Japanese language.  It was 

developed by Yuji Matsumoto, Kazuma Takaoka, and Masayuki Asahara at the 

Matsumoto laboratory, Nara Institute of Science and Technology [8].  JUMAN is a rule-

based Japanese morphological analyzer, where rules are represented as cost to lexical 

entry and cost to pairs of adjacent parts-of-speech, which are assigned manually.  The 

probability of the occurrence of the word depends on the cost of a lexical entry, while a
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connectivity cost of a pair of parts-of-speech reflects the probability of an adjacent 

occurrence of the pair [7].  However, this technique is a kind of labor-intensive and 

vulnerable to the unknown word problem.  If the terms from the domain are not present 

in the lexicon, JUMAN will not work properly and hence it is not a very robust analyzer 

to work with.  If the domain text changes, then re-estimation of costs will require much 

effort. 

 This analyzer provides word segmentation with some additional information such 

as their parts-of-speech.  Similarly, there is also JTAG morphological analyzer [13].

Figure1: Example of morphological analysis [13]

 JUMAN is available on the internet for download and installation.  Generally, 

morphological analysis is used to separate the text into the words, and these words are 

obtained from the dictionary.  It also verifies if these words are connected to each other. If 

they are, then it evaluates the cost of word connection. 
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2.2. TANGO algorithm

 “Tan-go bun-katsu(単語分割)” is Japanese for “word segmentation.” This 

algorithm was developed by Rie Kubota Ando and Lillian Lee [10].

 In this algorithm, the authors used the n-gram approach that provides counts for 

an unsegmented corpus to make segmentation decisions.  The authors used a 4-gram 

approach to decide the word boundaries [10]. If the given sentence of eight kanji symbols 

says “C1C2C3C4C5C6C7C8” then the word boundary occurs in between C4 and C5.  They 

pose series of questions like “is number of occurrences of {C1C2C3C4} > number of 

occurrences of {C2C3C4C5}?” Each affirmative answer makes it more reasonable to place 

a segment boundary at the location under consideration [10].

 In their paper, the authors present this simple TANGO algorithm that segments 

Japanese sequences into words based on statistics drawn from a large unsegmented 

corpus [10]. This algorithm is more robust than JUMAN analyzer, as it can be ported to 

any other domains and applications.

2.3. Search engines suggestions

 I also studied how existing search engines like Google, Yahoo and Bing work for 

keyword suggestions in the Japanese language. 

 I will first briefly explain how Google provides suggestions.  I think that Google 

search works better for suggestions in katakana, rather than suggestions in hiragana. 

Consider I start typing the query string for the word “you” in Japanese as  “あなた”.  As 

a Japanese language beginner, I do not remember the Japanese characters and mistakenly
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types “む” instead of “た”. So my query string becomes “あな む”, but the suggestions 

given by Google search engine are katakana words, although I am expecting it to show 

some simple suggestions as “あなた” (which is the most frequently used word in the 

Japanese language) [Figure 2].

Figure 2: Google search keyword suggestions for the word “あなむ”

 Yahoo search works similarly to Google. Yahoo search also gives suggestions in 

katakana, but they are different from the ones suggested by Google [Figure 3].
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Figure 3: Yahoo search keyword suggestions for the word “あなむ”

 Bing search engine provides keyword suggestions that contain combinations of all 

the three letters such as “なむ”、”なむあ”、”あ” etc [Figure 4].
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Figure 4: Bing search keyword suggestions for the word “あなむ”

3. Hidden Markov Model of text parsing

 There are different approaches for text parsing and segmentation.  The most 

commonly used approaches are Hidden Markov Model and N-gram.  In my project, I am 

using the Hidden Markov Model approach to parse the Japanese text, as it maximizes the 

probability by considering all previous states.  In the following section, I will explain 

briefly the working of these two models.

3.1. Markov model definition

 The Markov Model is a finite automata model, which is used to find out what will 

be the next state of the model depending on the current state.  Hence, to predict the future 

state, you do not have to look at the history of states of the model.  e.g. Consider the 

8



sentence “The monster swallowed ________”.  In this sentence, after the verb 

“swallowed”, it is less likely that the next word will be a verb again.  Hence by looking at 

the current word which is “swallowed”, I can say that the next word will be most likely 

some article such as “a”, followed by a noun such as “boy”. The purpose of the Markov 

Model is to find the next word with the highest probability.  The transition probability is 

assigned to each path.  It is better to follow the path with the highest probability to 

traverse from one state to the other.

3.2. Property of the Hidden Markov Model

 In the HMM, the states that the model is passed through are unknown to us.  We 

only know the observation sequence, probabilities of transitioning from one state to other, 

the emission probability for the current state, what are the chances that given observation 

will be generated.

HMM Example:

states = {‘q’, ‘r’}
observations = {‘eye’, ‘drops’, ‘off’, ‘shelf’}
start_probability = {‘q’ : 1.0, ‘r’ : 0.0}
transition_probability = {
 ‘q’ : {‘q’ : 0.7, ‘r’ : 0.3}
 ‘r’ : {‘q’ : 0.4, ‘r’ : 0.6}
}
emission_probability = {
 ‘q’ : {‘eye’ : 0.4, ‘drops’ : 0.3, ‘off’ : 0.2, ‘shelf’ : 0.2}
 ‘r’ : {‘eye’ : 0.2, ‘drops’ : 0.4, ‘off’ : 0.1, ‘shelf’ : 0.3}
}
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Figure 5: Example of the HMM [1]
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Figure 6: An alternate view of the search for the best path [2]
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3.3. The Hidden Markov Model training

 The sub-problems involved with the given Hidden Markov Model are as follows: 

1. Given the Hidden Markov Model λ = (A, B, π) and a sequence of observations O, 

find P(O|λ).  Here, we want to determine the likelihood of the observed sequence O, 

given the model [11]. This problem can be solved using the Forward algorithm.  

The Forward algorithm is similar to the Viterbi algorithm except the purpose of the 

 Forward algorithm is to find the sum of all possible ways to get to some end state.  

 Thus, in the Forward algorithm, the probability of reaching some end state is the 

 total product of all the probabilities of paths leading to that end state. 

2. Given the Hidden Markov Model λ = (A, B, π) and an observation sequence O, find 

an optimal state sequence for the underlying Markov process.  In other words, we 

want to uncover the hidden part of the Hidden Markov Model [11].  This problem 

can be solved using the Backward algorithm.  

 Calculations for the Forward and the Backward algorithm are explained in tables 

 below.
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Time ticks 1 2 3 4 5

input

Forward 
Probabilit
y of state 

q at 
timestamp 

t

Forward 
Probabilit
y of state r 

at 
timestamp 

t

Total 
Probabilit

y

ϵ eye eye drops eye drops 
off

eye drops 
off shelf

1.0 0.28 0.0876 0.0149 0.0023

0.0 0.12 0.0444 0.007 0.0012

1.0 0.4 0.132 0.0219 0.0035

Table 1: Forward probabilities for “eye drops off shelf”

 For given observation “eye”, what is the total probability i.e., sum of the 

probabilities of all paths that one will end up in state “q” or in state “r”

Hence, in the above example,

 

Where,

: forward probability of state q at time 2

: forward probability of state q at time 1

: transition probability from state q to next state q

: emission probability for observation eye from state q

13



: forward probability of state r at time 1

: transition probability from state r to next state q

: emission probability for observation eye from state r
 
 Similarly, I can calculate the forward probability for other states and at different 

timestamps.  As the sequence moves forward, it is called forward probabilities.  We can 

also use the Backward algorithm instead of the Forward algorithm.  The difference 

between the Backward algorithm and the Forward algorithm is, in the Backward 

algorithm I calculate the probability of sequence by working backward.

Time ticks 1 2 3 4 5

Input

Backward 
probabilit
y of state 

q at 
timestamp 

t

Backward 
probabilit
y of state r 

at 
timestamp 

t

eye drops 
off shelf

drops off 
shelf

off shelf shelf ϵ

0.0035 0.0083 0.032 0.1 1

0.0105 0.018 0.3 1

Table 2: Backward probabilities for “eye drops off shelf”

Hence, in the above example,
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Where,

: backward probability of state q at time 2

: backward probability of state q at time 3

: transition probability form state q to next state q

: emission probability for observation drops from state q

: Backward probability of state r at time 3

: transition probability from state q to r

3. Given an output sequence O, what HMM transition probabilities maximize the 

likelihood of the sequence? i.e., when we have the model and a set of all 

observations, how can I adjust parameters to increase the probability of the 

observations given in the model? This problem can be solved using the Forward-

Backward algorithm, also known as the Baum-Welch algorithm.  Using an initial 

parameter instantiation, the Forward-Backward algorithm iteratively re-estimates 

parameters and improves the probability that given observations are generated by 

the new parameters. I need to re-estimate three parameters such as initial state 

distribution, transition probabilities, and emission probabilities.

3.4. Working of the Hidden Markov Model

 In the HMM, I know what the observable sequence is, but I do not know what 

states it has travelled to get this sequence.  In the HMM, the states are not observable. 
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We know some probabilities that the model will pass through.  The HMM works as any 

other finite state machine, having a set of hidden states, observable states, transition 

probabilities, initial state probabilities and output probabilities.  The current state is not 

observable but each state produces an output with a certain probability.  The HMM 

consists of a set of states as in any other finite automata model.  e.g. states {q,r}, 

transition probabilities i.e., traveling from the state “q” to “r”, a set of observations such 

as string “aabb” and the emission probability of seeing a symbol “b” in state “r”.

 The problem with the HMM is how to find out the state sequence that best explains 

the given set of observations. Because it is possible to have more than one state 

sequences that will lead to the same observation sequence.  This problem could be solved 

with the use of the Viterbi algorithm.

 The Viterbi algorithm uses dynamic programming techniques.  A dynamic 

programming can be viewed as the Forward algorithm, where “sum” is replaced by 

“max” [11].  Hence, in the Viterbi algorithm, the purpose is to find the probability of the 

best overall path [11].  Our example for the Viterbi algorithm for the given HMM is as 

follows:

Sentence: eye drops off shelf
Set of states = {q, r}
Set of observations = {eye, drops, off, shelf} 

 As the Viterbi algorithm follows the dynamic programming approach, it is required 

to store the best path and its probability for each possible state [1].

16



 The purpose of using the HMM training is to find the HMM that maximizes the 

probability of the given observation sequence.  If we know the observation sequence, we 

have to find the three parameters: initial state probabilities, transition probabilities, and 

emission probabilities.  To achieve this I used the Forward-Backward/Baum-Welch 

algorithm.  I followed the hill climbing approach.  I started with some random HMM 

model and iteratively make small changes to the solution, improving it a little each time.  

When there is no more improvement possible, the HMM stops.  I do not know what the 

model is.  I can work out the probability of the observation sequence using some 

randomly chosen model.  By looking at it, I can see which state transitions and emissions 

were probably used the most.  By increasing the probability of those, I can choose a 

better revised model, which gives a higher probability to the observation sequence.  Thus, 

I am following the process of maximization which is referred to as training the model.  

Hence, I will guess random transition probabilities from state q to state r.  This is how I 

found the new re-estimated probability.

Where,

: New estimated probability from state q to state r

: forward probability from state q at timestamp t

: backward probability from state r at timestamp t+1

: transition probability from state q to state r

17



 We will use this newly calculated probability for re-estimating start probabilities, 

transition probabilities and emission probabilities.  Consider the following diagram for 

guessed HMM:

Figure 7: Guessed HMM

Thus, in the above example,

                      

                      
                                 
Where,

: total probability from state q to state r

: forward probability of state q at time t1

: transition probability from state q to state r

: backward probability of state r at time t2

18



Time 
ticks

t1 t2 t3 t4

Input

q -> r 
for 

observa
tion eye

r -> r for 
observa

tion 
drops

r -> r for 
observa
tion off

r -> q 
for 

observa
tion 
shelf

eye drops off shelf Total P New P

0.003 0 0 0 0.003 0.23

0 0.001 0 0 0.001 0.08

0 0 0.005 0 0.005 0.38

0 0 0 0.004 0.004 0.3

0.013

Table 3: New probabilities for “eye drops off shelf”

 Similarly, I can calculate the new probability for other observations as well.  After 

calculating all the total probabilities for remaining transitions, I calculate its total 

i.e., ∑(Total P).  This is nothing but the expected number of transitions from one state to 

the other state.
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Where,

: New probability from state q to state r

: total probability from state q to state r

: Sum of all total probabilities

 My purpose of calculating total probabilities is to find out the new probability that 

will be greater than the previous probability.  If I think that the difference between the 

new probability and the old probability is almost zero, I will stop iterating through the 

HMM and that will be my new re-estimated set of emission probability matrix.

4.  N-gram approach to text parsing

 N-gram is one of the methods that can be used for Japanese text parsing. It is used 

in the TANGO algorithm that I explained earlier.

4.1. N-gram definition and its use

 N-gram is a probabilistic model, which predicts the next item in the sequence by 

looking at previous N-1 items.  The n-gram model is one of the most important tools in 

speech and language processing.  N-gram can be of size 1, which is referred to as a 

“unigram”, size 2, which is a “bigram”, size 3, which is a “trigram” and size 4 or more, 

which is simply called as an “n-gram” [4].
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 The n-gram approach is widely used in statistical natural language processing.  

For text parsing, words are modeled, such that each n-gram is composed of n words.  In 

the above example of the Hidden Markov Model, the sentence is “eye drops off shelf”, 

sequence of words in trigrams would be: “eye drops off”, “drops off shelf”. This 

approach is extremely useful in any task in which word identification is necessary in 

noisy, ambiguous input [9].  In speech recognition the input speech sounds are very 

confusable and many words have a similar sound.  The n-gram approach is also a part of 

statistical machine translation process.  If I have a set of potential rough translations, 

using n-gram I can tell which is the right translation that is being used most of the time.

4.2. N-gram model

 N-gram model is a generalized Markov model.  As seen in the previous section, 

the Markov property assumes that we can predict the future probabilities without 

knowing anything about history.  In bigram, we assume that the probability of future 

words depends only on the previous words.  Similarly, trigram will look into the past two

words to predict the probability and n-gram, looks into the past N-1 words to predict 

future probabilities. 

5.  Design and implementation

 In this section, I will explain how I implemented the project. Our project mainly 

involves two parts: HMM program and the Nutch web crawler.
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5.1. Japanese language processing

 Japanese is a language spoken by over 130 million people in Japan [13].  The 

Japanese language uses a combination of three writing styles: hiragana, katakana and 

kanji symbols.  The hiragana is used for native Japanese words.  The katakana is used for 

foreign words.  The kanji symbols are a more pictorial representation of the word.  Here 

is an example that uses all three scripts: kanji(K), hiragana(H) and katakana(KT)

    私[K]は[H]サンノゼ[KT]大学[K]の[H]学生[K]です[H]。

This line can be translated in English as “I am a student of San Jose University.” Kanji 

symbols are frequently used for nouns and the stems of the adjectives and verbs [5].  

Hiragana is mostly used for endings of the verbs and for grammatical particles, while 

foreign borrowings are normally written using katakana.The most commonly used 

writing styles are kanji and hiragana. 

 In general in a Japanese-English dictionary, there are 150,00 entries of Japanese 

words.  There are approximately 90 hiragana characters and 90 katakana characters.  The 

total number of possible kanji symbols is disputed, but approximately 2,000 to 3,000 

characters are used commonly in Japan [5].  Because of the huge number of kanji 

characters, in this project, I am going to map all kanji symbols as one symbol, “*”.

 The set of English characters is very small compared to the total number of 

Japanese characters.  Hence, Japanese language cannot be encoded using only one byte.  

Thus, it has to be encoded as two-byte characters.  To deal with this problem, many 
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encoding formats such as Shift-JIS, EUC and UTF8 are available to handle Japanese 

characters.  In the project I decided to use “UTF8” character encoding to read corpus file, 

as it is the most commonly used encoding and works consistently for all operating 

systems and web browsers.  Hiragana characters have a unicode range between 

0x3040-0x309F [17].  Katakana characters have a unicode range between 

0x30A0-0x30FF [18].

5.2. Hidden Markov Model program description

 The HMM program is the heart of this project, which is written in Java using 

JDK1.6.

5.2.1. Number of iterations and observations

 In my program, I used 100 iterations to build the final probability matrix of 

HMM.  I decided on this number because after 100 iterations I could see convergence in 

the HMM probabilities. I could see a slight convergence at each iteration.  First I used a 

total number of 50,000 observations for HMM.  From the convergence of probabilities, I 

thought it would be better to use more observations so that I can see how HMM 

converges drastically from the first iteration to the last iteration.  Hence I changed a total 

number of 100,000 observations.

5.2.2. Number of states

 With more states, more time was required to run the HMM.  I decided to build 

HMM for two, three, and four states and checked the difference in the probabilities.  With
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 15 MB of the Tanaka Corpus, memory requirement to run HMM on four states will 

increase significantly.  The final probability matrix for two, three, and four states is

almost the same.  Thus, I decided to use the HMM with two states to carry out all my 

experiments.  All the resulting matrices for two and three states are listed in Appendix 1.

5.2.3. Japanese corpus

 For carrying out all my experiments, I used Tanaka Corpus, which has 212,000 

sentence pairs [3].  These sentence pairs are collected not only from textbooks used by 

Japanese students of English, but also from lines of songs, books etc. 

The format of Tanaka Corpus is as follows:

• It contains pairs of lines starting with “A:” and “B:”, where sentence A is a Japanese 

sentence and its English translation.  Sentence B contains a list of Japanese words 

found in sentence A.

• In sentence A, the Japanese sentence and its English translation are separated by [TAB]

• In sentence B, a line may contain a reading of kanji symbol in hiragana included in 

round brackets.  In square brackets, you will find some IDs.  These IDs indicate a sense 

number.  If the word has multiple senses, then this sense number indicates which sense 

applies in the sentence. In the example below: 指す means “to point”/”to say”

Consider the following example to understand the format:

A: ＆という記号は、ａｎｄを指す。[TAB]The sign '&' stands for 'and'.#ID=1

B: と言う{という}~ 記号~ は を 指す[03]~
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 As my project revolves only around Japanese text, I have written a program that 

will collect only Japanese sentences from the corpus file.  Then for my experiments, I 

used this new corpus file. 

5.2.4. The software

 For my experiments with two states, three states, and four states in the HMM 

program, all the parameters for the number of states and number of iterations are handled 

from the Constants.java file.  If in the future, anyone wants to run the HMM on different 

states, he/she should change the value in this Constants.java file. 

 The final matrix of start, transition and emission probabilities is stored as a 

serialized object in one file.  All these file names are also stored in the Constants.java file. 

For the rest of the experiments, this serialized HMM is used so that execution time is 

saved.  If the HMM is already built and stored, when a user enters a string to search, 

showing the corrected string will not take much of time, and the user will not have to wait  

longer to get the search results.

5.2.5. The GUI - the Nutch web crawler

 The Nutch web crawler is used in my project as GUI.  Nutch is an open source 

web crawler [14].  It maintains a database of pages and links.  I implemented Nutch on 

the Windows 7 platform using Tomcat 5.5 amd JDK1.6 version.  We also used cygwin to 

create and deploy jar files in Tomcat folder.  We want to use Nutch so that when a user 
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enters a string, it will first call my HMM program to get the suggested string and use this 

corrected string to display the search results from the crawled pages. 

After downloading and installing Nutch in my system, I made the following changes:

• To crawl Japanese websites, I used google.co.jp in crawl-urlfilter.txt file. This is my 

domain name to crawl.

• nutch-domain.xml is changed to add the agent name as google.

• nutch-site.xml file is changed to mention the searcher.dir property tag. This searcher.dir 

path is the path of my crawled dir

Command to crawl:

bin/nutch crawl urls -dir crawljp -depth 3 -topN 10

 Once the pages are crawled, I changed the existing search.html, search.jsp and 

nutch-1.0.jar file to incorporate the HMM program.  I included my .class files of HMM 

program under the WEB-INF/classes folder of the Nutch project in Tomcat server.  Also, 

a new jar file is created including the HMM .class files and the existing “nutch-1.0.jar” 

file is replaced with this new .jar file. It helped me to keep my code clean and easy to 

maintain. From the search.jsp page, I created an instance of the HMM program and called 

the right function to retrieve the suggested string.

 Also, I implemented the instant search help functionality to the user using AJAX.  

Once a user starts to type in a query string, a suggested string is shown to him/her 

instantly.

26



Figure 8: Instant query suggestion

Figure 9: Link displayed for “Did you mean:”
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Figure 10: Search results after user clicks on “Did you mean” link

6. Experiments and Results

6.1. The HMM for English text

6.1.1. Goal

 The main goal of testing the HMM program on English text is to understand how 

the HMM converges.  For this experiment, I used “Brown Corpus” [16].

6.1.2. Results

 My experiments were run with 100 iterations and 50,000 number of observations 

on “Brown Corpus” [16] with two, three, and four states.  After 100 iterations, the matrix 

shows the letters with the highest probability are a, e, i, o, u and these are found in the 

first state which indicates that these letters appear more frequently at the beginning of the 

word.  Hence, I could use HMM to distinguish between vowels and consonants.  Also, 
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the significant change after 100 iterations is the observation “space” which is the 

character that has the highest probability among all 27 observations. 

 HMM for three and four states is not as helpful as it is for two states.  In HMM 

two states, I can clearly see the separation between different states and characters.  All the 

results for HMM English text with two and three states are listed in Appendix 2.

6.2. The HMM for Japanese text

6.2.1. Goal

 Once testing the HMM for English text, I decided to run the same HMM program 

on Tanaka Corpus.  My goal for this experiment is to check whether I can make a clear 

distinction between Japanese letters to identify space.  If I can locate word boundaries, 

then it will help with Japanese text segmentation.

6.2.2. Results

 I ran this experiment on HMM two states, three states and four states.  It does not 

give any useful information for letters that have the highest probability, as I found in the 

English text.  We can see that from the experimental results in the Appendix 1, the 

characters such as あ、い、う、お、で、の、は have slightly higher probabilities than 

the other characters.

 I decided to use this HMM final probability matrix and Viterbi algorithm program 

along with the Tanaka Corpus.  If a user enters a query string as “C1C2C3”, then using the 

HMM final probability matrix, the Viterbi program checks all the possible combinations 

of “C1C2H1” to “ C1C2Hn” and the string with the highest probability is 
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returned.  Once I found the character with the highest probability from the Viterbi 

program, I verified that the string exists in the Tanaka Corpus.  If no such string exists in 

the Tanaka Corpus, then I discarded that particular string and searched for the second 

highest probability string from the Viterbi program.  Once the suggested string is also 

found in the Tanaka Corpus, that string is displayed on the screen for the user.

e.g. User enters string: あなむ

Viterbi program checks all the combinations such as “あなあ”、”あない”、。。。”あ

な＊” and then it returns the string with the highest probability. If this string also exists in 

the Tanaka corpus, then it will be displayed to the user.  As in the above case, the 

suggested string is “あなた” (means “you” in English)

 This experiment assumed the last character is wrong.  Similarly, I did experiments 

changing the first character.  For this project, I am assuming the query string of length 

three. 

6.3. Tanaka corpus programs for parsing

6.3.1. Goal

 I did a few experiments using Tanaka Corpus.  In these experiments I followed the 

n-gram approach.

• The first experiment I did, involved iterating through each character in the corpus file 

and creating a binary search tree.  A binary tree node consists of a key (word) and value 

(number of occurrences).  Each word that is stored as a key in the binary tree node has a
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length three.  When any special character (characters other than hiragana, katakana and 

kanji symbols) are found, that special character is stored as “EOW” (End Of Word).  

After the experiment is completed, a binary tree with all the words and its number of 

occurrences is created based on the corpus file.  When a user inputs a query string, this 

program looks into the binary search tree for the words starting with the user input and 

having the highest number of occurrences. 

 The goal of this experiment is to come up with suggestions for a possible next 

character for the given user query string.

• The second experiment is about finding word boundaries using the corpus file.  In this 

experiment,the program I developed, is iterating through each and every letter in the 

corpus file, reading strings of length three.  For each string of length three, its 

corresponding number of occurrences is also incremented.  If the string ends with the 

special character (character other than hiragana, katakana and kanji symbols), then the 

number of occurrence variable is decremented, otherwise the number of occurrence 

variable is incremented.  The aim to add or subtract the count is to find out words 

having negative number of occurrences.  

• The third experiment is about creating a dictionary of Japanese words using corpus file.  

This experiment also stores words and the number of occurrences of each word.  The 

difference between this experiment and previous experiments is previous experiment 

uses a string of length three.  This experiment generates a bunch of Japanese words that 

can be used in security to create a dictionary of passwords in Japanese.
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6.3.2. Results

 After comparing the results of these experiments with the HMM program, I saw 

that these experiments give more accurate suggestions of strings than the HMM program.  

The binary tree program gives the list of the first three most common words that begin 

with the user entered string.

Figure 11: Binary Search Tree Experiment
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Figure 12: Dictionary experiment with window of length three

Figure 13: Experiment of creating Japanese word dictionary
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6.4. Precision and recall

6.4.1. Goal

 To verify the correctness of the outputs given by the HMM program, I decided to 

run an experiment of precision and recall on my program. The goal of this experiment is 

to evaluate how accurate the HMM program works. I received help from Seichiro Inaba, 

a Japanese professor at San José State University and my Japanese friend Tomoko 

Oshimo for conducting this experiment. I gave them 20 strings of length two and asked 

them to write down what is the most commonly used word starting with the two lettered 

string given to them.

 In this experiment of checking the accuracy of HMM program, I followed two 

ways.  I used the usual way of determining the likelihood of the observed sequence where 

I used the Forward algorithm to determine the probability.  I also used another way of 

calculating the likelihood of sequence which is the Viterbi algorithm.  All the results are 

recorded in the table below.

6.4.2. Results
Tw
o 

lett
ers 
stri
ng

Inaba 
Sensei

To
mo
ko 
san

Viterbi HMM
Forward

Binary 
tree 

output

Google 
search

Yahoo! 
search

Bing 
search

あ
な

あな
た

あ
な
た

あなた あなた あなた あな／
アナス
イ

ANA
ホーム
ページ

ANA
ホーム
ページ
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ビ
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台

テレビ テレビ
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買
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found

No 
suggesti
ons
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No 
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No 
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言いまわ
す
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に
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ぶ
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ち
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でぶら でぶら No 
results 
found

でぶ
にゃん

でぶや debug 
assertion 
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た
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し

わ
た
し
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と
て
も

とても とてな とても とてノ とり とてつも
なく

こ
こ

ここ こ
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search
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リッチ

求索 戻れない

ス
リ
ッ

ス
リッ
パ

ス
リ
ッ
パ

スリッ
パ

スリッパ スリッ スリッ
パ

スリッ
パ

スリッパ

Table 4: Precision and recall experiment results

 Precision is used as a measure of exactness whereas recall is a measure of 

completeness [15]. The program is more precise if it gives less number of irrelevant 

results. If the precision score is 1.0 means that the results returned from the program are

all correct. And the recall score of 1.0 means that the program returns all the correct 

strings for all input strings. 

 For some of input strings, we can see either the input is changed to katakana word 

or  remain unchanged or the string is completely converted to some different word. e.g. 

Consider a response given from Sensei and Tomoko for words such as “ れむ” or “ だ

の”. In these cases, we can say that even native Japanese speakers got confused with the 

correct sequence of Japanese characters.
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 From the above results, I can calculate the precision and recall values for all, 

binary tree program, Viterbi, HMM and the search engines.

Precision = Number of correct results/ Number of returned results [20]

 Precision for the Viterbi = 8/20 = 0.4

 Precision for the HMM (Forward) =8/20 = 0.4 

 Precision for a binary tree = 8/15 = 0.53

 Precision for the Google search = 4/17 = 0.23

Recall = Number of correct results/ Number of results that should have been returned[20]

 Recall for the Viterbi = 8/20 = 0.4

 Precision for the HMM (Forward) =8/20 = 0.4

 Recall for a binary tree = 8/20 = 0.4

 Recall for the Google search = 4/20 = 0.2

 Hence, from the above experiment, I concluded that the binary tree program gives 

more relevant results as compared to HMM because the precision value of HMM is less

than the precision value of the binary tree. With a set of 20 strings, there is no difference 

between the precision and recall values for HMM using the Forward algorithm and HMM 

using the Viterbi algorithm. However, the recall value is same in the HMM and a binary 

tree programs. The Google search has the lowest precision and recall. 

7. Conclusion

 The HMM technique and a binary tree are used to find the correct string with the 

highest probability.  The most difficult part in the development of a HMM program is 
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handling large number of observation set for Japanese text and generating the start and 

transition probabilities randomly.  To handle this large observation set, I mapped all kanji

characters to one symbol.  In the future, I can modify the existing HMM code, to 

recognize all kanji symbols and output suggestions for different kanji symbols.  To 

generate probabilities randomly, I used Random class from Java.

 The experimental results of precision and recall demonstrate that the n-gram 

approach of binary search tree is more reliable than the HMM approach. The binary tree 

program was written with an iteration window of size three based on Tanaka Corpus.  

Hence, if the user enters a wrong set of kanji and hiragana characters, a binary tree 

program fails to return any results, as no such string exists in the corpus file giving a 

precision of 0.53.  The HMM program gives results for any characters typed by the user 

but those results are sometimes irrelevant.  Hence, the precision of the HMM program is 

lower than the precision of a binary tree program.  The search engines such as Google, 

Yahoo and Bing also suggests keywords but most of the time they are irrelevant.  In the 

future, I can modify the existing binary search tree program by changing the iteration 

window size and running it more than one corpus file for Japanese text.  

 With thousands of online translation tools and search engines, none of the tools 

are efficient enough to provide suggestions for the wrong Japanese word.  While learning 

the Japanese language or reading Japanese text, I always feel that the translation tool or 

the search engine should suggest a better word.  The motive behind the development of 
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this tool is to encourage Japanese language learners to get a quick grasp of Japanese 

words. 
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Appendix 1: HMM Program results for the Japanese text

HMM parsing on Japanese text

No. of observations read = 50000
No. of states = 2
Language = Japanese
Emission matrix size = 191
Iteration = 100th

Start Probabilities

q r

0.959001807619696 0.0409981923803042

Transition Probabilities

q r

q

r

0.500624298487603 0.499375701512407

0.500671848129107 0.499328151870889

Emission Probabilities

q r

0 0 0

1 0.255653541151235 0.255676715913046

2 0.0260044515787143 0.0259164712050492

3 0 0

4 0.0486462157973132 0.0483152884871585

5 0 0

6 0.0146813851378645 0.0146391457565325
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q r

7 0 0

8 0.0049293470662525 0.00491082539372312

9 0 0

10 0.00509379159492166 0.00510642901915708

11 0.0202026272037206 0.0206788162917639

12 0.0248784717036502 0.0248424754045021

13 0.00725287483510252 0.00722738126321316

14 5.76E-04 5.84E-04

15 0.00992731298140807 0.0100332254326073

16 7.82E-04 7.78E-04

17 0.00562610081503685 0.0056942151155227

18 7.38E-04 7.42E-04

19 0.0108074077777545 0.0107128984124685

20 0.00129431050259396 0.00130575654254878

21 0.00721671234893996 0.00726363893481072

22 4.02E-04 3.98E-04

23 0.0253519882573592 0.025048621032086

24 0.00107574290294857 0.00108431156013009

25 0.0229336759511032 0.0231475267421183

26 0.00139614901103806 0.00140391720020146

27 0.00344682095440728 0.0034733523198612

28 2.59E-04 2.61E-04

4445



q r

29 0.00663795377998909 0.00672242444938009

30 8.50E-04 8.71E-04

31 0.0401264924593157 0.0404755783940263

32 0.0124329828237568 0.0124475339114177

33 0.00415502103693522 0.00416515869081832

34 0 0

35 0.0206173685945098 0.020182876346921

36 0.00665456035493773 0.006665720719015

37 2.59E-04 2.61E-04

38 0.023689704540606 0.0239515924908802

39 0.0252272332381718 0.0254540785362201

40 0.0209122797500036 0.0192463338300259

41 0.00448457451533148 0.00447559288324437

42 0.0301914619424668 0.0304500908106449

43 0.0294863467211587 0.0295549242373167

44 1.19E-04 1.21E-04

45 0.00187650261246155 0.00188358189369584

46 0.035025600776364 0.0348555733760735

47 0.0314494275606899 0.0319124482358832

48 0.00348809467410415 0.00351207684966858

49 9.96E-05 1.00E-04

50 4.62E-04 4.58E-04

4446



q r

51 5.18E-04 5.22E-04

52 0 0

53 1.40E-04 1.40E-04

54 5.38E-04 5.42E-04

55 4.00E-05 4.00E-05

56 0.00120152846479128 0.00119851557617856

57 8.98E-04 9.02E-04

58 0 0

59 9.55E-04 9.65E-04

60 4.19E-04 4.21E-04

61 6.02E-05 5.98E-05

62 0.0205973495744839 0.0202830549487243

63 0.00148312226740041 0.00147692879339099

64 3.79E-04 3.81E-04

65 0.00233812167925083 0.00238203043410955

66 0.00961550895854897 0.00974504850950515

67 6.19E-04 6.21E-04

68 0.00203867468764317 0.00204141050981677

69 3.99E-05 4.01E-05

70 1.20E-04 1.20E-04

71 0.00251061016645553 0.00252951548376449

72 0.00663661891901119 0.0066837093796643

4447



q r

73 0.0114057132683051 0.0114347817469863

74 0.00967010201780335 0.00973036519686675

75 0.0189643777702905 0.0187961563429793

76 0.00987339881121645 0.0100872815134994

77 0.0028089040678766 0.00279118464483961

78 0 0

79 0.00356378777593715 0.00355634484429364

80 0 0

81 0 0

82 0.0181651721889989 0.0182356484560436

83 0.00854211981250269 0.00853821666422648

84 0 0

85 0 0

86 0 0

87 0 0

88 0 0

89 0 0

90 0 0

91 0 0

92 2.01E-05 1.99E-05

93 0 0

94 0 0

4448



q r

95 0 0

96 0 0

97 1.19E-04 1.21E-04

98 0.00350317303937454 0.00353701223999516

99 6.79E-04 6.81E-04

100 0.002762682157663 0.00275742132997613

101 0 0

102 8.19E-04 8.21E-04

103 2.78E-04 2.82E-04

104 2.59E-04 2.61E-04

105 9.97E-05 1.00E-04

106 3.56E-04 3.64E-04

107 9.20E-04 9.20E-04

108 2.00E-04 2.00E-04

109 6.20E-04 6.20E-04

110 6.39E-04 6.41E-04

111 0.0015453360510733 0.00157476503015364

112 5.16E-04 5.24E-04

113 2.38E-04 2.42E-04

114 9.91E-05 1.01E-04

115 8.92E-04 9.08E-04

116 1.60E-04 1.60E-04

4449



q r

117 7.24E-04 7.16E-04

118 1.80E-04 1.80E-04

119 0.00106065383538851 0.00105938690026331

120 0.00138701622616549 0.00137302057976056

121 0.00346101735249325 0.00345911855458977

122 2.37E-04 2.43E-04

123 7.98E-04 8.02E-04

124 2.00E-05 2.00E-05

125 2.61E-04 2.59E-04

126 0 0

127 0.00113543679827419 0.00114462087372748

128 3.80E-04 3.80E-04

129 4.99E-04 5.01E-04

130 0 0

131 0.00135025415272939 0.00136982597258023

132 2.39E-04 2.41E-04

133 0 0

134 0.00106887843925215 0.00109119409219051

135 2.79E-04 2.81E-04

136 0.0031346864937812 0.00314545326003017

137 0.0024849629091144 0.00251517680451934

138 3.18E-04 3.22E-04

4450



q r

139 7.52E-04 7.68E-04

140 4.01E-05 3.99E-05

141 1.38E-04 1.42E-04

142 1.80E-04 1.80E-04

143 2.58E-04 2.62E-04

144 0.0010560585746586 0.00106399425645285

145 8.40E-04 8.40E-04

146 2.41E-04 2.39E-04

147 4.01E-04 4.00E-04

148 3.77E-04 3.83E-04

149 8.45E-04 8.35E-04

150 4.75E-04 4.85E-04

151 5.98E-04 6.02E-04

152 3.98E-05 4.02E-05

153 3.18E-04 3.22E-04

154 6.24E-04 6.16E-04

155 2.98E-04 3.02E-04

156 3.19E-04 3.21E-04

157 3.39E-04 3.41E-04

158 9.65E-04 9.55E-04

159 3.19E-04 3.21E-04

160 6.79E-04 6.81E-04

4451



q r

161 9.21E-04 9.19E-04

162 1.59E-04 1.61E-04

163 4.59E-04 4.61E-04

164 1.39E-04 1.41E-04

165 7.42E-04 7.38E-04

166 8.03E-05 7.97E-05

167 3.59E-04 3.61E-04

168 2.00E-04 2.00E-04

169 0.00131540605036662 0.00132465891218842

170 0.0017868133633409 0.00177323999793018

171 0.0034978141473505 0.00354238523747827

172 8.38E-04 8.42E-04

173 6.02E-04 5.98E-04

174 0 0

175 1.39E-04 1.41E-04

176 0 0

177 0 0

178 0 0

179 0.00523848204864668 0.00520167838263065

180 0 0

181 1.99E-05 2.01E-05

182 3.81E-04 3.79E-04

4452



q r

183 0 0

184 0 0

185 0 0

186 0 0

187 6.36E-04 6.44E-04

188 0.00707810042953468 0.00712224159308415

189 0 0

190 0 0

Log Prob => -252466.21402948367

4453



No. of observations read = 50000
No. of states = 3
Language = Japanese
Emission matrix size = 191
Iteration = 100

Start Probabilities

q r s

0.999073535209081 9.26E-04 1.63E-40

Transition Probabilities

q r s

q

r

s

0.0721456836517495 0.525792942773241 0.402061373575021

0.015507204602405 0.795935363455294 0.188557431942299

0.871370357994302 0.0155673871852324 0.11306225482047

Emission Probabilities

q r s

0 0 0 0

1 4.95E-05 0.447183784076656 0.00730490429186804

2 0.0750625828636172 0.0018879778794974 0.0404963564466616

3 0 0 0

4 0.055859237706221 0.0166509314934374 0.124259191281704

5 0 0 0

6 1.15E-04 0.018560375450746 0.0187819026052506

7 0 0 0

6354



q r s

8 0.0024736016471003 9.78E-04 0.0176086504388835

9 0 0 0

10 1.45E-05 0.0089687822371504 6.68E-06

11 0.0422359840922002 0.0095102409212093 0.0275311221124488

12 0.00115608158163583 0.039113177373367 0.0109789371513374

13 7.18E-05 0.00493811324241329 0.0202902596690599

14 7.79E-16 4.14E-04 0.00158290777018252

15 0.0058193661827848 0.0103724217314838 0.0130463981837743

16 0.0027154663681333 6.78E-05 7.36E-04

17 0.0092434289843684 0.00127671981704282 0.0135726057533877

18 4.61E-08 3.49E-04 0.00248659670233503

19 5.36E-04 0.0183205716906812 0.00108741333204224

20 2.94E-06 0.00190932966668195 9.85E-04

21 0.0100433472343484 0.00284808041575846 0.0159419617633978

22 1.87E-04 5.95E-04 9.99E-05

23 1.48E-14 0.00178226338971655 0.111055132671909

24 3.73E-21 5.96E-04 0.00340329056000311

25 3.39E-28 0.0183329182073274 0.0579647103028998

26 3.54E-05 0.00218981971087112 6.81E-04

27 4.04E-23 2.34E-12 0.015886373642921

28 0.0010717620165509 5.38E-05 9.56E-17

29 0.00182578874311722 0.0110699771307572 3.39E-17

6355



q r s

30 0.0040004880677752 6.47E-06 1.70E-08

31 0.18622225290543 7.72E-04 1.19E-08

32 1.18E-04 0.0105535524396962 0.0294726001019325

33 0.0010470255933469 0.00467687003076349 0.00587158267174382

34 0 0 0

35 1.66E-19 6.27E-28 0.0936653244047042

36 0.0154660404660608 0.0058955531675707 1.63E-09

37 2.03E-28 3.90E-04 1.77E-04

38 0.111280579435487 8.91E-11 4.87E-10

39 0.0060194410962442 0.0423345088413811 1.05E-07

40 0.0182761081009938 0.0270359805865832 0.00370983303912165

41 0.00301585986711069 0.00674924074898842 1.15E-10

42 0.0132090115057985 0.0052811533466005 0.112454332168165

43 0.0012390945426299 0.0514926050862331 1.31E-06

44 2.64E-10 7.39E-05 3.58E-04

45 0.0015978702706968 9.77E-04 0.00451280504676832

46 7.70E-04 0.0612099101591007 2.77E-09

47 0.0027163479801558 0.0537107698171013 0.00268079887060554

48 0.0138656971027275 4.95E-04 0.00115200554804961

49 4.67E-04 5.26E-97 9.05E-59

50 3.87E-04 4.53E-04 5.51E-04

51 1.67E-04 5.99E-04 6.62E-04

6356



q r s

52 0 0 0

53 2.15E-04 1.13E-04 1.37E-04

54 1.05E-04 7.66E-04 3.78E-04

55 2.84E-47 1.61E-45 1.84E-04

56 1.38E-04 0.00206038235431289 3.24E-11

57 5.34E-06 6.88E-04 0.00233276427940296

58 0 0 0

59 1.32E-04 0.00163566865875866 1.12E-05

60 8.41E-05 7.08E-04 5.13E-09

61 2.80E-04 1.64E-87 9.28E-76

62 0.0780839970553065 0.00589523579938521 0.00172907372441659

63 9.62E-04 5.13E-04 0.00451103891347507

64 8.05E-15 5.35E-04 3.49E-04

65 1.59E-05 0.00113095037621496 0.00787001163060328

66 5.54E-04 0.0151935056710806 0.00426743354652492

67 0.0028964718599479 1.36E-47 2.76E-23

68 0.0018520723404992 0.00176862670838526 0.00293277113704503

69 1.87E-04 3.06E-32 1.08E-67

70 2.00E-04 1.14E-04 5.74E-05

71 0.0117727565920463 1.36E-64 2.30E-84

72 0.0110437766992533 0.00581296383218547 0.0045616984761095

73 0.0365630031504216 0.00632524193268217 1.03E-08

6357



q r s

74 2.60E-07 0.00946868373642041 0.0198373210386619

75 0.0791899063575108 0.00308443490942117 8.12E-04

76 8.46E-04 0.00314777662850644 0.0367798671265133

77 0.0079047489622625 0.00195018941648789 2.46E-18

78 0 0 0

79 2.75E-04 0.00301826131426467 0.00820184230553746

80 0 0 0

81 0 0 0

82 0.0013685645829742 0.0315193025907701 3.61E-12

83 0.026045103838904 0.00518549978425972 8.69E-05

84 0 0 0

85 0 0 0

86 0 0 0

87 0 0 0

88 0 0 0

89 0 0 0

90 0 0 0

91 0 0 0

92 4.92E-42 3.52E-05 1.11E-45

93 0 0 0

94 0 0 0

95 0 0 0

6358



q r s

96 0 0 0

97 5.61E-04 2.43E-106 1.13E-17

98 0.006827789714856 6.28E-09 0.00945140058046275

99 0.0031767755877433 9.20E-96 5.77E-13

100 0.0053169851290699 4.48E-34 0.00744676341605047

101 0 0 0

102 0.002123543060634 1.54E-41 0.00167793224207971

103 0.00130727971106086 1.99E-86 7.91E-07

104 6.22E-18 1.34E-42 0.00119377374241289

105 4.67E-04 3.06E-105 4.09E-14

106 2.18E-04 2.14E-22 0.00143827310126154

107 0.0022701886872815 5.66E-05 0.00184534437798825

108 1.69E-06 1.95E-19 9.17E-04

109 2.05E-04 9.12E-17 0.00264495271428907

110 0.0023491231975022 1.35E-39 6.30E-04

111 0.0030400885749542 8.84E-04 0.00186804038340817

112 1.58E-04 5.63E-04 7.62E-04

113 3.73E-10 2.45E-44 0.00110194462602343

114 1.74E-04 7.83E-34 2.88E-04

115 0.0014801522728398 1.91E-10 0.00267757980127201

116 1.95E-07 1.34E-04 3.86E-04

117 3.37E-27 2.58E-17 0.00330583497898949

6359



q r s

118 2.21E-17 4.61E-84 8.26E-04

119 7.35E-09 8.26E-23 0.00486691649064415

120 7.58E-10 2.60E-04 0.00565889438139465

121 0.0142824281999041 4.55E-05 0.00173065818569374

122 1.66E-04 3.43E-04 4.29E-05

123 1.16E-43 1.96E-65 0.00367314997665507

124 4.19E-78 1.05E-95 9.18E-05

125 4.26E-04 4.04E-13 7.75E-04

126 0 0 0

127 0.00110204924329289 1.37E-10 0.00415112964283091

128 3.29E-09 4.90E-34 0.00174474300244359

129 4.03E-10 2.91E-04 0.00153602403674259

130 0 0 0

131 0.00635355111900175 8.74E-23 5.67E-11

132 3.00E-28 4.22E-04 2.94E-07

133 0 0 0

134 4.87E-10 4.70E-34 0.00495875199017843

135 2.01E-25 8.53E-35 0.00128560249182927

136 0.0014824425105657 0.00365280515317119 0.00343168918472004

137 1.88E-10 7.28E-04 0.00957914040584579

138 6.39E-04 1.46E-38 8.41E-04

139 2.77E-04 2.09E-56 0.00321704236647535

6360



q r s

140 9.54E-05 4.47E-42 8.99E-05

141 3.74E-04 2.86E-84 2.75E-04

142 1.66E-04 2.08E-26 6.64E-04

143 4.92E-44 5.70E-29 0.0011937737424129

144 3.77E-07 8.31E-30 0.00486655290726183

145 2.64E-26 2.61E-12 0.00385680746867212

146 4.01E-84 4.56E-55 0.00110194499299652

147 4.53E-04 2.44E-05 0.0013280873898329

148 6.91E-26 2.91E-35 0.00174474623891116

149 3.40E-14 1.98E-16 0.00385680747545388

150 0.0013679644837195 5.08E-20 8.59E-04

151 7.17E-04 1.54E-04 0.00164987497031763

152 4.26E-49 1.67E-39 1.84E-04

153 4.57E-38 1.10E-23 0.00146925999066203

154 3.73E-05 1.76E-27 0.00281000259573987

155 3.45E-05 1.69E-04 9.03E-04

156 6.64E-05 2.22E-56 0.00140399072229868

157 2.39E-41 7.74E-38 0.0015610887400784

158 0.0014347191009199 2.18E-07 0.00299715112917363

159 5.54E-04 1.02E-35 9.25E-04

160 0.0017196719364407 5.44E-04 1.36E-05

161 0.0017861067280595 2.93E-41 0.00246871292392683

6361



q r s

162 1.32E-04 1.07E-64 6.05E-04

163 0.0021489952509276 4.37E-90 1.49E-15

164 1.85E-32 7.42E-49 6.43E-04

165 0.0034570793162963 9.42E-94 4.09E-13

166 7.82E-49 2.68E-29 3.67E-04

167 0.0016817852473849 4.04E-109 3.65E-08

168 4.07E-66 1.42E-84 9.18E-04

169 0.002525491244871 2.11E-39 0.00357861093323022

170 0.0016186807001465 6.65E-49 0.0065818976853605

171 0.0164368638993516 9.55E-13 7.49E-06

172 0.00214215784116607 7.20E-28 0.00175146613655301

173 6.72E-04 9.53E-29 0.00209409342295267

174 0 0 0

175 1.14E-21 5.38E-66 6.43E-04

176 0 0 0

177 0 0 0

178 0 0 0

179 0.0232374381120533 2.00E-13 0.00112923903996145

180 0 0 0

181 6.40E-42 3.52E-05 8.36E-49

182 8.47E-04 3.50E-04 9.68E-55

183 0 0 0

6362



q r s

184 0 0 0

185 0 0 0

186 0 0 0

187 0.0019792559696228 1.19E-11 9.93E-04

188 0.0308051268289229 3.01E-21 0.00232351593364892

189 0 0 0

190 0 0 0

Log Prob => -239038.55238082897

63



Appendix 2: HMM program results for the English text

HMM parsing on English text

No. of observations from file = 50000
No. of states = 2
No. of observations = 27
Iteration = 100

Start Probabilities

q r

0.999999999999999 1.07E-15

Transition Probabilities

q r

q

r

0.224583895172636 0.77541610482723

0.709229231887198 0.290770768113053

Emission Probabilities

q r

a

b

c

d

e

f

g

0.176598231360123 0.0939315356517259

2.96E-12 0.0227466631765767

0.00133177077919124 0.0483726664748064

0.00403692431521916 0.0526764060366519

0.201672329581502 4.78E-16

1.41E-22 0.0466421477312508

0.00471250371119518 0.0201595377731672

6564 



q r

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

space

1.13E-05 0.0680381522273984

0.126060906030029 4.42E-12

7.05E-18 0.00298693556899635

0.00115546233898728 0.00468724706582281

1.26E-05 0.068075260424256

4.68E-19 0.0373749886582108

4.39E-11 0.106151094796516

0.128782247292518 1.11E-10

0.00594229848285901 0.0296421394503094

2.06E-47 0.00183811419630545

3.30E-19 0.0941267644691416

1.39E-05 0.101619700422603

0.0288288025406763 0.112983364839876

0.0433321276755627 3.99E-10

5.39E-38 0.0173854967733891

1.75E-11 0.0216744298821206

5.33E-28 0.00268058320294545

0.015438465978242 0.00904688873322159

1.39E-09 0.00202958315719238

0.262070081748743 0.0351302987728529

Log Prob => -198637.03686732217

65



No. of observations from file = 50000
No. of states = 3
No. of observations = 27
Iteration = 100

Start Probabilities

q r s

0.000000000000 1.000000000000000000 0.000000000000

Transition Probabilities

q r s

q

r

s

0.13533663202 0.8646467711752 1.66E-05

0.50662789237 0.0515983099995569 0.441773797634675

0.64826047792 0.00153714039511984 0.35020238168674

Emission Probabilities

q r s

a

b

c

d

e

f

g

h

0.233082287257705 0.113384931349495 0.00229656270433539

3.42E-12 0.0285410595973251 0.00651971056165521

3.32E-09 0.0558188268181198 0.0236337691163899

3.23E-05 0.0353654275910999 0.0681167057957474

0.145871330912725 8.81E-19 0.15822892948082

1.69E-16 0.0615467139798238 0.00892221372669597

3.96E-04 0.01691177722572 0.0266595318651568

4.85E-10 6.81E-05 0.144987346087114
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0.144717301753844 1.60E-18 0.0126333748798897

6.44E-21 0.00307262765993179 0.00184920619259806

7.13E-04 0.00340459093333521 0.00609065013749126

2.05E-12 0.0624424199441864 0.0533273414871314

6.89E-10 0.0436861920562881 0.0154332091548313

4.14E-06 0.152367930224929 0.00221366920129921

0.143276401821912 7.75E-17 0.0202624179993738

0.0029029241160618 0.0325251156488149 0.0222723729929628

1.07E-30 0.00246744241299992 2.90E-04

3.16E-08 0.0994736687929252 0.0543811110057978

0.0018086236473623 0.101437264324402 0.0645814181697098

9.22E-08 0.127038036428948 0.110264298382864

0.0509029006462384 1.34E-04 0.00227995084776153

1.89E-30 0.022069290792276 0.00460790046818679

3.53E-06 0.0260267454019291 0.00792600661910442

6.60E-09 0.00388578873485733 1.73E-34

0.0050437637459929 0.00505819826267009 0.0338291177595856

2.25E-04 0.00242891950022893 3.93E-04

0.27102021648372 8.45E-04 0.148000620332349

Log Prob => -193690.1452632959
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