Japanese Kanji Suggestion Tool

Sujata Dongre
CS298
San Jose State University
Outline

• Introduction
• Prior work in Japanese word segmentation
• Hidden Markov Model for text parsing
• Design and implementation
• Experiments and results
• Conclusion
Introduction

- Motivation
 - “No search results found” message on typing wrong kanjis
 - Meaningless translations of wrong Japanese word
- Goal
 - Provide simple suggestions to Japanese language beginners
Prior work in Japanese word segmentation

- JUMAN morphological analyzer
 - Rule-based morphological analyzer
 - Cost to lexical entry and cost to pairs of adjacent parts-of-speech
 - labor-intensive and vulnerable to unknown word problem
- TANGO algorithm
 - Based on 4-gram approach
 - Series of questions to get a word boundary
 - More robust and portable to other domains and applications
Prior work in Japanese word segmentation (cont..)

- Existing search engines
 - Google
 - Yahoo!
 - Bing
Hidden Markov Model for text parsing

- What is the Hidden Markov Model?
- It is a variant of a finite state machine having a set of hidden states

\begin{align*}
N &= \text{the number of states} \\
M &= \text{the number of observation symbols} \\
Q &= \{q_i\}, \ i = 1, \ldots, N \\
A &= \text{the state transition probabilities} \\
B &= \text{the observation probability matrix} \\
\pi &= \text{the initial state distribution} \\
O &= \{o_k\}, \ k = 1, \ldots, M
\end{align*}
Hidden Markov Model for text parsing (cont..)

- Working of the Hidden Markov Model
 - Three problems related to the Hidden Markov Model
 1. Given the model \(\lambda \) and a sequence of observations, find out the sequence of hidden states that leads to the given set of observations - Viterbi algorithm
 2. Given the model \(\lambda \) and a sequence of observations, find out the probability of a sequence of observations - Forward or Backward algorithm
 3. Given an observation sequence \(O \) and the dimensions \(N \) and \(M \), find the model \(\lambda = (A, B, \pi) \), that maximizes the probability of \(O \) - Baum-Welch algorithm or HMM training
Design and implementation

- Japanese language processing
 - Hiragana, katakana and kanji
 - Japanese characters encoding
- Hidden Markov Model program details
 - Number of iterations
 - Number of observations
 - Number of states
Design and implementation (cont..)

• Japanese corpus - Tanaka
• Corpus file format
 A: &という記号は、a n d を指す。[TAB]The sign
 '&' stands for 'and'.#ID=1
 B: と言う{という}~記号~はを指す[03]~
• Modifications in the corpus file
• The software
 • JDK1.6, Tomcat 5.5, Eclipse IDE
Design and implementation (cont..)

- The Nutch web crawler (GUI)
 - Open source web crawler
 - Domain name to crawl japanese websites, google.co.jp
 - Command to crawl:

 `bin/nutch crawl urls -dir crawljp -depth 3 -topN 10`

 `-depth: Indicates the link depth from the root page that should be crawled`

 `-topN: Determines the maximum number of pages that will be retrieved at each level up to the depth`

 - Agent name in nutch-domain.xml as google
Design and implementation (cont..)

- Searcher.dir property tag in nutch-site.xml as path to crawljp directory
- Instant search functionality: Find-as-you-type
Experiments and results

- Hidden Markov Model - English text
 - Understanding how the Hidden Markov Model converges
 - Distinguish between consonants and vowels, letters a, e, i, o, u have the highest probabilities and appears in the first state
 - The observation ‘space’ has the highest probability among all 27 observations
Experiments and results (cont..)

• Hidden Markov Model - Japanese text
 • Frequently used characters (あ、い、う、お、で、の): higher probabilities but no clear distinction for word boundaries
 • HMM final probability matrices are serializable and stored in a file
 • Viterbi program reads serialized object from a file and appends hiragana characters at the end of the user input string
 • Verify the string returned from Viterbi program exists in Tanaka Corpus
Experiments and results (cont..)

- N-gram experiments using Tanaka Corpus

1. Experiment 1:
 - **Aim**: To find suggestions for a possible next character
 - **Results**: List of the first three most common words that begin with the user entered string
 - **Description**:
 - Binary tree node consists of <key(word of length 3), value (number of occurrences)> pair
 - Any special character is stored as ‘EOW’ (End Of Word)
Experiments and results (cont..)

1. Experiment 1:
 - **Description:**
 - When user enters the input, look for the words starting with the user input and having the highest number of occurrences
Experiments and results (cont. ..)

1. Experiment 1:
2. Experiment 2:
 ▸ **Aim:** To find out word boundaries
 ▸ **Results:** Single word that begin with the user entered string
 ▸ **Description:**
 - Iterate through Tanaka Corpus reading string of length three
 - String ending with the special character: subtract 1 else add 1
 - Find out words having positive number of occurrences indicating end of word
Experiments and results (cont..)

2. Experiment 2:
Experiments and results (cont..)

3. Experiment 3:
 ‣ **Aim**: To find out all Japanese words in the corpus file
 ‣ **Results**: List of Japanese words
 ‣ **Description**:
 - Creates Japanese word dictionary
 - Can be used in information security
Experiments and results (cont..)

3. Experiment 3:
4. Experiment 4: Precision and recall

- **Aim**: To evaluate the correctness of the outputs

- **Results**:

<table>
<thead>
<tr>
<th></th>
<th>HMM</th>
<th>Binary Tree</th>
<th>Google</th>
<th>Yahoo!</th>
<th>Bing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>0.4</td>
<td>0.53</td>
<td>0.23</td>
<td>0.3125</td>
<td>0.2777</td>
</tr>
<tr>
<td>Recall</td>
<td>0.4</td>
<td>0.4</td>
<td>0.2</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Experiments and results (cont..)

4. Experiment 4: Precision and recall
 ‣ **Description:**
 - Precision = \[\frac{|\{\text{relevant results}\} \cap \{\text{retrieved results}\}|}{|\{\text{retrieved results}\}|} \]
 - Recall = \[\frac{|\{\text{relevant results}\} \cap \{\text{retrieved results}\}|}{|\{\text{relevant results}\}|} \]
4. Experiment 4: Precision and recall

- **Description:**
 - Two lettered string experiment for calculating precision and recall
 - 20 strings of length two are given to Japanese Professor and native Japanese friend
 - They provided us most frequently used words for the given 20 strings
 - This is our measure for calculating precision and recall values
 - Check if suggestions given by HMM and binary tree and search engines match with the strings provided by humans
Conclusion

• Difficulties
 • Handling large number of observations
 • Randomly generating initial probability matrix
 • Japanese character charset issues
• Precision and recall
 • N-gram approach gives good results as compared to HMM
• Future work
 • Recognition of all different kanji symbols
References

ありがとうございました。