
 1

Web Mashups using Firefox plugin

Vijay Rao

CS297 Report

for

Prof. Pollet

 2

Web Mashups using Firefox plugin ... 3

1 Introduction .. 3

2 Technology Involved .. 4

3 Deliverable 1 – Sample Firefox plugin....................................... 5

3.1.1 Step 1 – Creating the necessary directory structure 5

3.1.2 Step 2 – Creating the install.rdf.................................... 5

3.1.3 Step 3 – Creating the chrome.manifest 6

3.1.4 Step 3 – Creating the xul files 7

4 The various XUL elements are added to XUL file to make up the UI

component. .. 8

4.1.1 Step 4 – Scripting the Toolbar 8

5 Deliverable 2 – DOM Test ..10

6 Deliverable 3 – Block Element Highlight...................................12

7 Deliverable 4 – Saving web page contents on desktop13

8 Conclusion ...16

9 Bibliography...16

 3

Web Mashups using Firefox plugin

1 Introduction

The term Web Mashups was coined to describe applications that rely

on data that is externally available; sometimes freely in terms of RSS

feeds or webservices and can be used in another application thus

creating a new type of application that is of tremendous value. As

more users use the web there is a need for the user to be able to see

the data in a multitude of different ways. A user viewing school API

ranking information would like to see them with the house listings to

see a house in a neighborhood of a good school. Another user would

like to see the Megan’s law database plotted on Google Maps to see

sex offenders in his or her neighborhood. The options to see the data

in context of other data is becoming more obvious and necessary.

I propose a Firefox application using XULRunner installed on the user’s

desktop and a firefox plugin that works in tandem allowing users to

save portions or snippets of a web page. It will also allow users to add

events to their calendar or add contacts by right clicking and selecting

the text on a web page. Saved snippets which have addresses or

locations on them can be viewed on Google Maps. The users can tag

the snippets they want to save and categorize them. This will allow

 4

users to mashup various sources of information together and view

them in a consistent manner. The pages that previously had to be

viewed independently can now be viewed in context of other pages.

2 Technology Involved

Client side technologies have improved a lot and modern browsers

such as Firefox have a great framework in place to develop and deploy

client side applications. Firefox has an elaborate framework in place to

develop web based applications as well as client side applications.

Javascript

JavaScript is a client side scripting language that runs in all modern

browsers today. It is run on the client machine and can be used to

massage, validate and transfer data to the server. With the new way

of sending data to the server called AJAX JavaScript has become more

popular. Object Oriented JavaScript is also getting more mainstream

as programmers are now more comfortable than before.

XUL

Firefox has a rich architecture where custom extensions and additions

can be written with its extension framework. The framework uses

various components such as XUL (XML User Interface Language),

XPCOM (Cross Platform Component Object Model) and XPConnect

 5

(allows connecting to XPCOM objects). XUL is an XML based user

interface language that can be customized with custom graphics and

layout that can be used to develop any internet or non-internet based

applications. XUL can be controlled and manipulated using JavaScript

and DHTML.

3 Deliverable 1 – Sample Firefox plugin

The first deliverable was to create a sample Firefox test plugin. I

created a test plugin that allowed the user to enter a search criteria

and the results were displayed. The following steps were done to

create a test firefox plugin

3.1.1 Step 1 – Creating the necessary directory structure

The first step to creating a firefox plugin is to create the right directory

structure.

Fig 1 – Directory Structure for Firefox Plugin

3.1.2 Step 2 – Creating the install.rdf

The installer manifest is read by Firefox to get details about our

extension. Here is the install.rdf

<?xml version="1.0"?>

 6

<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:em="http://www.mozilla.org/2004/em-rdf#">

 <Description about="urn:mozilla:install-manifest">

 <!-- Required Items -->

 <em:id>tuttoolbar@borngeek</em:id>

 <em:name>Tutorial Toolbar</em:name>

 <em:version>1.0</em:version>

 <em:targetApplication>

 <Description>

 <em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>

 <em:minVersion>1.5</em:minVersion>

 <em:maxVersion>2.0.0.*</em:maxVersion>

 </Description>

 </em:targetApplication>

 <!-- Optional Items -->

 <em:creator>Vijay Rao</em:creator>

 <em:description>An example toolbar extension.</em:description>

<em:homepageURL>http://www.borngeek.com/firefox/</em:homepageURL>

 </Description>

</RDF>

Listing 1 – install.rdf

3.1.3 Step 3 – Creating the chrome.manifest

The chrome manifest tells Firefox what packages and overlays is

provided by our extension. Overlays are layers and extensions added

to Firefox.

content tuttoolbar chrome/content/

 7

overlay chrome://browser/content/browser.xul

chrome://tuttoolbar/content/tuttoolbar.xul

Listing 2 – chrome.manifest

3.1.4 Step 3 – Creating the xul files

The xul file describes the layout and position of the toolbar. It contains

various navigation and menu items that provide functionality to the

toolbar

The following is the root element of the overlay file

<?xml version="1.0"?>

<overlay id="TutTB-Overlay"

xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

Listing 3 – tuttollbar.xul – overlay

The following describes a toolbar item with menu dropdowns

<toolbaritem flex="0">

<toolbarbutton id="TutTB-MainMenu" type="menu"

 tooltiptext="Tutorial Toolbar Main

Menu">

 <menupopup>

 <menuitem label="Google Home Page" accesskey="G"

 tooltiptext="Navigate to Google"

oncommand="TutTB_LoadURL('http://www.google.com/')" />

 <menuseparator />

 <menuitem label="Born Geek Website"

accesskey="B"

 tooltiptext="Navigate to Born Geek"

 8

oncommand="TutTB_LoadURL('http://www.borngeek.com/')" />

 </menupopup>

 </toolbarbutton>

</toolbaritem>

Listing 3 – tuttoolbar.xul

4 The various XUL elements are added to XUL file to make up the UI

component.

4.1.1 Step 4 – Scripting the Toolbar

The following line at the top of the toolbar attaches a javascript file to

the xul overlay. Javascript can now be used to select the xul elements

with id the same way as DHTML.

The following piece of code gathers the search terms and passes it to

google

function TutTB_Search(event, type)

{

 // This variable will hold the URL we will browse to

 var URL = "";

 // This variable will tell us whether our search box is empty or

not

 var isEmpty = false;

 // Get a handle to our search terms box (the <menulist> element)

 var searchTermsBox = document.getElementById("TutTB-SearchTerms");

// Get the value in the search terms box, trimming whitespace as

 9

necessary

 // See the TutTB_TrimString() function farther down in this file

for details

 // on how it works.

 var searchTerms = TutTB_TrimString(searchTermsBox.value);

 if(searchTerms.length == 0) // Is the search terms box empty?

 isEmpty = true; // If so, set the isEmpty flag to true

 else // If not, convert the terms to a URL-

safe string

 searchTerms = TutTB_ConvertTermsToURI(searchTerms);

 // Now switch on whatever the incoming type value is

 // If the search box is empty, we simply redirect the user to the

appropriate

 // place at the Google website. Otherwise, we search for whatever

they entered.

 switch(type)

 {

 // Build up the URL for an image search

 case "image":

 if(isEmpty) { URL = "http://images.google.com/"; }

 else { URL = "http://images.google.com/images?q=" +

searchTerms; }

 break;

 // Build up the URL for a web search

 case "web":

 default:

 if(isEmpty) { URL = "http://www.google.com/"; }

 10

 else { URL = "http://www.google.com/search?q=" +

searchTerms; }

 break;

 }

 // Load the URL in the browser window using the TutTB_LoadURL

function

 TutTB_LoadURL(URL);

}

Listing 4 – tuttoolbar.js

5 Deliverable 2 – DOM Test

The second deliverable was to create a test HTML DOM and capture

various mouse events such as mouseover and mouseout. A test HTML

page was created with various block level elements such as <div>,

<p> and <table>. A test javascript function was called onLoad event

of the HTML page. This function registered the mousedown and the

mouseup event so that users selection block that includes the start

element and the end element is captured. The DOM nodes were then

iterated over selecting the parent node till the <body> node was

encountered.

The path was then alerted to the user. The test was done to determine

the uppermost block level element that can be saved. The following

listing shows the piece of code that traverses the DOM looking for

block level elements and then prompts the user

 11

 function calculatePath(tgt) {

 arr = new Array();

 //tgt.setCapture();

 //alert("int tgt " + tgt);

 path=tgt.tagName+" ";

 //alert(path);

 while(tgt.tagName != 'BODY') {

 //alert("inside");

 arr.push(tgt.tagName);

 path=path+ tgt.parentNode.tagName +" --

";

 tgt = tgt.parentNode;

 //alert(path);

 }

 arr.push('BODY');

 //alert(arr);

 return arr;

 }

 function capturePathUp(upNode) {

 var selection;

 if(document.selection) {

 selection = document.selection

 } else {

 selection = window.getSelection();

 alert(selection.getRangeAt(0));

 }

 12

 //uparr = calculatePath(upNode);

 //alert("path " + startarr.join(' | '));

 /*var lastpop;

 if(downarr.length > uparr.length) {

 for(i = downarr.length; i >=

uparr.length; i--) {

 lastpop = downarr.pop();

 }

 } else if(downarr.length < uparr.length){

 } else {

 pickParentBlockElem(uparr);

 }*/

 }

Listing 5 -

6 Deliverable 3 – Block Element Highlight

The third deliverable was to create a test HTML DOM and highlight

block sections such as div and table elements on mouse movements.

The block elements hovered over by the mouse were given a red solid

border to highlight the block element. The following listing shows the

piece of code that added this functionality

 var all = document.getElementsByTagName("div");

 for (var i = 0; i < all.length; i++) {

 // Watch for when the user moves his

mouse over the element

 // and add a red border around the

 13

element

 all[i].onmouseover = function(e) {

 this.style.border = "2px solid

red";

 stopBubble(e);

 };

 // Watch for when the user moves back out of

the element

 // and remove the border that we added

 all[i].onmouseout = function(e) {

 this.style.border = "0px";

 stopBubble(e);

 };

 }

Listing 6 – highlighting block elements

7 Deliverable 4 – Saving web page contents on desktop

The fourth deliverable was to save some component of the web page

on the users desktop. A lot of inbuilt Firefox services already exist as

components which can be utilized. I found a utility at [6] which had

the interfaces for writing the contents to a specified location. Here is a

piece of code that writes the passed content to a file. This was

embedded in the sample plugin to save the contents of the <body>

tag.

function save(mydata) {

 //mydata = 'hELLO VIJAY';

 14

 alert("in save " + mydata);

 try {

 netscape.security.PrivilegeManager.enablePrivilege("UniversalXPCo

nnect");

 } catch (e) {

 alert("Permission to save file was denied.");

 }

 var file = Components.classes["@mozilla.org/file/local;1"]

 .createInstance(Components.interfaces.nsILocalFile);

 file.initWithPath(savefile);

 if (file.exists() == false) {

 alert("Creating file... ");

 file.create(

Components.interfaces.nsIFile.NORMAL_FILE_TYPE, 420);

 }

 var outputStream = Components.classes["@mozilla.org/network/file-

output-stream;1"]

 .createInstance(Components.interfaces.nsIFileOutputStream

);

 /* Open flags

 #define PR_RDONLY 0x01

 #define PR_WRONLY 0x02

 #define PR_RDWR 0x04

 #define PR_CREATE_FILE 0x08

 #define PR_APPEND 0x10

 #define PR_TRUNCATE 0x20

 #define PR_SYNC 0x40

 15

 #define PR_EXCL 0x80

 */

 /*

 ** File modes

 **

 ** CAVEAT: 'mode' is currently only applicable on UNIX platforms.

 ** The 'mode' argument may be ignored by PR_Open on other

platforms.

 **

 ** 00400 Read by owner.

 ** 00200 Write by owner.

 ** 00100 Execute (search if a directory) by owner.

 ** 00040 Read by group.

 ** 00020 Write by group.

 ** 00010 Execute by group.

 ** 00004 Read by others.

 ** 00002 Write by others

 ** 00001 Execute by others.

 **

 */

 outputStream.init(file, 0x04 | 0x08 | 0x20, 420, 0);

 //var output = document.getElementById('blog').value;

 alert("B4 write... ");

 var result = outputStream.write(mydata, mydata.length);

 alert("result ... " + result);

 outputStream.close();

}

Listing 7 – saving a html block to file on client machine

 16

8 Conclusion

This semester the four deliverables helped solidify the technology and

the resources required to accomplish the final deliverable. This

semester involved exploring various technologies and doing a proof of

concept to test each technology. All four deliverables were successfully

accomplished.

The next semester will involve integrating all the deliverables to create

a final product. The final product will be a Firefox plugin that will

enable users to save snippets of a web page and then view them or

display them on a Google Maps page.

9 Bibliography

1. Kenneth C. Feldt (2007).

Programming Firefox: Building Rich Internet Applications with XUL.
Oreilly.

2. Google (n.d.)

Google Maps API Version 2 Reference Retrieved Aug 30, 2007 from
http://www.google.com/apis/maps/documentation/reference.html

3. Andre Lewis, Michael Purvis, Jeffrey Sambells, Cameron Turner (2007).

Beginning Google Maps Applications with Rails and Ajax:From Novice to
Professional (Paperback)
Apress.

 17

4. Jonah Bishop

Firefox Toolbar tutorial Retrieved Sep 8, 2007 from
http://www.borngeek.com/firefox/toolbar-tutorial/

5. Joy of XUL Retrieved Sep 8, 2007 from

http://developer.mozilla.org/en/docs/The_Joy_of_XUL

6. Captain's Mozilla XUL LOG

Firefox Toolbar tutorial Retrieved Dec 15, 2007 from
http://www.captain.at/programming/xul/

