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Introduction
● Bookmarklet Builder for Offline Data Retrieval is 

a system that lets you create a bookmarklet 
cache of a website which can then be viewed 
offline.

● A Bookmarklet is a Javascript program wrapped 
around a string of HTML code performing some 
action once it is loaded in a browser.

● To begin today we will look at the idea behind 
Bookmarklet Builder.
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Bookmarklet Builder

● Bookmarklet Builder creates a bookmarklet 
which is a data:URI of a website or a set of web 
pages

● What is data:URI? - A data URI is a URL 
scheme which provides a way of including small 
data objects as immediate data in a web page 
rather than specifying the object as an external 
resource

● Its general syntax is 
data:[<mediatype>][;base64],<data>
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● URI - Uniform Resource Identifier (URI) is a 
compact string of characters for identifying an 
abstract or physical resource.

● URL - URL is a URI scheme which identifies a 
resource mainly by the way it is accessed. That 
is, its network “location”.
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Prevalence of data:URI
● Existing Uses of data:URI

– Data: URI of Images are included in HTML or 
XML pages instead of linking to their external 
resources

– Mainly to reduce the number of HTTP requests 
thus making the page/s load faster

● Existing data:URI conversions
– Online tools that convert text, images and at 

most, single pages to data: URI
● Existing Support for data:URI

– Most browsers including IE version 8 onwards
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Design
● Modules

– UI
– Crawler
– PHP program

● Output is a data:URI
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Technologies Used
● Javascript

– An object-oriented scripting language which we 
mainly used to provide client-side functionality

● PHP
– A general purpose scripting language originally 

designed for web development and 
interpreted by web browsers

● Nutch
● Document Object Model (DOM)
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Crawler
● Nutch

– Nutch is an open source Java search engine
– We used only the crawling functionality provided 

by Nutch
● Open source, hence free
● Easy to install and use. And good 

documentation is available
● Input to the crawler is a URL and Depth
● Crawls the site and generates output of a list of 

pages
● This list is used for further processing
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DOM
● DOM provides a language independent 

platform to access the properties and elements 
of a web page.

● It is an Application Programming Interface to 
represent and manipulate the content of HTML 
and XML documents.

● Example of a DOM structure
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Figures of sample code and its corresponding DOM 
structure
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Implementation – Web UI
● Web based design
● Input to the system

– URL of a website
– Depth
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Implementation - Nutch
● Crawl command

– bin/nutch crawl url_file -dir crawl_data -depth 1 -topN 10
● Readdb command

– bin/nutch readdb crawl_data/crawldb -dump output_dir
● Sample output of readdb

– http://localhost/CS297/PageA.html Version: 4
Status: 2 (DB_fetched)
Fetch time: Fri Dec 07 16:28:34 PST 2007
Modified time: Wed Dec 31 16:00:00 PST 1969
Retries since fetch: 0
Retry interval: 30.0 days
Score: 1.6666667
Signature: e48ea88ce7aaa83d3115c598205ea05e
Metadata: null
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Implementation – PHP Program
● Fetch each page – Contents of a page are 

stored as a string of data
● Converting Images
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Implementation – PHP Program 
cont'd.

● Converting Links

<a href=”http://www.yahoo.com”>

<a href=”javascript:parent.change_object_content('url_of_page)”>
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Implementation – PHP Program 
cont'd.

● Converting CSS files
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Implementation – PHP Program 
cont'd.

● Converting Javascript files
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Performance Tests
● Different types of inputs were supplied to the 

system
– Text only pages

● Average size – 35 KB
– Pages with Images

● Average size - 290KB
– Site with Varying Depth
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Test Results for Average Web Page
No. of Pages Time to Crawl Time to Convert 

to URI
Total Time

5 48 7 55
6 52 27 79
8 51 22 73
10 48 40 88
12 50 85 135
14 48 61 109

● All times are in seconds; Depth = 2
● The above observations were made in Firefox
● The last row has a smaller “Time to Convert to URI” 

value where as the no. of pages has increased. This is 
because the pages added were 30% smaller in size 
than the other pages.
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Results for Text-only pages

● All times are in seconds; Depth =2
● These observations were made in Firefox

No. of Pages Time to Crawl Time to 
convert to URI

Total Time

4 46 0.1 46.1

6 49 0.2 49.2

8 49 0.3 49.3

10 50 0.9 50.9
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Performance Tests with Varying 
Depth

Depth No. of Pages Time to 
Crawl

Time to 
Convert to 

URI

Total Time

2 5 48 7 55
3 5 59 15 74
4 6 69 16 85
5 7 82 22 104
6 8 89 33 122
7 9 105 35 140

● All times are in seconds and these observations 
were made in Firefox.
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data:URI sizes

No. of Pages URI Length (no. of 
characters)

5 1491318
8 3561366
10 4921554
13 6961830
15 8322798

● These results were observed in Firefox and 
Opera web browsers*
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Observations
● Recursive conversion to data: URI

– Our system converts data into the data: URI 
form three times and browsers are able to 
display the information properly

● More testing is necessary to find if there is a 
maximum number for such recursive 
conversion

● Length of data:URI - the maximum length seen 
in our tests was 8322338 characters in Firefox 
and Opera
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Observations cont'd.
● Firefox displays URI lengths of up to 4921554
● Opera displays URI lengths of greater than 

5601824 characters
● For at least up to 8322338 characters, the 

content is displayed properly even if the URI 
itself is not displayed in the browser

● Firefox and Chrome behave differently from 
Opera in the way the Back button works
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Conclusions
● A neat way to convert entire websites into a 

single long string of data
● All you need is a browser
● Can browse complete websites when offline
● Larger in size than actual file size of all pages 

but more straight forward than caching 
individual pages

● Will not consume cache memory and it is just 
like saving any other file

● Using compression techniques will be beneficial
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Conclusions cont'd.
● Speeding up function/s to fetch images will be 

an enhancement
● Re-using already fetched web pages, image 

files, CSS and Javascript files will also enhance 
the system

● Suitable for pages with small data items
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Thank You

Q & A
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