
Bookmarklet Builder for Offline Data
Retrieval

By
Sheetal Naidu

Advisor: Dr. Chris Pollett

2

Agenda
● Introduction
● Design
● Technologies Used
● Implementation
● Performance Tests
● Observations
● Conclusions

3

Introduction
● Bookmarklet Builder for Offline Data Retrieval is

a system that lets you create a bookmarklet
cache of a website which can then be viewed
offline.

● A Bookmarklet is a Javascript program wrapped
around a string of HTML code performing some
action once it is loaded in a browser.

● To begin today we will look at the idea behind
Bookmarklet Builder.

4

Bookmarklet Builder

● Bookmarklet Builder creates a bookmarklet
which is a data:URI of a website or a set of web
pages

● What is data:URI? - A data URI is a URL
scheme which provides a way of including small
data objects as immediate data in a web page
rather than specifying the object as an external
resource

● Its general syntax is
data:[<mediatype>][;base64],<data>

5

● URI - Uniform Resource Identifier (URI) is a
compact string of characters for identifying an
abstract or physical resource.

● URL - URL is a URI scheme which identifies a
resource mainly by the way it is accessed. That
is, its network “location”.

6

Prevalence of data:URI
● Existing Uses of data:URI

– Data: URI of Images are included in HTML or
XML pages instead of linking to their external
resources

– Mainly to reduce the number of HTTP requests
thus making the page/s load faster

● Existing data:URI conversions
– Online tools that convert text, images and at

most, single pages to data: URI
● Existing Support for data:URI

– Most browsers including IE version 8 onwards

7

Design
● Modules

– UI
– Crawler
– PHP program

● Output is a data:URI

8

Technologies Used
● Javascript

– An object-oriented scripting language which we
mainly used to provide client-side functionality

● PHP
– A general purpose scripting language originally

designed for web development and
interpreted by web browsers

● Nutch
● Document Object Model (DOM)

9

Crawler
● Nutch

– Nutch is an open source Java search engine
– We used only the crawling functionality provided

by Nutch
● Open source, hence free
● Easy to install and use. And good

documentation is available
● Input to the crawler is a URL and Depth
● Crawls the site and generates output of a list of

pages
● This list is used for further processing

10

DOM
● DOM provides a language independent

platform to access the properties and elements
of a web page.

● It is an Application Programming Interface to
represent and manipulate the content of HTML
and XML documents.

● Example of a DOM structure

11

Figures of sample code and its corresponding DOM
structure

12

Implementation – Web UI
● Web based design
● Input to the system

– URL of a website
– Depth

13

Implementation - Nutch
● Crawl command

– bin/nutch crawl url_file -dir crawl_data -depth 1 -topN 10
● Readdb command

– bin/nutch readdb crawl_data/crawldb -dump output_dir
● Sample output of readdb

– http://localhost/CS297/PageA.html Version: 4
Status: 2 (DB_fetched)
Fetch time: Fri Dec 07 16:28:34 PST 2007
Modified time: Wed Dec 31 16:00:00 PST 1969
Retries since fetch: 0
Retry interval: 30.0 days
Score: 1.6666667
Signature: e48ea88ce7aaa83d3115c598205ea05e
Metadata: null

14

Implementation – PHP Program
● Fetch each page – Contents of a page are

stored as a string of data
● Converting Images

15

Implementation – PHP Program
cont'd.

● Converting Links

16

Implementation – PHP Program
cont'd.

● Converting CSS files

17

Implementation – PHP Program
cont'd.

● Converting Javascript files

18

Performance Tests
● Different types of inputs were supplied to the

system
– Text only pages

● Average size – 35 KB
– Pages with Images

● Average size - 290KB
– Site with Varying Depth

19

Test Results for Average Web Page
No. of Pages Time to Crawl Time to Convert

to URI
Total Time

5 48 7 55
6 52 27 79
8 51 22 73
10 48 40 88
12 50 85 135
14 48 61 109

● All times are in seconds; Depth = 2
● The above observations were made in Firefox
● The last row has a smaller “Time to Convert to URI”

value where as the no. of pages has increased. This is
because the pages added were 30% smaller in size
than the other pages.

20

Results for Text-only pages

● All times are in seconds; Depth =2
● These observations were made in Firefox

No. of Pages Time to Crawl Time to
convert to URI

Total Time

4 46 0.1 46.1

6 49 0.2 49.2

8 49 0.3 49.3

10 50 0.9 50.9

21

Performance Tests with Varying
Depth

Depth No. of Pages Time to
Crawl

Time to
Convert to

URI

Total Time

2 5 48 7 55
3 5 59 15 74
4 6 69 16 85
5 7 82 22 104
6 8 89 33 122
7 9 105 35 140

● All times are in seconds and these observations
were made in Firefox.

22

data:URI sizes

No. of Pages URI Length (no. of
characters)

5 1491318
8 3561366
10 4921554
13 6961830
15 8322798

● These results were observed in Firefox and
Opera web browsers*

23

Observations
● Recursive conversion to data: URI

– Our system converts data into the data: URI
form three times and browsers are able to
display the information properly

● More testing is necessary to find if there is a
maximum number for such recursive
conversion

● Length of data:URI - the maximum length seen
in our tests was 8322338 characters in Firefox
and Opera

24

Observations cont'd.
● Firefox displays URI lengths of up to 4921554
● Opera displays URI lengths of greater than

5601824 characters
● For at least up to 8322338 characters, the

content is displayed properly even if the URI
itself is not displayed in the browser

● Firefox and Chrome behave differently from
Opera in the way the Back button works

25

Conclusions
● A neat way to convert entire websites into a

single long string of data
● All you need is a browser
● Can browse complete websites when offline
● Larger in size than actual file size of all pages

but more straight forward than caching
individual pages

● Will not consume cache memory and it is just
like saving any other file

● Using compression techniques will be beneficial

26

Conclusions cont'd.
● Speeding up function/s to fetch images will be

an enhancement
● Re-using already fetched web pages, image

files, CSS and Javascript files will also enhance
the system

● Suitable for pages with small data items

27

Thank You

Q & A

28

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

