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Abstract 

In the past few years, there has been a keen interest in mining frequent 

itemsets in large data repositories.   Frequent itemsets correspond to the set 

of items that occur frequently in transactions in a database.  Several novel 

algorithms have been developed recently to mine closed frequent itemsets -

these itemsets are a subset of the frequent itemsets.  These algorithms are of 

practical value: they can be applied to real-world applications to extract 

patterns of interest in data repositories.  However, prior to using an 

algorithm in practice, it is necessary to know its performance as well 

implementation issues. In this project, we address such a need for the 

algorithm “Using Attribute Value Lattice to Find Frequent Itemsets” that 

was developed by [Lin2003].  We clarify some aspects of the algorithm, 

develop an implementation of the algorithm, and present the results of a 

performance study.  In our experiments we find that the running time of the 

algorithm for certain input datasets grows exponentially.   To address this 

problem, we develop a novel procedure for binning the data.   Our results 

show that with binned data, the running time of the algorithm grows linearly.  

This allows one to obtain trends for the dataset.
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1. Introduction 

 
Mining large data repositories to find frequent itemsets has been studied for 

over fifteen years [Agarwal1994].  During the past five years, there has been 

a renewed interest in mining frequent itemsets [Burdick2001, Lin2003, 

Pei2000, Zaki2002].   Frequent itemsets correspond to the set of items that 

occur frequently in transactions in a database.  Several novel algorithms 

have been developed recently to mine closed frequent itemsets---these 

itemsets are a subset of the frequent itemsets.  These algorithms are of 

practical value: they can be applied to real-world applications to extract 

patterns of interest in data repositories.  However, prior to using an 

algorithm in practice, it is necessary to know its performance as well 

implementation issues. The goal of this project is to address such a need for 

the algorithm “Using Attribute Value Lattice to Find Frequent Itemsets” that 

was developed by [Lin2003].  Before we describe our contributions, we 

provide a brief overview of the problem space. 

 

Mining large data repositories to identify interesting patterns is a challenging 

problem.  The volume of data to be processed is large (several hundred GB 

to a few TB in size) and hence, requires designing efficient algorithms to 
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identify patterns that occur frequently.  To illustrate, suppose a user is 

buying a book at Amazon.com’s web-site.  When the user chooses a book, 

the Amazon.com site also shows related books that would be of potential 

interest to the user.  By doing so, this has the effect of increasing the 

revenue.   Given the large number of book titles, it is non-trivial to manually 

generate the list of related books.  However, such related books are inferred 

from the buying habits of Amazon.com’s customers.  That is, determining 

the set of related books that are bought frequently.   

 

To illustrate the problem of data mining of frequent occurring patterns, 

consider a sample database of transactions shown in Figure 1.   

The set of items for a given transaction could be the buying habits of users, 

such as, books written by Jane Austen, Agatha Christie, Sir Arthur Conan 

Doyle, etc. 

Transaction Items 

1 ACTW 

2 CDW 

3 ACTWHG 

4 ACDWHF 
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5 ACDTWHGK 

6 CDTHFK 

7 HFKQR 

8 HGKQR 

9 QRS 

10 QRS 

This example has been adapted from Lin 2003. 

Figure 1 Sample Database 

 

 

The database consists of seven transactions with twelve different items. Let 

ϑ denote the set of items in the database.  A set N ⊆ ϑ consisting of items 

from the database is called an itemset.   For example, N = {A, C, D}   is an 

itemset.  For notational convenience, we will write ACD to denote the 

itemset N consisting of items A, C, and D.  Suppose that one is interested in 

identifying the itemsets that occur in at least 2 transactions (i.e., the set of 

authors whose books are commonly bought).  Given the sample database, 

the itemsets are A, C, D, H, F, K, Q, R . A commonly used terminology in 

the data mining literature to denote the number of transactions in which an 

itemset occurs as a subset is support.   The problem of finding patterns in the 

database can be restated as:  identify the itemsets that have at least the user-

specified level of support.  The user-specified level of support is known as 
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minimum support (or minsup for short) and itemsets that satisfy minsup are 

known as frequent itemsets. 

 

Devising algorithms for mining frequently occurring patterns in large 

databases is an area of active research [Survey].  Some of the challenges 

common to algorithms for mining frequently occurring patterns in large data 

repositories are [Survey]:  

1. Identifying the set (possibly complete) of patterns that satisfy user-

specified thresholds, such as, minsup 

2. Minimize the number of scans over the database 

3. Be computationally efficient 

 

An algorithm that satisfies the above requirements is “Using Attribute Value 

Lattice to Find Closed Frequent Itemsets” [Lin2003].  This thesis builds on 

their algorithm.  In particular, we make the following contributions: 

1. We identified correctness issues with the algorithm’s pseudo-code and 

rewrote the algorithm for clarity. 

2. We developed an implementation of their algorithm.  As part of the 

implementation, we identify issues with the algorithm and propose 

solutions. 
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3. We use our implementation to analyze the performance of the 

algorithm using synthetically generated data-sets. 

4. We use data binning mechanisms to improve the run-time 

performance of the algorithm for certain data-sets. 

 

The remainder of this document is organized as follows.  In Chapter 2, we 

provide an overview of algorithms for mining frequent itemsets.  In Chapter 

3, we describe the algorithm “Using Attribute Value Lattice to Find Closed 

Frequent Itemsets” which is the basis for our work.  In Chapter 4, we 

describe our implementation and present the results of our experiments.  

Finally, Chapter 5 concludes.  
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2. Background and Related Work 

 
The classical algorithm for mining frequent itemsets is the APRIORI 

algorithm [Agarwal1994].  Given a database of itemsets and a user specified 

minsup value, the algorithm finds frequent itemsets using a “bottom up” 

approach.  That is, the algorithm starts with set of frequent itemsets of length 

1 (i.e., the cardinality of the number of items in a frequent itemset is 1) and it 

attempts to find frequent itemsets of length 2.   It does so by extending the 

frequent itemsets of length 1 with one item at a time.  This step of extending 

a frequent itemset with one item is known as candidate generation.  A 

candidate is tested to see if it satisfies the minsup threshold before it is added 

to the set of frequent itemsets.  This process is repeated for increasing values 

on the length of frequent itemsets.  During each iteration, candidate itemsets 

of length k are generated by combining two frequent itemsets of length k-1.  

The algorithm terminates when no further extensions of the frequent itemset 

are possible. 

 

For computational efficiency, the Apriori algorithm prunes the set of 

candidates using a downward closure lemma [Agarwal1994] . Given an 

itemset sequence N , if N is not frequent, then any itemset that contains N is 
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also not frequent.  We illustrate the effectiveness of this lemma using an 

example. This example has been adapted from [Survey]. 

 

 <m> <n> <o> <p> <q> <r> 

<m> <mm> <mn> <mo> <mp> <mq> <mr> 

<n> <nm> <nn> <no> <np> <nq> <nr> 

<o> <om> <on> <oo> <op> <oq> <or> 

<p> <pm> <pn> <po> <pp> <pq> <pr> 

<q> <qm> <qn> <qo> <qp> <qq> <qr> 

<r> <rm> <rn> <ro> <rp> <rq> <rr> 

Figure 2 Pre-Apriori 
 

 

 <m> <n> <o> <p> <q> <r> 

<m>  <mn> <mo> <mp> <mq> <mr> 

<n>   <no> <np> <nq> <nr> 

<o>    <op> <oq> <or> 

<p>     <pq> <pr> 

<q>      <qr> 

<r>       

Figure 3 Post-Apriori 
As shown in Figure 2 , the possible number of candidates of length-2 is 36.  

With the optimization used by Apriori, as Figure 3 shows, the number of 
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candidates of length-2 is 15.  For this example, Apriori prunes 58% of the 

exploration space. 

 

Several frequent itemset mining algorithms based on Apriori have been 

developed [Bastide2000, Brin1997, Sarasere1995]. These papers also show 

that Apriori provides good run-time performance when the length of 

frequent itemsets is small.  However, the performance of Apriori is impacted 

by two factors: 

1. Pruning efficiency: If the database consists of datasets with many 

frequently occurring patterns, then pruning becomes less efficient.  

For instance, it has been observed that if S consists of frequent 

itemsets of length k, there could be upto 2
S
 – 2 candidates of length 

k+1 [Zaki2002].   This is because the set of candidates consists of the 

subsets of S.  As a result, the computation can become CPU bound.   

2. Number of database scans: The number of database scans is 

proportional to the length of the longest frequent itemset.  As the 

length increases, the number of scans also increases.  As noted in 

[Bayardo1998] for real world problems such as patterns in 

biosequences, itemsets of length 30 or higher is typical.  
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To address the limitations of Apriori for mining long patterns, alternate 

approaches have been considered in the literature [Lin2002, Lin2003].  One 

approach is to mine the database for closed frequent itemsets.  A frequent 

itemset N is said to be closed if and only if there does not exist another 

frequent itemset of which N is a subset.  If F denotes the set of frequent 

itemsets and C denotes the set of closed frequent itemsets, then C ⊆ F.  It is 

generally believed that the cardinality of C is much less than F [Zaki2002].  

Therefore, if closed frequent itemsets can be efficiently determined, then 

identifying frequent itemsets is straightforward: for instance, given C, then F 

consists of all possible subsets of the itemsets in C.  Alternately, given C, we 

can determine if an itemset N is frequent by checking if N is a subset of an 

itemset in C.  Recently, several algorithms for mining closed frequent 

itemsets have been developed [Zaki2002, Bastide2000, Pei2000, 

Burdick2001, Lin2003].  In our work, we study one of the algorithms ,Using 

Attribute Value Lattice to Find Frequent Itemsets,[Lin2003] in depth.  In the 

next chapter, we describe the algorithm in detail. 
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3. Attribute Value Lattice For Mining 
Closed Frequent Itemsets 

 

In this chapter, we describe the algorithm of Lin, Hu, and Louie [Lin2003] 

that we have implemented for our work.  We begin by describing some 

preliminaries and then discuss the algorithm. 

3.1 Data Representation 

The transactions database can be viewed as a two-dimensional matrix: the 

rows represent individual transactions and the columns represent items.  For 

designing data mining algorithms, the data can be represented in either a 

horizontal view or a vertical view [Lin2003]: 

• Horizontal view consists of representing each row with a unique 

transaction identifier and a bitmap to represent the items involved 

in the transaction. For example, if there could be 10 items 

involved in a transaction, then the bit-string 1000100010 means 

that items 1, 5, and 9 were involved. 

• Vertical view consists of assigning a unique identifier to each 

column (i.e., item) and a bitmap that represents the transactions in 

which that particular item is involved.  For example, if there are 
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10 transactions that involve a particular item, then the bitstring 

1000100010 means that transactions 1, 5, and 9 are involved. 

In their paper, Lin et. al [Lin2003] suggest that a vertical representation is a 

natural choice for mining frequent itemsets.  This is because the vertical 

representation allows operating on only those itemsets that are frequent.   

Furthermore, for itemsets that are not frequent, their associated bitmap 

representation can be discarded, thereby leading to a reduced memory 

footprint.  Consequently, Lin et. al use a vertical representation in their 

algorithm.   

 

In the literature the vertical representation of an item in the database is 

known as a granule [Lin2000, Lin2002, Lin2003-2, Louie2000, Louie2000-

2]. The granule is implemented as a bitmap since it allows fast bit-

manipulation operations. 

 

3.2 Frequent Itemsets and Lattice 

A binary relation ⊕ that satisfies reflexive, symmetric, and transitive 

relationships on a set Ρ is said to be a partial order [Press].  That is, ∀ a, b, c 

∈ Ρ,  
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• Reflexive: a ⊕ a  

• Symmetric: a ⊕ b ∧  b ⊕ a ⇒ a= b 

• Transitive: a ⊕ b ∧ b ⊕ c ⇒  a ⊕ c 

The set Ρ under the relation ⊕ is a partially ordered set (commonly referred 

to as poset).  It is also well known that a poset can be represented as a 

directed acyclic graph in which the nodes are elements from the set and a 

path exists from a to b if and only if a ⊕ b. A poset is as a lattice if all non-

empty finite subsets have a greatest lower bound and a least upper bound.  

Let S ⊆ Ρ and u, l ∈ Ρ.   Then,  

• u is the least upper bound if and only if, ∀s ∈ S, s ⊕ u 

• l is the greatest upper bound if and only if, ∀s ∈ S, l ⊕ s 

 

In terms of frequent itemset mining algorithms, the set consisting of granules 

from the database with the ⊆ relationship defined on the bitmaps is a partial 

order.  To illustrate, if a, b, c are granules from the database, then it is easy 

to see that, 

• Reflexive: a ⊆ a  

• Symmetric: a ⊆ b ∧  b ⊆ a ⇒ a= b 

• Transitive: a ⊆ b ∧ b ⊆ c ⇒  a ⊆ c 
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If we restrict the set of granules to those corresponding to frequent itemsets, 

then that set under the ⊆ relation is a lattice.  If we represent the lattice as a 

directed acyclic graph, then a path in the graph from a node that is a least 

upper bound to a node that is a greatest upper bound identifies a closed 

frequent itemset: the nodes (i.e., items) in the path are the members of a 

closed frequent itemset.   

 

3.3 The Algorithm 

Briefly, in designing their algorithm, [Lin2003] first construct a lattice of 

attribute values with the granules that correspond to frequent itemsets.  

Subsequently, they use the lattice to identify closed frequent itemsets.  They 

do so by generating candidate itemsets from the lattice in a bottom-up 

breadth-first approach.   During candidate generation, the algorithm uses the 

transitive property of the lattice to prune redundant frequent itemsets that do 

not result in new closed frequent itemsets.  The algorithm, therefore, has two 

phases: 

1. Phase 1 consists of constructing the attribute value lattice 

2. Phase 2 consists of exploring the lattice to determine closed frequent 

itemsets. 

 



 19 

3.3.1 Constructing the Lattice 

The procedure for constructing an attribute value lattice for items in a 

database D is shown in Figure 4 below.  

 

The main idea behind this phase of the algorithm is as follows.  The database 

is parsed to get a bitmap for each frequent itemset in the database. Initially 

the level of each of the itemsets is set at 1. Nodes are constructed, such that 

each node stores the level and its corresponding bitmap. The nodes we are 

interested in are only those whose cardinality is greater than minsup. The 

nodes are sorted based on the bitcount in descending order. These are placed 

in a priority queue where the priority is set as (2
L
)*B, where L is the level 

and B is the bitcount. 

 

The nodes constructed above are then traversed to obtain the attribute value 

lattice. For traversal, the set of nodes are ordered based on the bitcount.  

Every node is compared with each node following it and this leads to the 

generation of the attribute value lattice. The bitmap of the node (I) is 

intersected with the bitmap of the nodes (J) following it. If such an 

intersection yields a bitmap whose cardinality is greater than the minsup, 

then the node (I) is compared with the node (J) in one of three ways. 
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As outlined in the paper [Lin2003], the three cases are: 

1. if B(Ii) = B(Ij) , then B(Ii ∪  Ij  ) = B(Ii) ∩ B(Ij ) = B(Ii) = B(Ij ) 

[Lin2003].  Consequently, Ii can be replaced by Ii ∪  Ij  . Ij is no longer 

used for the algorithm as it has the same closure as Ii ∪  Ij. 

2. if B(Ii) ⊂ B(Ij), then B(Ii ∪  Ij  )= B(Ii); however, B(Ii) ≠ B(Ij ) 

This implies that an edge can be drawn from Ii to Ij because they 

always occur together. However, since the bitmaps B(Ii) ≠ B(Ij ) 

differ from each other, unlike the previous case, Ij would have a 

different closure and removing Ij will cause the algorithm to lose some 

closed frequent itemsets. 

3. if B(Ii) ⊃ B(Ij), then B(Ii ∪  Ij  )= B(Ii); however, B(Ii) ≠ B(Ij ).  This is 

similar to the previous case, except that an edge is created from Ij to Ii. 
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This pseudo code has been taken verbatim from [Lin 2003]. 

Figure 4 Constructing Attribute Value Lattice 

    Phase One() 

1. Construct the bitmap B(I) for each frequent itemset (I) in the 

database. 

2. Set level number L of each I to 1 

3. Construct the set of nodes, N,  that contains I, L and B(I) where   

B(I) > minSup 

4. Sort the nodes based on level and bitcount . Have these in a priority 

queue where the priority is set as (2
L
)*B(I).  

5. For each node Ii in Nodes  

5.1 For each sibling Ij after Ii in Nodes 

5.1.1 I = Ii ∪  Ij and Bcomb = B(Ii) ∩ B(Ij) 

5.1.2 If Bcomb > minSup 

5.1.2.1 If B(Ii) = B(Ij) 

 5.1.2.1.1 Remove Ij from Nodes 

 5.1.2.1.2 Replace all Ij with I (i.e Ii  ∪ Ij) 

5.1.2.2 Else, if B(Ii) ⊂ B(Ij)  

 5.1.2.2.1 Create an edge from Ii  to Ij 

 5.1.2.2.2 Lj = Max (Lj, Li + 1) 

5.1.2.3 Else, if B(Ij)  ⊂ B(Ii) 
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We illustrate the steps in the algorithm using the example from Figure 1.  

With a minsup of 3, we have: 

• B(A) = 1011100000 

• B(D) = 0101110000 

• B(T) = 1010110000 

• B(K) = 0000111100 

• B(Q) = 0000001111 

N = {} 

C = {} 

Iteration 1: 

I = {AD} 

Bcomb = 0001100000 

| Bcomb| = 2 < 3. 

//N contains A’s parents 

N = {WC} 

Iteration 2: 

I = {AT} 

Bcomb = 101010000 

| Bcomb| = 3 

N = {AD} 
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Figure 4 shows resulting the lattice that corresponds to the sample database 

from Figure 1.   For this lattice, we used a minsup of 3 (i.e., an item appears 

in 30% of the transactions). 

 

Figure 5 Attribute Value Lattice 

 

 

3.3.2 Identifying Closed Frequent Itemsets 

The procedure for identifying closed frequent itemsets from the lattice is 

shown in Figure 6 below. In this phase of the algorithm, we build on the 

lattice by using the set of nodes at the same level for candidate generation: 

the nodes are sorted in decreasing order of bitcount; each node is combined 

with its siblings in a breadth-first manner.  Then, expansion is performed on 

the set of candidates in increasing order of levels in a bottom-up approach.   

A D T 

C 

W RH

QK

 any 
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That is, starting with the level-1 leaf nodes of the lattice corresponding to the 

set of frequent itemsets.   

We describe the workings of the algorithm using the attribute value lattice 

from Figure 5.  The algorithm starts with nodes in the order A, D, T, K, Q.    

Next, when AD is combined, we find that AD is not-frequent.  Since WD 

could be frequent, the algorithm adds W to the set of nodes for next round 

expansion.  The algorithm then considers AT, AK, AQ in that order.  After 

the siblings of A are exhausted, the algorithm then considers DT, DK, DQ in 

that order and so on.  Since A, D, T, K, Q are frequent itemsets, they are 

added to F.  After level-1 nodes are exhausted, the algorithm then uses the 

level-2 nodes for next round of expansion.  This process continues until 

there are no further nodes for expansion.  

 

This expansion phase of the algorithm could be viewed as augmenting the 

lattice with additional frequent itemsets constructed using the nodes of the 

lattice itself.  At the end of this phase, we have the lattice setup for finding 

the closed frequent itemsets: To illustrate, as pointed out earlier, let us use 

the directed acyclic graph view of the lattice.  Then, a path in the graph from 

the leaf node to the root represents a closed frequent itemset.   The overall 
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procedure that combines the various phases and returns the set of closed 

frequent itemsets is shown in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Revised Algorithm 
 

Procedure ExpandFreqItemSet(Nodes, minsup) 

1. For every node Ii  ∈Nodes 

1.1  NewNodes = Ø, I = Ii 

1.2  For each sibling Ij after Ii in Nodes 

1.2.1 I = Ii ∪ Ij and Bcomb = B(Ii) ∩  B(Ij) 

1.2.2 If Bcomb > minSup  

1.2.2.1 Add I x Bcomb to the NewNode 

1.2.3 Else add Ii’s parents to the NewNode 

1.3 F = F ∪ I  

2. If NewNodes ≠ Ø, then ExpandFreqItemSet(NewNodes, minsup) 
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Figure 7 Procedure for Finding Closed Frequent Itemsets 

 

 

3.4 Issues In Implementing the Algorithm 

We faced the following issues in implementing the algorithm:   

1. In Phase 1, the sorting of the nodes was just based on the cardinality 

of the bitmaps as defined in the paper. We modified this to include 

both the level and the cardinality and set this to (2
L
)* B. This will 

improve the speed of the algorithm because the new nodes are not 

added to the end of the list. Instead, it is inserted based on a priority 

and therefore can be fetched faster.  

2. The indentation of the algorithm for Phase 2 was incorrect.   In 

particular, line 8 should be in the loop of statement 2; in the pseudo-

code in the paper, it is outside the loop (see Figure 8).  

Main() 

1. C = { } // set of closed frequent itemsets 

2. F = { } // set of frequent itemsets 

3. Construct attribute value lattice (i.e., Phase one) 

4. Expand frequent itemsets (i.e., Phase 2) 

5. For every node Ii  ∈ F, add the ancestor set of  Ii  to C 
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3. The specification for Phase 2 of the algorithm in the paper by 

[Lin2003] is imprecise.  For instance, in the original specification, line 

3 says “continue the expanding”, when it actually means a recursive 

call to a procedure.  The specification presented in Figure 6 addresses 

the issues.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This pseudo code has been taken verbatim from [Lin 2003]. 

Figure 8 Original Algorithm 

1. Nodes = all the greatest lower bounds items of the lattice 

2. For every node Ii in Nodes 

2.1 NewNodes = Ø, I = Ii 

2.2  For each sibling Ij after Ii in the nodes 

2.2.1  I = Ii ∪ Ij and Bcomb = B(Ii) ∩  B(Ij) 

2.2.2  If | Bcomb | > minsup 

2.2.2.1 Add I* Bcomb to the NewNode 

2.2.3  Else 

2.2.3.1 Add I’s parents to the NewNode 

2.2.4 If NewNodes ≠ Ø, then continue the expanding 

3. /* expand the frequent nodes */ 

4. C= C ∪ I 

5. For every node Ci ∈ C, replace it by its ancestor set 
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4. In line 1.2.2.1, we add I * Bcomb to the set of nodes for expansion.  

However, the specification does not define what the parents of the 

newly combined node should be.  This is noteworthy because the 

parents of a node are used to identify additional frequent itemsets.  

We addressed this issue by setting the parent of a combined node I to 

be P(Ii) U P(Ij). 

5. In line 1.2.2.1, we add Ii’s parents to the set of nodes for expansion.  

Observe that, the specification does not include Ij in that set.  This 

could have the effect of not generating some closed frequent itemsets 

from the algorithm.  For instance, for the lattice in Figure 5, if AD is 

not frequent, then only W is added to the new node set, but D is not.  

As a result, the algorithm does generate WD as a candidate frequent 

itemset (note that, it is possible that WD is a frequent itemset).  In our 

implementation, we considered Ij to the new node set.  For some 

datasets explored in our work, adding Ij significantly increased the 

running time of the algorithm to the point that the algorithm continued 

to execute for several hours without terminating.  Hence, we did not 

change this line of the algorithm in our implementation.  That is, we 

implemented this line of the algorithm as specified in the paper 

[Lin2003]. 
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4. Experimental Evaluation 

 
4.1 Implementation 

We implemented the algorithm described in the previous chapter using the 

Java programming language.  In addition to Java classes for implementing 

the algorithm, we implemented helper classes for doing buffered I/O and fast 

bit-manipulation operations.   The Java classes used for this algorithm are 

the following: lattice.java, NodeInfo.java, ItemSetInfo.java, and 

AttrValueLattice.java. The helper classes for this include BitClass.java, 

DiskReader.java, and Timer.java.  Details of the Java classes are as follows: 

 
BitClass.java: 

For constructing granules using bitmaps, we had two choices: use Java’s 

BitSet class or develop a custom implementation given the characteristics of 

our dataset. For common bit manipulation operations such as “and”, “or”, 

“cardinality”, “set”, and “clear”, we timed the native implementation and our 

implementation and for the most part, our implementation was faster than 

Java’s BitSet class. 
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DiskReader.java: 

This program simulates disk-reads by reading in data from a file into 

memory in 4K chunks. The 4K chunk of data in memory is used to build the 

Granular model directly. Once this is built, the next 4K chunk is fetched 

from disk. This ensures that we use memory judiciously, especially when we 

are dealing with large datasets.  

 

ItemSetInfo.java: 

This program implements the data structure for holding the bitmaps 

corresponding to each unique value in a column.  

 

Algorithm.java: 

In this program, we set a variable maxValsPerColumn that keeps track of the 

maximum number of (n – 1) large itemsets before we move on to n – large 

itemsets. Limiting the number of (n-1) large itemsets is beneficial because 

we can index into an array to generate the n large array by intersecting the  

( n-1) large and 1-large itemsets. This array is a two dimensional array in 

which the first dimension keeps track of which large itemset we are building 

and the second dimension keeps track of the values obtained by intersecting 

2 columns. This dimension has a maximum index which limits how many 
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values we generate. Though limiting the number of values hinders 

completeness of results, it ensures better scalability by reducing memory 

usage. 

 

Lattice.java:  

This is the driver class and reads from an input file. An object of the class 

AttrValueLattice is instantiated here which then makes the bitmap, makes 

the nodes based on the minSup, combines nodes and finds the closed 

frequent itemsets.  

 

AttrValueLattice.java: 

This class implements both phases of the lattice algorithm as elicited by the 

pseudocode shown in Figure 4, Figure 5 and Figure 6. The main functions of 

this class is to MakeNodes (to create nodes with their bitcount and parent 

information), CombineNodes (to combine a pair of nodes by intersecting 

their bitmaps and taking a union of their set of parents), ExpandItemSets (for 

generating candidate frequent itemsets), and FindClosedFrequentIemSets.   
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4.2 Experimental Setup 

The experiments were done on an Apple Powerbook laptop with 1GB RAM. 

The input file for each experiment was stored on the laptop’s disk (i.e., local 

disk).  Data was read in from disk for building the bitmaps when 

constructing the lattice and then discarded.  This helped reduce the memory 

footprint for our implementation. 

 

4.3 Data Characteristics 

In this thesis, we study the performance of the algorithm using synthetic 

data.  We model the occurrence of an item in a transaction based on 

mathematical distributions.  For each distribution, we generate a dataset that 

consists of numbers to represent items, where the numbers are based on the 

distribution.  That is, when items in the database are modeled using a 

particular distribution, this means that the probability of an item being in a 

transaction depends on the characteristics of that distribution.  Since the size 

of the dataset could have an impact on the running time of the algorithm, we 

also study the performance of the algorithm for datasets of varying sizes.  

The distributions we considered in our work are: 
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• Normal distribution:  The probability density function ( Figure 9) for 

the normal distribution is :  

     [Wikipedia] 

• Exponential distribution: The probability density function for this ( 

Figure 10 )distribution is: F(x ; λ) = λe-λx  , when x >=0 and 0 when x 

< 0 [Wikipedia] 

• Zipf distribution: The Zipf law was proposed by a Harvard 

University linguist George Zipf.  This law was put forth as it applied 

to language, i.e., the frequency of some words in any language is 

much higher than the frequency of others. When such a frequency is 

plotted against the rank of such a parameter, the rank and frequency 

become inversely proportional. Another observation typical of such a 

dataset is that, when drawn to logarithmic scales, the most frequently 

occurring and the least frequently occurring data lie close to the axes 

of the graph. Zipf’s law ( Figure 11) is given by the following: 

F(k; s, N) = (1 / k
s
 ) / ( ΣNn=1 1 /n

s 
)  where,  

N is the number of elements, k is the rank, and s is the exponent 

characterizing the distribution [Wikipedia]. 

F(x;µ,σ ) = 1/σ √(2∏) e(-(x-µ)  )/((2σ) )) 
2 2 
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            Figure 9 Normal Distribution [Wkipedia] 

 

 

             Figure 10 Exponential Distribution [Wikipedia] 

 

          
            Figure 11 Zipf Distribution [Wikipedia] 
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4.4 Results 

For each distribution, there are two parameters that impact the running time 

of the algorithm: 

1. Input data size: What is the impact of increasing the dataset size 

2. Minsup value: How does changing the minsup affect the running 

time 

In our results, we present the running times and also show the line of best fit 

for the data.  Also, we present the number of closed frequent itemsets 

identified by the algorithm. 

Non-linear regression was used for fitting the curves in Figures 12 - 19. We 

used GraphPad Prism Software version 4.03 [Trial], February 02, 2005. 

GraphPad Software is located at San Diego USA, www.graphpad.com.  

 

 

 

 

 



 36 

4.4.1 Normal Distribution                 
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File Size run Time in ‘s’ 
closed frequent 
itemsets minSup 

2996.495 144.357 2124 12 

3603 171.415 2101 14 

5404.5 359.627 2111 73 

7206 395.822 2207 97 

12010.05 579.319 2119 100 
 

Figure 12 Run Time Vs File Size – Normal Data 

 

 

 
 
Best-fit values  

     Slope 0.04767 ± 0.007099 

     Y-intercept when X=0.0 32.47 ± 49.93 

     X-intercept when Y=0.0 -681.2 

     1/slope 20.98 

95% Confidence Intervals  

     Slope 0.02508 to 0.07026 

     Y-intercept when X=0.0 -126.4 to 191.3 

     X-intercept when Y=0.0 -7263 to 1890 

Goodness of Fit  

     r² 0.9376 

     Sy.x 51.38 

F(x;µ,σ ) = 1/σ√(2∏) e(-(x-µ)  )/((2σ)  ))  [Wikipedia] 2 2 
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normal-samesize (file size = 7206 kB)
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Figure 13 Run time Vs Minsup – Normal Data 

 

Best-fit values  

     Slope 0.04767 ± 0.007099 

     Y-intercept when X=0.0 32.47 ± 49.93 

     X-intercept when Y=0.0 -681.2 

     1/slope 20.98 

95% Confidence Intervals  

     Slope 0.02508 to 0.07026 

     Y-intercept when X=0.0 -126.4 to 191.3 

     X-intercept when Y=0.0 -7263 to 1890 

Goodness of Fit  

     r² 0.9376 

     Sy.x 51.38 

 

 

The graphs are shown in Figure 12 and Figure 13.  From the figures, we 

make the following observations: 
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1. As we increase the size of the input dataset, the running time increases 

almost linearly.   

2. As we increase the minsup value, for a given dataset, running time 

decreases.  This is to be expected because as minsup is increased, the 

number of frequent itemsets decreases.  Conversely, for a given 

minsup, as we increase the size of the dataset, the number of closed 

frequent itemsets increases.  This is also expected----as the size of 

dataset increases, there are more transactions, and hence, the number 

of frequent itemsets increases. 
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4.4.2 Exponential Distribution 

Exponential data
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File Size ’kB’ run Time ‘s’ 
closed frequent 
itemsets minSup 

395.317 19.294 1267 20 

790.526 67.599 1900 20 

890.821 138.392 1978 20 

1430.603 342.775 3198 20 

1670.086 534.528 3968 20 
Figure 14 Run Time Vs File Size – Exponential Data 

  

Exponential growth  

Best-fit values  

     START 18.54 

     K 0.002019 

     Doubling Time 343.3 

Std. Error  

     START 5.400 

     K 0.0001848 

95% Confidence Intervals  

     START 1.360 to 35.73 

     K 0.001431 to 0.002607 

     Doubling Time 265.9 to 484.4 

Goodness of Fit  

     Degrees of Freedom 3 

     R² 0.9898 

     Absolute Sum of Squares 1871 

     Sy.x 24.98 
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expData-samefile (file-size = 890.821 kB)
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Figure 15 Run Time Vs Minsup – Exponential Data 

 

F(x ; λ) = λe-λx   [Wikipedia] 
 

One phase exponential decay  

Best-fit values  

     SPAN 3.870e+006 

     K 0.1946 

     PLATEAU -7627 

     HalfLife 3.561 

Std. Error  

     SPAN 266957 

     K 0.006876 

     PLATEAU 4133 

95% Confidence Intervals  

     SPAN 3.129e+006 to 4.611e+006 

     K 0.1755 to 0.2137 

     PLATEAU -19100 to 3845 

     HalfLife 3.243 to 3.948 

Goodness of Fit  

     Degrees of Freedom 4 



 41 

     R² 0.9993 

     Absolute Sum of Squares 1.814e+008 

     Sy.x 6735 

 

The graphs are shown in Figure 14 and Figure 15. From the figures, we 

make the following observations: 

1. As we increase the size of the input dataset, the running time increases 

exponentially.   

2. As we increase the minsup value, for a given dataset, running time 

decreases with an exponential decay.  The reasons for this are similar 

to the behavior of normal distribution dataset: 

a. For a given dataset, as we increase minsup, the number of 

closed frequent itemsets decreases. 

b. For a given minsup, as we increase the size of input data, the 

number of closed frequent itemsets increases. 
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4.4.3 Zipf Distribution 

     

Zipf-runtime
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file size in kB time in s 
closed freq-
itemsets minSup 

33.925 0.071 1 10 

67.979 0.105 6 20 

136.163 0.12 9 30 

635.486 568.612 50 200 

879.23 1760.606 60 400 

1099.067 1847.93 70 500 

8971.779 2257.052 152 750 
Figure 16 Run Time Vs File Size – Zipf Data 

 

Polynomial: Second Order (Y=A + B*X + C*X
2
)  

Best-fit values  

     A -202.4 

     B 2.058 

     C -0.0001989 

Std. Error  

     A 180.0 

     B 0.3157 

     C 3.378e-005 

95% Confidence Intervals  

     A -702.2 to 297.3 

     B 1.182 to 2.935 

     C -0.0002926 to -0.0001051 

Goodness of Fit  

     Degrees of Freedom 4 

     R² 0.9450 

     Absolute Sum of Squares 330808 

     Sy.x 287.6 
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Zipf-same file (file-size=136.163 kB)
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5 68.686 

10 13.032 

13 4.648 

15 0.866 

20 0.21 

30 0.12 
Figure 17 Run Time Vs Minsup – Zipf Data 

 

 

F(k; s, N) = (1 / k
s
 ) / ( ΣNn=1 1 /n

s 
) [Wikipedia] 

 

One phase exponential decay  

Best-fit values  

     SPAN 363.3 

     K 0.3318 

     PLATEAU -0.4363 

     HalfLife 2.089 

Std. Error  

     SPAN 25.01 

     K 0.01425 

     PLATEAU 0.5399 

95% Confidence Intervals  

     SPAN 283.8 to 442.9 

     K 0.2865 to 0.3771 

     PLATEAU -2.154 to 1.282 

     HalfLife 1.838 to 2.420 

Goodness of Fit  

     Degrees of Freedom 3 
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     R² 0.9995 

     Absolute Sum of Squares 1.909 

     Sy.x 0.7978 

The graphs are shown in Figure 16 and Figure 17. From the figures, we 

make the following observations: 

1. As we increase the size of the input dataset, the running time increases 

and then stabilizes.  This is because of the characteristics of Zipf data: 

there are very few unique values in a Zipf distribution; as we increase 

the dataset the number of itemsets for a given minsup stabilize and 

hence, there is not a noticeable increase in running time. 

2. As we increase the minsup value, for a given dataset, running time 

decreases as an exponential decay.  This is again due to the 

characteristics of the Zipf distribution. 

 

4.5 Discussion 
 

Of the three distributions we studied, our results showed that Zipf data 

performs better compared to the other two.  This is because with Zipf-

distributed data, the numbers are clustered around a few values (i.e., very 

few items in the database appear in most of the transactions).  On the other 

hand, with the remaining distributions, the data is unlikely to be clustered.  

For instance, with normal distribution, every item can appear in every 
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transaction with uniform probability.  As a result, the number of frequent 

itemsets for such distributions can be large.  

 

While the procedure for finding closed frequent itemsets tries to provide 

accurate answers, there are datasets for which the running time is 

exponential.  Rather than obtain accurate answers, it may be worthwhile to 

obtain an approximate answer and then refine the search.  For example, 

suppose there is a merchant who sells millions of items.  To answer a query 

such as, find the top hundred frequently bought items, we need to determine 

closed frequent itemsets over the data with a minsup of 100.  If such a set is 

large, we could instead represent the data into categories and then try to find 

the top n-categories.  From such a frequent category set, we could find the 

desired closed frequent itemsets.  Note that this procedure is lossy: since we 

are restricting the search to the top categories, we may miss closed frequent 

itemsets that are not in the top categories.  Procedures such as the one 

outlined in this example are data binning techniques.   

 

Of the distributions studied, Zipf distribution has polynomial run-time and is 

faster than the other two. Hence, we develop a method to bin data such that 

the resulting binned data resembles a Zipf distribution.  We illustrate our 
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ideas using an example.   Consider data from a normal distribution that is 

binned into bins of equal width.  We construct a histogram from the data for 

each bin.  We then place histogram buckets with the same frequency into the 

same bin.  The resulting distribution is like Zipfian. 

 

 

To apply our idea to input data, we use Chi-square test [Press] to see which 

distribution the data matches closely.  That is, we evaluate column-wise (i.e., 

granule) the characteristics of the input data.  For each column, we compute 

a chi-square for the distribution for that column using non-linear least 

squares method of Levenberg-Marquardt.  The recipe for this procedure is 

defined in pages 683 - 687 of the Numerical Analysis text [Press].   The 

resulting chi-square value is compared to the chi-square of known 

distributions such as Normal, Exponential, and Zipf to identify degree of 

similarity. Then, if the data resembles exponential or normal distribution, 

binning is required.  For Zipf data, binning is not required---as our results 

showed, the running time of the algorithm for Zipf distribution is 

polynomial. 

 

The procedure for binning the data is as follows.  From the input data, we 

construct a histogram for each granule.  For the histogram, we divide the 
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data into uniform sized bins of a given bin width.  We then make another 

pass over the data and for each input value, we compute the logarithm of the 

frequency of its bin.    Now, if this computed value is above a threshold, this 

computed value is used to represent the data; otherwise, the original value is 

used as is.  This has the effect of transforming the data from a large set of 

values to a few values and thereby mimics Zipf data.  As a result of binning 

in this manner, the number of level-1 nodes in the lattice is significantly 

reduced. 

 

As proof of concept, we performed experiments using two used sets of data 

for binning.  First, we use data from exponential distribution as input to the 

binning procedure.  The procedure identifies the data as being exponentially 

distributed (as expected) and we then bin it.  This experiment serves to 

validate our binning procedure i.e., provide input from known distribution 

and it should be mapped to the same distribution.  Second, we then apply the 

procedure to a “mixed” data set---one that contains data from both 

exponential and Zipf.  As expected, the procedure only bins columns that 

belong to the exponential distribution.  The results are explained in the next 

section. 
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4.6 Results  

4.6.1 Exponential binned data 

 
From the figures, we make the following observations: 

1. As we increase the size of the input dataset, the running time is nearly 

constant: This is very similar to the results of the Zipf distribution.   

2. As we change the minsup value, for a given dataset, running time 

decreases rapidly (again, very similar to that of the Zipf distribution). 

 

This experiment serves to verify our methodology: our idea was transform 

the input data to something that mimics Zipf distribution and thereby reduce 

running time of the algorithm.   These graphs validate our ideas.  We now 

consider mixed data sets: data sets that contain a mix of Zipf, normal, and 

exponentially distributed data.  We apply our methodology and bin only the 

columns in the input dataset that closely resemble either normal or 

exponentially distributed data based on the procedure outlined in the 

previous section.  Our results follow. 
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4.6.1.1 Binned Exponential Data 
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File Size 'kB' run Time 'ms' 

790.526 3723 

890.821 3472 

1430.603 3379 

1670.086 3371 
Figure 18 Run Time Vs File Size – Binned Exponential Data 

 

Best-fit values  

     Slope -0.3191 ± 0.1565 

     Y-intercept when X=0.0 3868 ± 195.7 

     X-intercept when Y=0.0 12120 

     1/slope -3.134 

95% Confidence Intervals  

     Slope -0.9927 to 0.3545 

     Y-intercept when X=0.0 3025 to 4710 

     X-intercept when Y=0.0  

Goodness of Fit  

     r² 0.6750 

     Sy.x 114.8 
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4.6.2 Mixed Data 

 

The results for the mixed data sets without binning are shown in Figure 

From the graphs in Figure 19, Figure 20, Figure 23 and Figure 24, we make 

the following observations: 

1. As we increase minsup, running time decreases.  This is to be 

expected as there is a decrease in the number of closed frequent 

itemsets. 

2. As we increase the size of the input dataset, the running time of the 

algorithm increases.  The rate of increase depends on the input 

distribution: For instance, if the input data is a mix of Zipf and 

Normal distributions, the rate of decrease is similar to that of the 

normal distribution.  A similar result holds for a mix of Zipf and 

exponentially distributed dataset. 

The results for three mixed data sets with binning are shown in Figure 21, 

Figure 22, Figure 25 and Figure 26. From the graphs, we make the following 

observations: 

1. As we increase minsup, running time decreases.  This is to be 

expected as there is a decrease in the number of closed frequent 

itemsets. 
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2. As we increase the size of the input dataset, the running time of the 

algorithm is nearly constant.  That is, the results are very similar to 

that of the Zipf distribution.  Since our procedure only bins data in the 

columns corresponding to either Exponential or Normal distribution, 

the transforms the input dataset to a dataset that closely resembles 

Zipf distribution. 

4.6.2.1 Unbinned Zipf Exponential Data 
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Figure 19 Run Time Vs File Size – Zipf Exponential Data (Unbinned) 

 

 

Exponential growth  

Best-fit values  

     START 0.1153 
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     K 0.009027 

     Doubling Time 76.79 

Std. Error  

     START 0.03789 

     K 0.0003332 

95% Confidence Intervals  

     START 0.01012 to 0.2205 

     K 0.008102 to 0.009952 

     Doubling Time 69.65 to 85.55 

Goodness of Fit  

     Degrees of Freedom 4 

     R² 0.9998 

     Absolute Sum of Squares 113.5 

     Sy.x 5.328 

 

zipf-exp (file-size = 214.440kB)
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19 2.547 

20 1.482 
Figure 20 Run Time Vs Minsup – Zipf Exponential Data (Unbinned) 

 
One phase exponential decay  

Best-fit values  

     SPAN 49833 

     K 0.5685 
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     PLATEAU 1.433 

     HalfLife 1.219 

Std. Error  

     SPAN 23793 

     K 0.03986 

     PLATEAU 0.8443 

95% Confidence Intervals  

     SPAN -25880 to 125542 

     K 0.4417 to 0.6953 

     PLATEAU -1.254 to 4.119 

     HalfLife 0.9968 to 1.569 

Goodness of Fit  

     Degrees of Freedom 3 

     R² 0.9983 

     Absolute Sum of Squares 4.112 

     Sy.x 1.171 

 

4.6.2.2 Binned Zipf Exponential Data 

zipf-exp-binned
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Figure 21 Run Time Vs File Size – Zipf Exponential Data (Binned) 
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Best-fit values  

     Slope 0.01302 ± 0.002379 

     Y-intercept when X=0.0 -0.2386 ± 0.9718 

     X-intercept when Y=0.0 18.33 

     1/slope 76.81 

95% Confidence Intervals  

     Slope 0.006416 to 0.01962 

     Y-intercept when X=0.0 -2.936 to 2.459 

     X-intercept when Y=0.0 -333.8 to 171.8 

Goodness of Fit  

     r² 0.8822 

     Sy.x 1.584 
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Figure 22 Run Time Vs Minsup – Zipf Exponential Data (Binned) 

 

One phase exponential decay  

Best-fit values  

     SPAN 4596 

     K 0.04192 

     PLATEAU 0.8708 

     HalfLife 16.54 

Std. Error  

min Sup 
run time in 
's' 

100 70.358 

150 9.346 

200 2.245 

250 0.74 
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     SPAN 592.2 

     K 0.001315 

     PLATEAU 0.3484 

95% Confidence Intervals  

     SPAN -2929 to 12121 

     K 0.02521 to 0.05862 

     PLATEAU -3.555 to 5.297 

     HalfLife 11.82 to 27.49 

Goodness of Fit  

     Degrees of Freedom 1 

     R² 0.9999 

     Absolute Sum of Squares 0.1771 

     Sy.x 0.4208 

 

4.6.2.3 Unbinned Zipf Normal Data 

Zipf-Normal
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Figure 23 Run Time Vs File Size – Zipf Normal  Data (Unbinned) 

 

Exponential growth  

Best-fit values  

     START 0.0006259 

file size 
in kB 

time in 
s 

closed 
freq.itemsets minSup 

64.516 0.05 1 10 

128.934 0.083 10 20 

228.947 0.235 14 30 

500.23 0.75 20 70 

850.34 2.4 35 120 

1172.338 56.128 51 300 
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     K 0.009728 

     Doubling Time 71.26 

Std. Error  

     START 0.0003320 

     K 0.0004527 

95% Confidence Intervals  

     START -0.0002959 to 0.001548 

     K 0.008471 to 0.01098 

     Doubling Time 63.10 to 81.83 

Goodness of Fit  

     Degrees of Freedom 4 

     R² 0.9998 

     Absolute Sum of Squares 0.5110 

     Sy.x 0.3574 

 

Zipf-normal (file-size=228.947 kB)
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Figure 24 Run Time Vs Minsup – Zipf Normal Data (Unbinned) 

 

One phase exponential decay  

Best-fit values  

     SPAN 1538 
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     K 0.4123 

     PLATEAU 0.08368 

     HalfLife 1.681 

Std. Error  

     SPAN 391.7 

     K 0.02553 

     PLATEAU 0.04217 

95% Confidence Intervals  

     SPAN 450.6 to 2625 

     K 0.3414 to 0.4832 

     PLATEAU -0.03340 to 0.2008 

     HalfLife 1.435 to 2.030 

Goodness of Fit  

     Degrees of Freedom 4 

     R² 0.9999 

     Absolute Sum of Squares 0.03510 

     Sy.x 0.09368 

 

4.6.2.4 Binned Zipf Normal Data 

Zipf-Normal-binned
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Figure 25 Run Time Vs File Size – Zipf Normal Data (Binned) 
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Best-fit values  

     Slope 0.005426 ± 0.0005855 

     Y-intercept when X=0.0 -0.03618 ± 0.2892 

     X-intercept when Y=0.0 6.668 

     1/slope 184.3 

95% Confidence Intervals  

     Slope 0.003801 to 0.007051 

     Y-intercept when X=0.0 -0.8389 to 0.7665 

     X-intercept when Y=0.0 -187.6 to 127.9 

Goodness of Fit  

     r² 0.9555 

     Sy.x 0.4579 

 

 

Zipf-Normal binned (file-size = 89.863 kB)
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Figure 26 Run Time Vs Minsup – Zipf Normal Data (Binned) 

 

One phase exponential decay  

Best-fit values  

     SPAN 796.1 

     K 0.5156 

     PLATEAU -32.34 

     HalfLife 1.344 

Std. Error  
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     SPAN 937.4 

     K 0.4900 

     PLATEAU 69.42 

95% Confidence Intervals  

     SPAN -3238 to 4830 

     K 0.0 to 2.624 

     PLATEAU -331.0 to 266.4 

     HalfLife  

Goodness of Fit  

     Degrees of Freedom 2 

     R² 0.8942 

     Absolute Sum of Squares 1677 

     Sy.x 28.96 

 

 

 

4.7 Discussion 
 
 

The experiments with binning show significant improvements in the running 

time of the algorithm.  For instance, without binning and with mixed data, 

the running time of the algorithm increases at a rapid rate (either polynomial 

or exponential); with binning, the running time is nearly constant (i.e., it is 

very similar to the results of a Zipf distributed data).  Note that binning only 

provides an approximation to the number of closed frequent itemsets in the 

input data.  Using the results of binning, further analysis maybe performed 

on a restricted set of the input data. 

 

Without binning, exponential data has an exponential run time growth. With 

binning, the run time becomes polynomial. So, we increase our chances of 

arriving at the solutions of the lattice with binning. For mixed data, we found 
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that we were not able to get the program to complete in less than an hours 

time for unbinned data and hence had to terminate the run.  

 

As pointed out earlier, it helps in determining trends in data. Since binning is 

lossy, based on the results further analysis may be performed. 
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5. Conclusion 

 

In this thesis, we studied the problem of mining closed frequent itemsets in 

large data repositories. We used the algorithm of [Lin2003] as the basis for 

our implementation.  As part of the implementation, we identified several 

issues with the algorithm and proposed solutions for them.  We then 

implemented the algorithm and used it to a performance study.  Our results 

showed that for certain datasets (such as, dataset that is derived from an 

exponential distribution), the running time of the algorithm grows 

exponentially.  To improve the running time of the algorithm, we developed 

a novel mechanism for binning data.  Our binning procedure transforms data 

from exponential/normal distributions to Zipf distributed data.  Our 

experiments with the binned data showed significant performance 

improvement:  The running time of exponentially distribute data grows 

exponentially; in contrast, the running time of the binned data is nearly 

constant in the size of input. 

 

Some possible future effort can build upon our work are: 

• Suggestion server:  For instance, consider the example we have used 

in this thesis related to buying books.  We can mine the set of 
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transactions to identify the set of closed frequent itemsets 

corresponding to authors whose books are frequently bought.  This set 

can be used as the basis for constructing a recommendation list.  

Furthermore, whenever one of these authors writes a new book, that 

book could be a candidate for inclusion in this recommendation list.  

Other characteristics such as the quality of reviews can also be used as 

candidate signals.  Similar suggestions servers can be constructed for 

other domains such as video rentals as well.   

• Performance comparison: Compare the performance of the 

algorithm we implemented with others published in the literature such 

as Charm [Zaki2002], Closet[Pei2000],  Mafia [Burdick2001], 

Pascal[Bastide2000]. 
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