
 1

A Fast Algorithm For Data Mining

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the Requirement for the

Degree

Master of Science

By

Aarathi Raghu

December 2006

 2

Table of Contents

Table of Figures... 4

Abstract.. 5

1. Introduction... 6

2. Background and Related Work ... 11

3. Attribute Value Lattice For Mining Closed Frequent Itemsets 15

3.1 Data Representation ... 15

3.2 Frequent Itemsets and Lattice ... 16

3.3 The Algorithm ... 18

3.3.1 Constructing the Lattice .. 19

3.3.2 Identifying Closed Frequent Itemsets .. 23

3.4 Issues In Implementing the Algorithm ... 26

4. Experimental Evaluation.. 29

4.1 Implementation ... 29

4.2 Experimental Setup .. 32

4.3 Data Characteristics ... 32

4.4 Results .. 35

4.4.1 Normal Distribution... 36

4.4.2 Exponential Distribution ... 39

4.4.3 Zipf Distribution .. 42

4.5 Discussion .. 44

4.6 Results .. 48

4.6.1 Exponential binned data.. 48

 3

4.6.2 Mixed Data ... 50

4.7 Discussion .. 59

5. Conclusion ... 61

6. References .. 63

 4

Table of Figures

Figure 1 Sample Database .. 8

Figure 2 Pre-Apriori.. 12

Figure 3 Post-Apriori .. 12

Figure 4 Constructing Attribute Value Lattice ... 21

Figure 5 Attribute Value Lattice ... 23

Figure 6 Revised Algorithm.. 25

Figure 7 Procedure for Finding Closed Frequent Itemsets ... 26

Figure 8 Original Algorithm ... 27

Figure 9 Normal Distribution [Wkipedia] .. 34

Figure 10 Exponential Distribution [Wikipedia] .. 34

Figure 11 Zipf Distribution [Wikipedia]... 34

Figure 12 Run Time Vs File Size – Normal Data... 36

Figure 13 Run time Vs Minsup – Normal Data.. 37

Figure 14 Run Time Vs File Size – Exponential Data.. 39

Figure 15 Run Time Vs Minsup – Exponential Data ... 40

Figure 16 Run Time Vs File Size – Zipf Data .. 42

Figure 17 Run Time Vs Minsup – Zipf Data.. 43

Figure 18 Run Time Vs File Size – Binned Exponential Data ... 49

Figure 20 Run Time Vs File Size – Zipf Exponential Data (Unbinned) 51

Figure 21 Run Time Vs Minsup – Zipf Exponential Data (Unbinned) 52

Figure 22 Run Time Vs File Size – Zipf Exponential Data (Binned) 53

Figure 23 Run Time Vs Minsup – Zipf Exponential Data (Binned) 54

Figure 24 Run Time Vs File Size – Zipf Normal Data (Unbinned) 55

Figure 25 Run Time Vs Minsup – Zipf Normal Data (Unbinned) 56

Figure 25 Run Time Vs File Size – Zipf Normal Data (Binned)...................................... 57

Figure 26 Run Time Vs Minsup – Zipf Normal Data (Binned) 58

 5

Abstract

In the past few years, there has been a keen interest in mining frequent

itemsets in large data repositories. Frequent itemsets correspond to the set

of items that occur frequently in transactions in a database. Several novel

algorithms have been developed recently to mine closed frequent itemsets -

these itemsets are a subset of the frequent itemsets. These algorithms are of

practical value: they can be applied to real-world applications to extract

patterns of interest in data repositories. However, prior to using an

algorithm in practice, it is necessary to know its performance as well

implementation issues. In this project, we address such a need for the

algorithm “Using Attribute Value Lattice to Find Frequent Itemsets” that

was developed by [Lin2003]. We clarify some aspects of the algorithm,

develop an implementation of the algorithm, and present the results of a

performance study. In our experiments we find that the running time of the

algorithm for certain input datasets grows exponentially. To address this

problem, we develop a novel procedure for binning the data. Our results

show that with binned data, the running time of the algorithm grows linearly.

This allows one to obtain trends for the dataset.

 6

1. Introduction

Mining large data repositories to find frequent itemsets has been studied for

over fifteen years [Agarwal1994]. During the past five years, there has been

a renewed interest in mining frequent itemsets [Burdick2001, Lin2003,

Pei2000, Zaki2002]. Frequent itemsets correspond to the set of items that

occur frequently in transactions in a database. Several novel algorithms

have been developed recently to mine closed frequent itemsets---these

itemsets are a subset of the frequent itemsets. These algorithms are of

practical value: they can be applied to real-world applications to extract

patterns of interest in data repositories. However, prior to using an

algorithm in practice, it is necessary to know its performance as well

implementation issues. The goal of this project is to address such a need for

the algorithm “Using Attribute Value Lattice to Find Frequent Itemsets” that

was developed by [Lin2003]. Before we describe our contributions, we

provide a brief overview of the problem space.

Mining large data repositories to identify interesting patterns is a challenging

problem. The volume of data to be processed is large (several hundred GB

to a few TB in size) and hence, requires designing efficient algorithms to

 7

identify patterns that occur frequently. To illustrate, suppose a user is

buying a book at Amazon.com’s web-site. When the user chooses a book,

the Amazon.com site also shows related books that would be of potential

interest to the user. By doing so, this has the effect of increasing the

revenue. Given the large number of book titles, it is non-trivial to manually

generate the list of related books. However, such related books are inferred

from the buying habits of Amazon.com’s customers. That is, determining

the set of related books that are bought frequently.

To illustrate the problem of data mining of frequent occurring patterns,

consider a sample database of transactions shown in Figure 1.

The set of items for a given transaction could be the buying habits of users,

such as, books written by Jane Austen, Agatha Christie, Sir Arthur Conan

Doyle, etc.

Transaction Items

1 ACTW

2 CDW

3 ACTWHG

4 ACDWHF

 8

5 ACDTWHGK

6 CDTHFK

7 HFKQR

8 HGKQR

9 QRS

10 QRS

This example has been adapted from Lin 2003.

Figure 1 Sample Database

The database consists of seven transactions with twelve different items. Let

ϑ denote the set of items in the database. A set N ⊆ ϑ consisting of items

from the database is called an itemset. For example, N = {A, C, D} is an

itemset. For notational convenience, we will write ACD to denote the

itemset N consisting of items A, C, and D. Suppose that one is interested in

identifying the itemsets that occur in at least 2 transactions (i.e., the set of

authors whose books are commonly bought). Given the sample database,

the itemsets are A, C, D, H, F, K, Q, R . A commonly used terminology in

the data mining literature to denote the number of transactions in which an

itemset occurs as a subset is support. The problem of finding patterns in the

database can be restated as: identify the itemsets that have at least the user-

specified level of support. The user-specified level of support is known as

 9

minimum support (or minsup for short) and itemsets that satisfy minsup are

known as frequent itemsets.

Devising algorithms for mining frequently occurring patterns in large

databases is an area of active research [Survey]. Some of the challenges

common to algorithms for mining frequently occurring patterns in large data

repositories are [Survey]:

1. Identifying the set (possibly complete) of patterns that satisfy user-

specified thresholds, such as, minsup

2. Minimize the number of scans over the database

3. Be computationally efficient

An algorithm that satisfies the above requirements is “Using Attribute Value

Lattice to Find Closed Frequent Itemsets” [Lin2003]. This thesis builds on

their algorithm. In particular, we make the following contributions:

1. We identified correctness issues with the algorithm’s pseudo-code and

rewrote the algorithm for clarity.

2. We developed an implementation of their algorithm. As part of the

implementation, we identify issues with the algorithm and propose

solutions.

 10

3. We use our implementation to analyze the performance of the

algorithm using synthetically generated data-sets.

4. We use data binning mechanisms to improve the run-time

performance of the algorithm for certain data-sets.

The remainder of this document is organized as follows. In Chapter 2, we

provide an overview of algorithms for mining frequent itemsets. In Chapter

3, we describe the algorithm “Using Attribute Value Lattice to Find Closed

Frequent Itemsets” which is the basis for our work. In Chapter 4, we

describe our implementation and present the results of our experiments.

Finally, Chapter 5 concludes.

 11

2. Background and Related Work

The classical algorithm for mining frequent itemsets is the APRIORI

algorithm [Agarwal1994]. Given a database of itemsets and a user specified

minsup value, the algorithm finds frequent itemsets using a “bottom up”

approach. That is, the algorithm starts with set of frequent itemsets of length

1 (i.e., the cardinality of the number of items in a frequent itemset is 1) and it

attempts to find frequent itemsets of length 2. It does so by extending the

frequent itemsets of length 1 with one item at a time. This step of extending

a frequent itemset with one item is known as candidate generation. A

candidate is tested to see if it satisfies the minsup threshold before it is added

to the set of frequent itemsets. This process is repeated for increasing values

on the length of frequent itemsets. During each iteration, candidate itemsets

of length k are generated by combining two frequent itemsets of length k-1.

The algorithm terminates when no further extensions of the frequent itemset

are possible.

For computational efficiency, the Apriori algorithm prunes the set of

candidates using a downward closure lemma [Agarwal1994] . Given an

itemset sequence N , if N is not frequent, then any itemset that contains N is

 12

also not frequent. We illustrate the effectiveness of this lemma using an

example. This example has been adapted from [Survey].

 <m> <n> <o> <p> <q> <r>

<m> <mm> <mn> <mo> <mp> <mq> <mr>

<n> <nm> <nn> <no> <np> <nq> <nr>

<o> <om> <on> <oo> <op> <oq> <or>

<p> <pm> <pn> <po> <pp> <pq> <pr>

<q> <qm> <qn> <qo> <qp> <qq> <qr>

<r> <rm> <rn> <ro> <rp> <rq> <rr>

Figure 2 Pre-Apriori

 <m> <n> <o> <p> <q> <r>

<m> <mn> <mo> <mp> <mq> <mr>

<n> <no> <np> <nq> <nr>

<o> <op> <oq> <or>

<p> <pq> <pr>

<q> <qr>

<r>

Figure 3 Post-Apriori
As shown in Figure 2 , the possible number of candidates of length-2 is 36.

With the optimization used by Apriori, as Figure 3 shows, the number of

 13

candidates of length-2 is 15. For this example, Apriori prunes 58% of the

exploration space.

Several frequent itemset mining algorithms based on Apriori have been

developed [Bastide2000, Brin1997, Sarasere1995]. These papers also show

that Apriori provides good run-time performance when the length of

frequent itemsets is small. However, the performance of Apriori is impacted

by two factors:

1. Pruning efficiency: If the database consists of datasets with many

frequently occurring patterns, then pruning becomes less efficient.

For instance, it has been observed that if S consists of frequent

itemsets of length k, there could be upto 2
S
 – 2 candidates of length

k+1 [Zaki2002]. This is because the set of candidates consists of the

subsets of S. As a result, the computation can become CPU bound.

2. Number of database scans: The number of database scans is

proportional to the length of the longest frequent itemset. As the

length increases, the number of scans also increases. As noted in

[Bayardo1998] for real world problems such as patterns in

biosequences, itemsets of length 30 or higher is typical.

 14

To address the limitations of Apriori for mining long patterns, alternate

approaches have been considered in the literature [Lin2002, Lin2003]. One

approach is to mine the database for closed frequent itemsets. A frequent

itemset N is said to be closed if and only if there does not exist another

frequent itemset of which N is a subset. If F denotes the set of frequent

itemsets and C denotes the set of closed frequent itemsets, then C ⊆ F. It is

generally believed that the cardinality of C is much less than F [Zaki2002].

Therefore, if closed frequent itemsets can be efficiently determined, then

identifying frequent itemsets is straightforward: for instance, given C, then F

consists of all possible subsets of the itemsets in C. Alternately, given C, we

can determine if an itemset N is frequent by checking if N is a subset of an

itemset in C. Recently, several algorithms for mining closed frequent

itemsets have been developed [Zaki2002, Bastide2000, Pei2000,

Burdick2001, Lin2003]. In our work, we study one of the algorithms ,Using

Attribute Value Lattice to Find Frequent Itemsets,[Lin2003] in depth. In the

next chapter, we describe the algorithm in detail.

 15

3. Attribute Value Lattice For Mining
Closed Frequent Itemsets

In this chapter, we describe the algorithm of Lin, Hu, and Louie [Lin2003]

that we have implemented for our work. We begin by describing some

preliminaries and then discuss the algorithm.

3.1 Data Representation

The transactions database can be viewed as a two-dimensional matrix: the

rows represent individual transactions and the columns represent items. For

designing data mining algorithms, the data can be represented in either a

horizontal view or a vertical view [Lin2003]:

• Horizontal view consists of representing each row with a unique

transaction identifier and a bitmap to represent the items involved

in the transaction. For example, if there could be 10 items

involved in a transaction, then the bit-string 1000100010 means

that items 1, 5, and 9 were involved.

• Vertical view consists of assigning a unique identifier to each

column (i.e., item) and a bitmap that represents the transactions in

which that particular item is involved. For example, if there are

 16

10 transactions that involve a particular item, then the bitstring

1000100010 means that transactions 1, 5, and 9 are involved.

In their paper, Lin et. al [Lin2003] suggest that a vertical representation is a

natural choice for mining frequent itemsets. This is because the vertical

representation allows operating on only those itemsets that are frequent.

Furthermore, for itemsets that are not frequent, their associated bitmap

representation can be discarded, thereby leading to a reduced memory

footprint. Consequently, Lin et. al use a vertical representation in their

algorithm.

In the literature the vertical representation of an item in the database is

known as a granule [Lin2000, Lin2002, Lin2003-2, Louie2000, Louie2000-

2]. The granule is implemented as a bitmap since it allows fast bit-

manipulation operations.

3.2 Frequent Itemsets and Lattice

A binary relation ⊕ that satisfies reflexive, symmetric, and transitive

relationships on a set Ρ is said to be a partial order [Press]. That is, ∀ a, b, c

∈ Ρ,

 17

• Reflexive: a ⊕ a

• Symmetric: a ⊕ b ∧ b ⊕ a ⇒ a= b

• Transitive: a ⊕ b ∧ b ⊕ c ⇒ a ⊕ c

The set Ρ under the relation ⊕ is a partially ordered set (commonly referred

to as poset). It is also well known that a poset can be represented as a

directed acyclic graph in which the nodes are elements from the set and a

path exists from a to b if and only if a ⊕ b. A poset is as a lattice if all non-

empty finite subsets have a greatest lower bound and a least upper bound.

Let S ⊆ Ρ and u, l ∈ Ρ. Then,

• u is the least upper bound if and only if, ∀s ∈ S, s ⊕ u

• l is the greatest upper bound if and only if, ∀s ∈ S, l ⊕ s

In terms of frequent itemset mining algorithms, the set consisting of granules

from the database with the ⊆ relationship defined on the bitmaps is a partial

order. To illustrate, if a, b, c are granules from the database, then it is easy

to see that,

• Reflexive: a ⊆ a

• Symmetric: a ⊆ b ∧ b ⊆ a ⇒ a= b

• Transitive: a ⊆ b ∧ b ⊆ c ⇒ a ⊆ c

 18

If we restrict the set of granules to those corresponding to frequent itemsets,

then that set under the ⊆ relation is a lattice. If we represent the lattice as a

directed acyclic graph, then a path in the graph from a node that is a least

upper bound to a node that is a greatest upper bound identifies a closed

frequent itemset: the nodes (i.e., items) in the path are the members of a

closed frequent itemset.

3.3 The Algorithm

Briefly, in designing their algorithm, [Lin2003] first construct a lattice of

attribute values with the granules that correspond to frequent itemsets.

Subsequently, they use the lattice to identify closed frequent itemsets. They

do so by generating candidate itemsets from the lattice in a bottom-up

breadth-first approach. During candidate generation, the algorithm uses the

transitive property of the lattice to prune redundant frequent itemsets that do

not result in new closed frequent itemsets. The algorithm, therefore, has two

phases:

1. Phase 1 consists of constructing the attribute value lattice

2. Phase 2 consists of exploring the lattice to determine closed frequent

itemsets.

 19

3.3.1 Constructing the Lattice

The procedure for constructing an attribute value lattice for items in a

database D is shown in Figure 4 below.

The main idea behind this phase of the algorithm is as follows. The database

is parsed to get a bitmap for each frequent itemset in the database. Initially

the level of each of the itemsets is set at 1. Nodes are constructed, such that

each node stores the level and its corresponding bitmap. The nodes we are

interested in are only those whose cardinality is greater than minsup. The

nodes are sorted based on the bitcount in descending order. These are placed

in a priority queue where the priority is set as (2
L
)*B, where L is the level

and B is the bitcount.

The nodes constructed above are then traversed to obtain the attribute value

lattice. For traversal, the set of nodes are ordered based on the bitcount.

Every node is compared with each node following it and this leads to the

generation of the attribute value lattice. The bitmap of the node (I) is

intersected with the bitmap of the nodes (J) following it. If such an

intersection yields a bitmap whose cardinality is greater than the minsup,

then the node (I) is compared with the node (J) in one of three ways.

 20

As outlined in the paper [Lin2003], the three cases are:

1. if B(Ii) = B(Ij) , then B(Ii ∪ Ij) = B(Ii) ∩ B(Ij) = B(Ii) = B(Ij)

[Lin2003]. Consequently, Ii can be replaced by Ii ∪ Ij . Ij is no longer

used for the algorithm as it has the same closure as Ii ∪ Ij.

2. if B(Ii) ⊂ B(Ij), then B(Ii ∪ Ij)= B(Ii); however, B(Ii) ≠ B(Ij)

This implies that an edge can be drawn from Ii to Ij because they

always occur together. However, since the bitmaps B(Ii) ≠ B(Ij)

differ from each other, unlike the previous case, Ij would have a

different closure and removing Ij will cause the algorithm to lose some

closed frequent itemsets.

3. if B(Ii) ⊃ B(Ij), then B(Ii ∪ Ij)= B(Ii); however, B(Ii) ≠ B(Ij). This is

similar to the previous case, except that an edge is created from Ij to Ii.

 21

This pseudo code has been taken verbatim from [Lin 2003].

Figure 4 Constructing Attribute Value Lattice

 Phase One()

1. Construct the bitmap B(I) for each frequent itemset (I) in the

database.

2. Set level number L of each I to 1

3. Construct the set of nodes, N, that contains I, L and B(I) where

B(I) > minSup

4. Sort the nodes based on level and bitcount . Have these in a priority

queue where the priority is set as (2
L
)*B(I).

5. For each node Ii in Nodes

5.1 For each sibling Ij after Ii in Nodes

5.1.1 I = Ii ∪ Ij and Bcomb = B(Ii) ∩ B(Ij)

5.1.2 If Bcomb > minSup

5.1.2.1 If B(Ii) = B(Ij)

 5.1.2.1.1 Remove Ij from Nodes

 5.1.2.1.2 Replace all Ij with I (i.e Ii ∪ Ij)

5.1.2.2 Else, if B(Ii) ⊂ B(Ij)

 5.1.2.2.1 Create an edge from Ii to Ij

 5.1.2.2.2 Lj = Max (Lj, Li + 1)

5.1.2.3 Else, if B(Ij) ⊂ B(Ii)

 22

We illustrate the steps in the algorithm using the example from Figure 1.

With a minsup of 3, we have:

• B(A) = 1011100000

• B(D) = 0101110000

• B(T) = 1010110000

• B(K) = 0000111100

• B(Q) = 0000001111

N = {}

C = {}

Iteration 1:

I = {AD}

Bcomb = 0001100000

| Bcomb| = 2 < 3.

//N contains A’s parents

N = {WC}

Iteration 2:

I = {AT}

Bcomb = 101010000

| Bcomb| = 3

N = {AD}

 23

Figure 4 shows resulting the lattice that corresponds to the sample database

from Figure 1. For this lattice, we used a minsup of 3 (i.e., an item appears

in 30% of the transactions).

Figure 5 Attribute Value Lattice

3.3.2 Identifying Closed Frequent Itemsets

The procedure for identifying closed frequent itemsets from the lattice is

shown in Figure 6 below. In this phase of the algorithm, we build on the

lattice by using the set of nodes at the same level for candidate generation:

the nodes are sorted in decreasing order of bitcount; each node is combined

with its siblings in a breadth-first manner. Then, expansion is performed on

the set of candidates in increasing order of levels in a bottom-up approach.

A D T

C

W RH

QK

 any

 24

That is, starting with the level-1 leaf nodes of the lattice corresponding to the

set of frequent itemsets.

We describe the workings of the algorithm using the attribute value lattice

from Figure 5. The algorithm starts with nodes in the order A, D, T, K, Q.

Next, when AD is combined, we find that AD is not-frequent. Since WD

could be frequent, the algorithm adds W to the set of nodes for next round

expansion. The algorithm then considers AT, AK, AQ in that order. After

the siblings of A are exhausted, the algorithm then considers DT, DK, DQ in

that order and so on. Since A, D, T, K, Q are frequent itemsets, they are

added to F. After level-1 nodes are exhausted, the algorithm then uses the

level-2 nodes for next round of expansion. This process continues until

there are no further nodes for expansion.

This expansion phase of the algorithm could be viewed as augmenting the

lattice with additional frequent itemsets constructed using the nodes of the

lattice itself. At the end of this phase, we have the lattice setup for finding

the closed frequent itemsets: To illustrate, as pointed out earlier, let us use

the directed acyclic graph view of the lattice. Then, a path in the graph from

the leaf node to the root represents a closed frequent itemset. The overall

 25

procedure that combines the various phases and returns the set of closed

frequent itemsets is shown in Figure 7.

Figure 6 Revised Algorithm

Procedure ExpandFreqItemSet(Nodes, minsup)

1. For every node Ii ∈Nodes

1.1 NewNodes = Ø, I = Ii

1.2 For each sibling Ij after Ii in Nodes

1.2.1 I = Ii ∪ Ij and Bcomb = B(Ii) ∩ B(Ij)

1.2.2 If Bcomb > minSup

1.2.2.1 Add I x Bcomb to the NewNode

1.2.3 Else add Ii’s parents to the NewNode

1.3 F = F ∪ I

2. If NewNodes ≠ Ø, then ExpandFreqItemSet(NewNodes, minsup)

 26

Figure 7 Procedure for Finding Closed Frequent Itemsets

3.4 Issues In Implementing the Algorithm

We faced the following issues in implementing the algorithm:

1. In Phase 1, the sorting of the nodes was just based on the cardinality

of the bitmaps as defined in the paper. We modified this to include

both the level and the cardinality and set this to (2
L
)* B. This will

improve the speed of the algorithm because the new nodes are not

added to the end of the list. Instead, it is inserted based on a priority

and therefore can be fetched faster.

2. The indentation of the algorithm for Phase 2 was incorrect. In

particular, line 8 should be in the loop of statement 2; in the pseudo-

code in the paper, it is outside the loop (see Figure 8).

Main()

1. C = { } // set of closed frequent itemsets

2. F = { } // set of frequent itemsets

3. Construct attribute value lattice (i.e., Phase one)

4. Expand frequent itemsets (i.e., Phase 2)

5. For every node Ii ∈ F, add the ancestor set of Ii to C

 27

3. The specification for Phase 2 of the algorithm in the paper by

[Lin2003] is imprecise. For instance, in the original specification, line

3 says “continue the expanding”, when it actually means a recursive

call to a procedure. The specification presented in Figure 6 addresses

the issues.

This pseudo code has been taken verbatim from [Lin 2003].

Figure 8 Original Algorithm

1. Nodes = all the greatest lower bounds items of the lattice

2. For every node Ii in Nodes

2.1 NewNodes = Ø, I = Ii

2.2 For each sibling Ij after Ii in the nodes

2.2.1 I = Ii ∪ Ij and Bcomb = B(Ii) ∩ B(Ij)

2.2.2 If | Bcomb | > minsup

2.2.2.1 Add I* Bcomb to the NewNode

2.2.3 Else

2.2.3.1 Add I’s parents to the NewNode

2.2.4 If NewNodes ≠ Ø, then continue the expanding

3. /* expand the frequent nodes */

4. C= C ∪ I

5. For every node Ci ∈ C, replace it by its ancestor set

 28

4. In line 1.2.2.1, we add I * Bcomb to the set of nodes for expansion.

However, the specification does not define what the parents of the

newly combined node should be. This is noteworthy because the

parents of a node are used to identify additional frequent itemsets.

We addressed this issue by setting the parent of a combined node I to

be P(Ii) U P(Ij).

5. In line 1.2.2.1, we add Ii’s parents to the set of nodes for expansion.

Observe that, the specification does not include Ij in that set. This

could have the effect of not generating some closed frequent itemsets

from the algorithm. For instance, for the lattice in Figure 5, if AD is

not frequent, then only W is added to the new node set, but D is not.

As a result, the algorithm does generate WD as a candidate frequent

itemset (note that, it is possible that WD is a frequent itemset). In our

implementation, we considered Ij to the new node set. For some

datasets explored in our work, adding Ij significantly increased the

running time of the algorithm to the point that the algorithm continued

to execute for several hours without terminating. Hence, we did not

change this line of the algorithm in our implementation. That is, we

implemented this line of the algorithm as specified in the paper

[Lin2003].

 29

4. Experimental Evaluation

4.1 Implementation

We implemented the algorithm described in the previous chapter using the

Java programming language. In addition to Java classes for implementing

the algorithm, we implemented helper classes for doing buffered I/O and fast

bit-manipulation operations. The Java classes used for this algorithm are

the following: lattice.java, NodeInfo.java, ItemSetInfo.java, and

AttrValueLattice.java. The helper classes for this include BitClass.java,

DiskReader.java, and Timer.java. Details of the Java classes are as follows:

BitClass.java:

For constructing granules using bitmaps, we had two choices: use Java’s

BitSet class or develop a custom implementation given the characteristics of

our dataset. For common bit manipulation operations such as “and”, “or”,

“cardinality”, “set”, and “clear”, we timed the native implementation and our

implementation and for the most part, our implementation was faster than

Java’s BitSet class.

 30

DiskReader.java:

This program simulates disk-reads by reading in data from a file into

memory in 4K chunks. The 4K chunk of data in memory is used to build the

Granular model directly. Once this is built, the next 4K chunk is fetched

from disk. This ensures that we use memory judiciously, especially when we

are dealing with large datasets.

ItemSetInfo.java:

This program implements the data structure for holding the bitmaps

corresponding to each unique value in a column.

Algorithm.java:

In this program, we set a variable maxValsPerColumn that keeps track of the

maximum number of (n – 1) large itemsets before we move on to n – large

itemsets. Limiting the number of (n-1) large itemsets is beneficial because

we can index into an array to generate the n large array by intersecting the

(n-1) large and 1-large itemsets. This array is a two dimensional array in

which the first dimension keeps track of which large itemset we are building

and the second dimension keeps track of the values obtained by intersecting

2 columns. This dimension has a maximum index which limits how many

 31

values we generate. Though limiting the number of values hinders

completeness of results, it ensures better scalability by reducing memory

usage.

Lattice.java:

This is the driver class and reads from an input file. An object of the class

AttrValueLattice is instantiated here which then makes the bitmap, makes

the nodes based on the minSup, combines nodes and finds the closed

frequent itemsets.

AttrValueLattice.java:

This class implements both phases of the lattice algorithm as elicited by the

pseudocode shown in Figure 4, Figure 5 and Figure 6. The main functions of

this class is to MakeNodes (to create nodes with their bitcount and parent

information), CombineNodes (to combine a pair of nodes by intersecting

their bitmaps and taking a union of their set of parents), ExpandItemSets (for

generating candidate frequent itemsets), and FindClosedFrequentIemSets.

 32

4.2 Experimental Setup

The experiments were done on an Apple Powerbook laptop with 1GB RAM.

The input file for each experiment was stored on the laptop’s disk (i.e., local

disk). Data was read in from disk for building the bitmaps when

constructing the lattice and then discarded. This helped reduce the memory

footprint for our implementation.

4.3 Data Characteristics

In this thesis, we study the performance of the algorithm using synthetic

data. We model the occurrence of an item in a transaction based on

mathematical distributions. For each distribution, we generate a dataset that

consists of numbers to represent items, where the numbers are based on the

distribution. That is, when items in the database are modeled using a

particular distribution, this means that the probability of an item being in a

transaction depends on the characteristics of that distribution. Since the size

of the dataset could have an impact on the running time of the algorithm, we

also study the performance of the algorithm for datasets of varying sizes.

The distributions we considered in our work are:

 33

• Normal distribution: The probability density function (Figure 9) for

the normal distribution is :

 [Wikipedia]

• Exponential distribution: The probability density function for this (

Figure 10)distribution is: F(x ; λ) = λe-λx , when x >=0 and 0 when x

< 0 [Wikipedia]

• Zipf distribution: The Zipf law was proposed by a Harvard

University linguist George Zipf. This law was put forth as it applied

to language, i.e., the frequency of some words in any language is

much higher than the frequency of others. When such a frequency is

plotted against the rank of such a parameter, the rank and frequency

become inversely proportional. Another observation typical of such a

dataset is that, when drawn to logarithmic scales, the most frequently

occurring and the least frequently occurring data lie close to the axes

of the graph. Zipf’s law (Figure 11) is given by the following:

F(k; s, N) = (1 / k
s
) / (ΣNn=1 1 /n

s
) where,

N is the number of elements, k is the rank, and s is the exponent

characterizing the distribution [Wikipedia].

F(x;µ,σ) = 1/σ √(2∏) e(-(x-µ))/((2σ)))
2 2

 34

 Figure 9 Normal Distribution [Wkipedia]

 Figure 10 Exponential Distribution [Wikipedia]

 Figure 11 Zipf Distribution [Wikipedia]

 35

4.4 Results

For each distribution, there are two parameters that impact the running time

of the algorithm:

1. Input data size: What is the impact of increasing the dataset size

2. Minsup value: How does changing the minsup affect the running

time

In our results, we present the running times and also show the line of best fit

for the data. Also, we present the number of closed frequent itemsets

identified by the algorithm.

Non-linear regression was used for fitting the curves in Figures 12 - 19. We

used GraphPad Prism Software version 4.03 [Trial], February 02, 2005.

GraphPad Software is located at San Diego USA, www.graphpad.com.

 36

4.4.1 Normal Distribution

R
u
n
 T
im
e
 (
s
)

Normal data

0 2500 5000 7500 10000 12500 15000
0
50
100
150
200
250
300
350
400
450
500
550
600
650

Run Time in 's'

File Size (kb)

File Size run Time in ‘s’
closed frequent
itemsets minSup

2996.495 144.357 2124 12

3603 171.415 2101 14

5404.5 359.627 2111 73

7206 395.822 2207 97

12010.05 579.319 2119 100

Figure 12 Run Time Vs File Size – Normal Data

Best-fit values

 Slope 0.04767 ± 0.007099

 Y-intercept when X=0.0 32.47 ± 49.93

 X-intercept when Y=0.0 -681.2

 1/slope 20.98

95% Confidence Intervals

 Slope 0.02508 to 0.07026

 Y-intercept when X=0.0 -126.4 to 191.3

 X-intercept when Y=0.0 -7263 to 1890

Goodness of Fit

 r² 0.9376

 Sy.x 51.38

F(x;µ,σ) = 1/σ√(2∏) e(-(x-µ))/((2σ))) [Wikipedia] 2 2

 37

normal-samesize (file size = 7206 kB)

90.0 92.5 95.0 97.5 100.0 102.5 105.0
0

100

200

300

400

500

600

Run Time in 's'

R
u
n
 T
im
e
 (
s
)

minSup

minSup run Time 's'

100 120.145

98 224.437

97 301.506

96 395.822

95 527.39
Figure 13 Run time Vs Minsup – Normal Data

Best-fit values

 Slope 0.04767 ± 0.007099

 Y-intercept when X=0.0 32.47 ± 49.93

 X-intercept when Y=0.0 -681.2

 1/slope 20.98

95% Confidence Intervals

 Slope 0.02508 to 0.07026

 Y-intercept when X=0.0 -126.4 to 191.3

 X-intercept when Y=0.0 -7263 to 1890

Goodness of Fit

 r² 0.9376

 Sy.x 51.38

The graphs are shown in Figure 12 and Figure 13. From the figures, we

make the following observations:

 38

1. As we increase the size of the input dataset, the running time increases

almost linearly.

2. As we increase the minsup value, for a given dataset, running time

decreases. This is to be expected because as minsup is increased, the

number of frequent itemsets decreases. Conversely, for a given

minsup, as we increase the size of the dataset, the number of closed

frequent itemsets increases. This is also expected----as the size of

dataset increases, there are more transactions, and hence, the number

of frequent itemsets increases.

 39

4.4.2 Exponential Distribution

Exponential data

0 250 500 750 1000 1250 1500 1750 2000
0

100

200

300

400

500

600

Run Time in 's'

File Size (kB)

R
u
n
 T
im
e
 (
s
)

File Size ’kB’ run Time ‘s’
closed frequent
itemsets minSup

395.317 19.294 1267 20

790.526 67.599 1900 20

890.821 138.392 1978 20

1430.603 342.775 3198 20

1670.086 534.528 3968 20
Figure 14 Run Time Vs File Size – Exponential Data

Exponential growth

Best-fit values

 START 18.54

 K 0.002019

 Doubling Time 343.3

Std. Error

 START 5.400

 K 0.0001848

95% Confidence Intervals

 START 1.360 to 35.73

 K 0.001431 to 0.002607

 Doubling Time 265.9 to 484.4

Goodness of Fit

 Degrees of Freedom 3

 R² 0.9898

 Absolute Sum of Squares 1871

 Sy.x 24.98

 40

expData-samefile (file-size = 890.821 kB)

10 20 30 40 50-500000.0

0.0

500000.0

1000000.0

1500000.0

2000000.0

2500000.0

3000000.0

3500000.0

4000000.0

4500000.0

RunTime in 's'

R
u
n
 T
im
e
 (
s
)

minSup

minSup runTime ‘s’

40 5

30 90

35 1530

30 13603

25 67599

20 207478

15 543597

Figure 15 Run Time Vs Minsup – Exponential Data

F(x ; λ) = λe-λx [Wikipedia]

One phase exponential decay

Best-fit values

 SPAN 3.870e+006

 K 0.1946

 PLATEAU -7627

 HalfLife 3.561

Std. Error

 SPAN 266957

 K 0.006876

 PLATEAU 4133

95% Confidence Intervals

 SPAN 3.129e+006 to 4.611e+006

 K 0.1755 to 0.2137

 PLATEAU -19100 to 3845

 HalfLife 3.243 to 3.948

Goodness of Fit

 Degrees of Freedom 4

 41

 R² 0.9993

 Absolute Sum of Squares 1.814e+008

 Sy.x 6735

The graphs are shown in Figure 14 and Figure 15. From the figures, we

make the following observations:

1. As we increase the size of the input dataset, the running time increases

exponentially.

2. As we increase the minsup value, for a given dataset, running time

decreases with an exponential decay. The reasons for this are similar

to the behavior of normal distribution dataset:

a. For a given dataset, as we increase minsup, the number of

closed frequent itemsets decreases.

b. For a given minsup, as we increase the size of input data, the

number of closed frequent itemsets increases.

 42

4.4.3 Zipf Distribution

Zipf-runtime

0 10002000300040005000600070008000900010000
-500

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

Run Time in 's'

R
u
n
 T
im
e
 (
s
)

File Size (kB)

file size in kB time in s
closed freq-
itemsets minSup

33.925 0.071 1 10

67.979 0.105 6 20

136.163 0.12 9 30

635.486 568.612 50 200

879.23 1760.606 60 400

1099.067 1847.93 70 500

8971.779 2257.052 152 750
Figure 16 Run Time Vs File Size – Zipf Data

Polynomial: Second Order (Y=A + B*X + C*X
2
)

Best-fit values

 A -202.4

 B 2.058

 C -0.0001989

Std. Error

 A 180.0

 B 0.3157

 C 3.378e-005

95% Confidence Intervals

 A -702.2 to 297.3

 B 1.182 to 2.935

 C -0.0002926 to -0.0001051

Goodness of Fit

 Degrees of Freedom 4

 R² 0.9450

 Absolute Sum of Squares 330808

 Sy.x 287.6

 43

Zipf-same file (file-size=136.163 kB)

10 20 30 40

-100

0

100

200

300

400

Run Time in 's'

R
u
n
 T
im
e
 '
s
'

minSup

minsup Run Time

5 68.686

10 13.032

13 4.648

15 0.866

20 0.21

30 0.12
Figure 17 Run Time Vs Minsup – Zipf Data

F(k; s, N) = (1 / k
s
) / (ΣNn=1 1 /n

s
) [Wikipedia]

One phase exponential decay

Best-fit values

 SPAN 363.3

 K 0.3318

 PLATEAU -0.4363

 HalfLife 2.089

Std. Error

 SPAN 25.01

 K 0.01425

 PLATEAU 0.5399

95% Confidence Intervals

 SPAN 283.8 to 442.9

 K 0.2865 to 0.3771

 PLATEAU -2.154 to 1.282

 HalfLife 1.838 to 2.420

Goodness of Fit

 Degrees of Freedom 3

 44

 R² 0.9995

 Absolute Sum of Squares 1.909

 Sy.x 0.7978

The graphs are shown in Figure 16 and Figure 17. From the figures, we

make the following observations:

1. As we increase the size of the input dataset, the running time increases

and then stabilizes. This is because of the characteristics of Zipf data:

there are very few unique values in a Zipf distribution; as we increase

the dataset the number of itemsets for a given minsup stabilize and

hence, there is not a noticeable increase in running time.

2. As we increase the minsup value, for a given dataset, running time

decreases as an exponential decay. This is again due to the

characteristics of the Zipf distribution.

4.5 Discussion

Of the three distributions we studied, our results showed that Zipf data

performs better compared to the other two. This is because with Zipf-

distributed data, the numbers are clustered around a few values (i.e., very

few items in the database appear in most of the transactions). On the other

hand, with the remaining distributions, the data is unlikely to be clustered.

For instance, with normal distribution, every item can appear in every

 45

transaction with uniform probability. As a result, the number of frequent

itemsets for such distributions can be large.

While the procedure for finding closed frequent itemsets tries to provide

accurate answers, there are datasets for which the running time is

exponential. Rather than obtain accurate answers, it may be worthwhile to

obtain an approximate answer and then refine the search. For example,

suppose there is a merchant who sells millions of items. To answer a query

such as, find the top hundred frequently bought items, we need to determine

closed frequent itemsets over the data with a minsup of 100. If such a set is

large, we could instead represent the data into categories and then try to find

the top n-categories. From such a frequent category set, we could find the

desired closed frequent itemsets. Note that this procedure is lossy: since we

are restricting the search to the top categories, we may miss closed frequent

itemsets that are not in the top categories. Procedures such as the one

outlined in this example are data binning techniques.

Of the distributions studied, Zipf distribution has polynomial run-time and is

faster than the other two. Hence, we develop a method to bin data such that

the resulting binned data resembles a Zipf distribution. We illustrate our

 46

ideas using an example. Consider data from a normal distribution that is

binned into bins of equal width. We construct a histogram from the data for

each bin. We then place histogram buckets with the same frequency into the

same bin. The resulting distribution is like Zipfian.

To apply our idea to input data, we use Chi-square test [Press] to see which

distribution the data matches closely. That is, we evaluate column-wise (i.e.,

granule) the characteristics of the input data. For each column, we compute

a chi-square for the distribution for that column using non-linear least

squares method of Levenberg-Marquardt. The recipe for this procedure is

defined in pages 683 - 687 of the Numerical Analysis text [Press]. The

resulting chi-square value is compared to the chi-square of known

distributions such as Normal, Exponential, and Zipf to identify degree of

similarity. Then, if the data resembles exponential or normal distribution,

binning is required. For Zipf data, binning is not required---as our results

showed, the running time of the algorithm for Zipf distribution is

polynomial.

The procedure for binning the data is as follows. From the input data, we

construct a histogram for each granule. For the histogram, we divide the

 47

data into uniform sized bins of a given bin width. We then make another

pass over the data and for each input value, we compute the logarithm of the

frequency of its bin. Now, if this computed value is above a threshold, this

computed value is used to represent the data; otherwise, the original value is

used as is. This has the effect of transforming the data from a large set of

values to a few values and thereby mimics Zipf data. As a result of binning

in this manner, the number of level-1 nodes in the lattice is significantly

reduced.

As proof of concept, we performed experiments using two used sets of data

for binning. First, we use data from exponential distribution as input to the

binning procedure. The procedure identifies the data as being exponentially

distributed (as expected) and we then bin it. This experiment serves to

validate our binning procedure i.e., provide input from known distribution

and it should be mapped to the same distribution. Second, we then apply the

procedure to a “mixed” data set---one that contains data from both

exponential and Zipf. As expected, the procedure only bins columns that

belong to the exponential distribution. The results are explained in the next

section.

 48

4.6 Results

4.6.1 Exponential binned data

From the figures, we make the following observations:

1. As we increase the size of the input dataset, the running time is nearly

constant: This is very similar to the results of the Zipf distribution.

2. As we change the minsup value, for a given dataset, running time

decreases rapidly (again, very similar to that of the Zipf distribution).

This experiment serves to verify our methodology: our idea was transform

the input data to something that mimics Zipf distribution and thereby reduce

running time of the algorithm. These graphs validate our ideas. We now

consider mixed data sets: data sets that contain a mix of Zipf, normal, and

exponentially distributed data. We apply our methodology and bin only the

columns in the input dataset that closely resemble either normal or

exponentially distributed data based on the procedure outlined in the

previous section. Our results follow.

 49

4.6.1.1 Binned Exponential Data

Binned Exponential

750 1000 1250 1500 1750 2000
3150
3200
3250
3300
3350
3400
3450
3500
3550
3600
3650
3700
3750
3800
3850
3900
3950

Run Time in 'ms'

File Size (kB)

R
u
n
 T
im
e
 (
m
s
)

File Size 'kB' run Time 'ms'

790.526 3723

890.821 3472

1430.603 3379

1670.086 3371
Figure 18 Run Time Vs File Size – Binned Exponential Data

Best-fit values

 Slope -0.3191 ± 0.1565

 Y-intercept when X=0.0 3868 ± 195.7

 X-intercept when Y=0.0 12120

 1/slope -3.134

95% Confidence Intervals

 Slope -0.9927 to 0.3545

 Y-intercept when X=0.0 3025 to 4710

 X-intercept when Y=0.0

Goodness of Fit

 r² 0.6750

 Sy.x 114.8

 50

4.6.2 Mixed Data

The results for the mixed data sets without binning are shown in Figure

From the graphs in Figure 19, Figure 20, Figure 23 and Figure 24, we make

the following observations:

1. As we increase minsup, running time decreases. This is to be

expected as there is a decrease in the number of closed frequent

itemsets.

2. As we increase the size of the input dataset, the running time of the

algorithm increases. The rate of increase depends on the input

distribution: For instance, if the input data is a mix of Zipf and

Normal distributions, the rate of decrease is similar to that of the

normal distribution. A similar result holds for a mix of Zipf and

exponentially distributed dataset.

The results for three mixed data sets with binning are shown in Figure 21,

Figure 22, Figure 25 and Figure 26. From the graphs, we make the following

observations:

1. As we increase minsup, running time decreases. This is to be

expected as there is a decrease in the number of closed frequent

itemsets.

 51

2. As we increase the size of the input dataset, the running time of the

algorithm is nearly constant. That is, the results are very similar to

that of the Zipf distribution. Since our procedure only bins data in the

columns corresponding to either Exponential or Normal distribution,

the transforms the input dataset to a dataset that closely resembles

Zipf distribution.

4.6.2.1 Unbinned Zipf Exponential Data

Zipf-Exp

0 100 200 300 400 500 600 700 800 90010001100
0

100

200

300

400

500

600

700

800

900
time in s

file size in kB

R
u
n
 t
im
e
 i
n
 s

file size
in kB time in s

closed
freq.itemsets minSup

57.552 1 1 7

104.127 2.22 155 10

214.33 4.346 138 18

306.008 11.609 991 30

675.213 50.213 1100 75

987.08 854.138 95 250

Figure 19 Run Time Vs File Size – Zipf Exponential Data (Unbinned)

Exponential growth

Best-fit values

 START 0.1153

 52

 K 0.009027

 Doubling Time 76.79

Std. Error

 START 0.03789

 K 0.0003332

95% Confidence Intervals

 START 0.01012 to 0.2205

 K 0.008102 to 0.009952

 Doubling Time 69.65 to 85.55

Goodness of Fit

 Degrees of Freedom 4

 R² 0.9998

 Absolute Sum of Squares 113.5

 Sy.x 5.328

zipf-exp (file-size = 214.440kB)

11 12 13 14 15 16 17 18 19 20 21
0

10

20

30

40

50

60
run time in 's'

min Sup

ru
n
 t
im
e
 i
n
 '
s
'

min Sup
run time in

's'

12 55.415

13 33.085

15 10.009

18 4.346

19 2.547

20 1.482
Figure 20 Run Time Vs Minsup – Zipf Exponential Data (Unbinned)

One phase exponential decay

Best-fit values

 SPAN 49833

 K 0.5685

 53

 PLATEAU 1.433

 HalfLife 1.219

Std. Error

 SPAN 23793

 K 0.03986

 PLATEAU 0.8443

95% Confidence Intervals

 SPAN -25880 to 125542

 K 0.4417 to 0.6953

 PLATEAU -1.254 to 4.119

 HalfLife 0.9968 to 1.569

Goodness of Fit

 Degrees of Freedom 3

 R² 0.9983

 Absolute Sum of Squares 4.112

 Sy.x 1.171

4.6.2.2 Binned Zipf Exponential Data

zipf-exp-binned

0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8

9

10

11
time in 's'

file-size in kB

ru
n
 t
im
e
 i
n
 '
s
'

file-size
time in
's'

closed
freq.itemsets minSup

37.468 0.065 1 7

74.169 0.2497 1 10

148.366 0.1 1 18

236.316 5.44 1 30

550.213 7.2 1 75

783.48 9.34 1 250
Figure 21 Run Time Vs File Size – Zipf Exponential Data (Binned)

 54

Best-fit values

 Slope 0.01302 ± 0.002379

 Y-intercept when X=0.0 -0.2386 ± 0.9718

 X-intercept when Y=0.0 18.33

 1/slope 76.81

95% Confidence Intervals

 Slope 0.006416 to 0.01962

 Y-intercept when X=0.0 -2.936 to 2.459

 X-intercept when Y=0.0 -333.8 to 171.8

Goodness of Fit

 r² 0.8822

 Sy.x 1.584

zipf-exp-binned (file-size=783.480 kB)

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000
run time in 's'

min Sup

ru
n
 t
im
e
 i
n
 '
s
'

Figure 22 Run Time Vs Minsup – Zipf Exponential Data (Binned)

One phase exponential decay

Best-fit values

 SPAN 4596

 K 0.04192

 PLATEAU 0.8708

 HalfLife 16.54

Std. Error

min Sup
run time in
's'

100 70.358

150 9.346

200 2.245

250 0.74

 55

 SPAN 592.2

 K 0.001315

 PLATEAU 0.3484

95% Confidence Intervals

 SPAN -2929 to 12121

 K 0.02521 to 0.05862

 PLATEAU -3.555 to 5.297

 HalfLife 11.82 to 27.49

Goodness of Fit

 Degrees of Freedom 1

 R² 0.9999

 Absolute Sum of Squares 0.1771

 Sy.x 0.4208

4.6.2.3 Unbinned Zipf Normal Data

Zipf-Normal

0 250 500 750 1000 1250
0

10

20

30

40

50

60
time in s

file size in kB

ru
n
 t
im
e
 i
n
 '
s
'

Figure 23 Run Time Vs File Size – Zipf Normal Data (Unbinned)

Exponential growth

Best-fit values

 START 0.0006259

file size
in kB

time in
s

closed
freq.itemsets minSup

64.516 0.05 1 10

128.934 0.083 10 20

228.947 0.235 14 30

500.23 0.75 20 70

850.34 2.4 35 120

1172.338 56.128 51 300

 56

 K 0.009728

 Doubling Time 71.26

Std. Error

 START 0.0003320

 K 0.0004527

95% Confidence Intervals

 START -0.0002959 to 0.001548

 K 0.008471 to 0.01098

 Doubling Time 63.10 to 81.83

Goodness of Fit

 Degrees of Freedom 4

 R² 0.9998

 Absolute Sum of Squares 0.5110

 Sy.x 0.3574

Zipf-normal (file-size=228.947 kB)

0 50 100 150 200 250
0

250

500

750

1000

1250

1500

1750
run time in 's'

min Sup

ru
n
 t
im
e
 i
n
 '
s
'

min Sup
run time in
's'

10 24.99

20 0.482

30 0.245

40 0.096

50 0.067

100 0.019

200 0.003
Figure 24 Run Time Vs Minsup – Zipf Normal Data (Unbinned)

One phase exponential decay

Best-fit values

 SPAN 1538

 57

 K 0.4123

 PLATEAU 0.08368

 HalfLife 1.681

Std. Error

 SPAN 391.7

 K 0.02553

 PLATEAU 0.04217

95% Confidence Intervals

 SPAN 450.6 to 2625

 K 0.3414 to 0.4832

 PLATEAU -0.03340 to 0.2008

 HalfLife 1.435 to 2.030

Goodness of Fit

 Degrees of Freedom 4

 R² 0.9999

 Absolute Sum of Squares 0.03510

 Sy.x 0.09368

4.6.2.4 Binned Zipf Normal Data

Zipf-Normal-binned

0 100 200 300 400 500 600 700 800 9001000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
time in s

file size in kB

ru
n
 t
im
e
 i
n
 '
s
'

file size
in kB

time in
s

Closed
freq.itemsets minSup

39.287 0.075 1 10

89.863 0.118 1 20

171.176 1.519 1 20

375.213 2.03 1 30

675.256 3.13 1 80

909.882 5.177 1 200
Figure 25 Run Time Vs File Size – Zipf Normal Data (Binned)

 58

Best-fit values

 Slope 0.005426 ± 0.0005855

 Y-intercept when X=0.0 -0.03618 ± 0.2892

 X-intercept when Y=0.0 6.668

 1/slope 184.3

95% Confidence Intervals

 Slope 0.003801 to 0.007051

 Y-intercept when X=0.0 -0.8389 to 0.7665

 X-intercept when Y=0.0 -187.6 to 127.9

Goodness of Fit

 r² 0.9555

 Sy.x 0.4579

Zipf-Normal binned (file-size = 89.863 kB)

1 2 3 4 5 6 7 8-100

0

100

200

300

400

500

600

700

800

900
run time in 's'

min Sup

ru
n
 t
im
e
 i
n
 '
s
'

min Sup
run time in
's'

3 130.005

4 96.243

5 0.788

6 0.085

7 0.048

Figure 26 Run Time Vs Minsup – Zipf Normal Data (Binned)

One phase exponential decay

Best-fit values

 SPAN 796.1

 K 0.5156

 PLATEAU -32.34

 HalfLife 1.344

Std. Error

 59

 SPAN 937.4

 K 0.4900

 PLATEAU 69.42

95% Confidence Intervals

 SPAN -3238 to 4830

 K 0.0 to 2.624

 PLATEAU -331.0 to 266.4

 HalfLife

Goodness of Fit

 Degrees of Freedom 2

 R² 0.8942

 Absolute Sum of Squares 1677

 Sy.x 28.96

4.7 Discussion

The experiments with binning show significant improvements in the running

time of the algorithm. For instance, without binning and with mixed data,

the running time of the algorithm increases at a rapid rate (either polynomial

or exponential); with binning, the running time is nearly constant (i.e., it is

very similar to the results of a Zipf distributed data). Note that binning only

provides an approximation to the number of closed frequent itemsets in the

input data. Using the results of binning, further analysis maybe performed

on a restricted set of the input data.

Without binning, exponential data has an exponential run time growth. With

binning, the run time becomes polynomial. So, we increase our chances of

arriving at the solutions of the lattice with binning. For mixed data, we found

 60

that we were not able to get the program to complete in less than an hours

time for unbinned data and hence had to terminate the run.

As pointed out earlier, it helps in determining trends in data. Since binning is

lossy, based on the results further analysis may be performed.

 61

5. Conclusion

In this thesis, we studied the problem of mining closed frequent itemsets in

large data repositories. We used the algorithm of [Lin2003] as the basis for

our implementation. As part of the implementation, we identified several

issues with the algorithm and proposed solutions for them. We then

implemented the algorithm and used it to a performance study. Our results

showed that for certain datasets (such as, dataset that is derived from an

exponential distribution), the running time of the algorithm grows

exponentially. To improve the running time of the algorithm, we developed

a novel mechanism for binning data. Our binning procedure transforms data

from exponential/normal distributions to Zipf distributed data. Our

experiments with the binned data showed significant performance

improvement: The running time of exponentially distribute data grows

exponentially; in contrast, the running time of the binned data is nearly

constant in the size of input.

Some possible future effort can build upon our work are:

• Suggestion server: For instance, consider the example we have used

in this thesis related to buying books. We can mine the set of

 62

transactions to identify the set of closed frequent itemsets

corresponding to authors whose books are frequently bought. This set

can be used as the basis for constructing a recommendation list.

Furthermore, whenever one of these authors writes a new book, that

book could be a candidate for inclusion in this recommendation list.

Other characteristics such as the quality of reviews can also be used as

candidate signals. Similar suggestions servers can be constructed for

other domains such as video rentals as well.

• Performance comparison: Compare the performance of the

algorithm we implemented with others published in the literature such

as Charm [Zaki2002], Closet[Pei2000], Mafia [Burdick2001],

Pascal[Bastide2000].

 63

6. References

[Ramakrishnan] R.Ramakrishnan and J.Gehkre. Fundamentals of Database

Systems.McGraw-Hill, 2002

[Molina] H.Garcia-Molina, J.Ullman, and J.Widom.Database System

Implementation.Prentice-Hall, 2000

[Agarwal1994] R.Agarwal, and R. Srikant. Fast Algorithms for Mining Association

Rules. Proc. Intl. Conf. on Very Large Databases. pp1522-1534.

[Lin2003] T.Y.Lin, X.T.Hu, and E.Louie.Using Attribute Value Lattice to Find Frequent

Itemsets. Data Mining and Knowledge Discovery: Theory,Tools and Technology.

2003.pp 28-36.

[Lin2002] T.Y.Lin, and Eric Louie. Finding Asscoiation Rules by Granular Computing:

Fast Algorithm for finding association rules. Data Mining, Rough Sets and Granular

Computing. 2002. pp 23 - 42.

[Zaki2002] M.J.Zaki, and C.Hsiao. CHARM: An Efficient Algorithm for Closed Itemset

Mining. Siam International Conference on Data Mining. 2002. pp 457 - 473.

[Bastide2000] Y.Bastide, R.Taouil, N.Pasquier,G.Stumme, and L.Lakhal. Mining

frequent patterns with counting inference. SIGKDD Explorations. 2000. pp 66 – 74.

[Press] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C. Cambridge University Press, 2002. pp 683 - 688.

[Brin1997] S.Brin, R.Motwani, J.Ullman, and S.Tsur. Dynamic itemset counting and

implication rules for market basket data. ACM SIGMOD Conf. Management of Data.

1997. pp.255—264.

[Sarasere1995] A. Sarasere, E. Omiecinsky, and S. Navathe. An efficient algorithm for

mining association rules in large databases. In Proc. 21st VLDB.1995. pp 432-443.

[Burdick2001] D.Burdick, M.Calimlim, and J.Gehrke. MAFIA: A maximal frequent

itemset algorithm for transactional databases. In ICDE, 2001. pp 443—452.

[Pei2000] J. Pei, J. Han, and R. Mao. CLOSET an efficient algorithm for mining frequent

closed itemsets. In Proceedings of the ACM SIGMOD Workshop on Research Issues in

Data Mining and Knowledge Discovery DMKD'00, Dallas, USA, May 2000. pp21—30.

[Bayardo1998] R. J. Bayardo. Efficiently mining long patterns from databases. In ACM

SIGFMOD Conf. Management of Data, June 1998.

 64

[Wikipedia]Wikipedia http://en.wikipedia.org

[Survey]Association Rule Mining.

www.cs.unc.edu/Courses/comp290-90f04/lecturenotes/associationrule1.pdf

