
A Fast Algorithm for

Data Mining

Aarathi Raghu

Advisor:

Dr. Chris Pollett

Committee members:

Dr. Mark Stamp, Dr. T.Y.Lin

Our Work

� Interested in finding closed frequent itemsets in

large databases

� Large body of work (papers published for over 15

years)

� In this thesis, build upon the work of Lin et. al.

� “Using Attribute Value Lattice to Find Closed

Frequent Itemsets”

� In particular, our contributions include …

Contributions

� Identify correctness issues with the algorithm
and re-wrote it for clarity

� Implement the algorithm and do a performance
study

� Identify implementation issues and propose
solutions

� Mechanisms for improving run-time for certain
data-sets – implemented a data checker and a
data binner

Talk Outline

� Background

� Algorithm

� Performance Evaluation

� Conclusions

Background

� We want to efficiently mine a large

database for frequently occurring patterns

�Example: Find the set of authors whose

books are frequently bought

� Prerequisites for an algorithm

�Computational efficiency

�Minimize number of database scans

Definitions

� Itemset (N): A set consisting of items from

the database . i.e., N ⊆ ϑ

� Support: Number of transactions in which

an itemset occurs as a subset.

� Minimum support: User specified level of

support . (minsup)

� Frequent itemsets: Itemsets that satisfy

minsup.

Identifying Frequent Itemsets

� Apriori (Agarwal and Srikant, 1994)
�Commonly cited algorithm in the literature

� Approach:
�Scan the database to identify frequent
itemsets of length 1

�From the frequent itemsets of length N,
generate candidates of size N+1 and test

�Stop when no new candidates are generated

Apriori

� The candidate-generation step governs
the computational efficiency

� Key insight: If itemset Ι is not frequent,
then any candidate that contains Ι is
guaranteed to be not frequent
�Known as downward closure lemma

� Use the downward closure lemma to
prune the candidate-set

Improving Upon Apriori

� Mine closed frequent itemsets.
�A frequent itemset N is said to be closed if
and only if there does not exist another
frequent itemset of which N is a subset.

� If F denotes the set of frequent itemsets
and C denotes the set of closed frequent
itemsets, then C ⊆ F.

� Generally, |C| << |F| (Zaki2002)

Mining Closed Frequent Itemsets

� Several algorithms developed recently:

�Charm, Pascal, Mafia,

� We study the algorithm of Lin et. al.

Talk Outline

� Background

� Algorithm

� Performance Evaluation

� Conclusions

Algorithm Overview

� Two phases for identifying closed frequent

itemsets:

�Phase 1: Construct a lattice of frequent

itemsets

�Phase 2: Mine the lattice in a bottom-up

breadth-first manner to identify closed

frequent itemsets

Preliminaries: Data Representation

� Data can be represented as:

�Horizontal view : represent each row with a

unique transaction identifier and a bitmap to

represent items in the transaction.

�Vertical view: represent each column with a

unique identifier and a bitmap to represent

transaction in which that item is involved.

Preliminaries: Data Rep. (II)

� Vertical representation allows operating

only frequent itemsets.

� Bitmaps of non-frequent itemsets can be

discarded leading to reduced memory

footprint.

� Vertical representation of an item in the

database is known as a “granule”.

Putting It All Together

� Represent lattice as a directed acyclic graph
(Phase one of the algorithm)

� Augment the dag with nodes from the dag itself
(Phase two of the algorithm)

� Construct closed frequent itemsets using paths
in the graph
� Start from node with in-degree 0

� Traverse a path in the graph until we reach a node
with out-degree 0

Phase One

Phase One

Phase Two

Apriori Characteristics

� Advantages:
�Works well for sparse
databases

� Sparse => Few
frequent itemsets

� Ease of
implementation

� Disadvantages:
� Pruning efficiency is
proportional to the number
of frequently occuring
itemsets:

� S is the set of frequent
itemsets.

� The number of subsets of
length k can potentially
grow exponentially in the
size of S.

� Number of database scans
depends on the length of
the longest frequent
itemset

Overall Procedure

� Main()

� C = { } // set of closed frequent itemsets

� F = { } // set of frequent itemsets

� Construct attribute value lattice (i.e., Phase1)

� Expand frequent itemsets (i.e., Phase 2)

� For every node Ii ∈ F, add the ancestor set of Ii
to C

Talk Outline

� Background

� Algorithm

� Performance Evaluation

� Conclusions

Experimental Setting

� Implemented the algorithm in Java

� Performed a set of experiments using

synthetically generated data

�Model the occurrence of an item in a

transaction using a mathematical distribution

�Distributions studied in our work:

� Normal, Exponential, Zipf

Types of Data sets

Normal distribution
Exponential distribution

Zipf Distribution

Running time of the Lattice

algorithm on Normal Unbinned

data
R
u
n
 T
im
e
 (
s
)

Normal data

0 2500 5000 7500 10000 12500 15000
0
50
100
150
200
250
300
350
400
450
500
550
600
650

Run Time in 's'

File Size (kb)

As we increase the file size, the running time increases linearly.

This distribution is therefore chosen for binning.

Run time of Lattice algorithm with

Exponential data and no binning
Exponential data

0 250 500 750 1000 1250 1500 1750 2000
0

100

200

300

400

500

600

Run Time in 's'

File Size (kB)

R
u
n
 T
im
e
 (
s
)

As we increase the file size, the running time increases

exponentially.

Granules that fall under this distribution are chosen for binning

experiments.

Running time of the Lattice

algorithm on Zipf Unbinned data

Zipf-runtime

0 10002000300040005000600070008000900010000
-500

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

Run Time in 's'

R
u
n
 T
im
e
 (
s
)

File Size (kB)

Running time increases logarithmically.

Running time flattens out.

Results

� Zipf data performed better than normal and
exponential

� With zipf-data, numbers are clustered around a
few values (few items appear in most of the
transactions).

� With remaining distributions, data is not
clustered.

� Running the lattice algorithm with large Zipf
datasets seems feasible.

Improving Running Time

� For non-Zipf data, running time of the

algorithm is high

� For such data, it maybe desirable to derive

trends about the data

� Key Idea: Use binning to transform non-

Zipf data into a more tractable form

Binning Procedure

� For each granule, use the Chi-square test to see

which distribution the granule matches closely

� For non-zipf granules:

� Divide data into uniform sized bins and construct

histogram

� If frequency of a bin exceeds a threshold, then all

data values for that bin are represented by the log of

the bin’s frequency

� Otherwise, values are represented as is

Transforming Normal

� Draw a figure that shows how normal

distribution is mapped to zipf distribution

Running time of the Lattice

algorithm on Zipf-Normal

Unbinned data

Unbinned data runs in exponential time as file size increases

We will later bin the granules that are “normal”

Running time of the Lattice

algorithm on Zipf Normal binned

data

Run time increases linearly with increasing file size.

Running time of the Lattice

algorithm on Unbinned

Exponential data

Exponential growth is seen with exponential data as file size increases.

Running time of the Lattice

algorithm on Exponential binned

data

The running time slows down and flattens out as file size increases.

Conclusions

� Built upon the algorithm of Lin et. al. for mining

closed frequent itemsets

� Identified issues with the algorithm and

proposed solutions

� Developed an implementation and did a

performance study

� Developed a novel binning mechanism to

improve the running time for certain datasets

Future work

� Build upon the algorithm using it in an e-

commerce application.

� Explore other binning techniques.

� Compare against other mining algorithms

such as Charm, Closet, Pascal (that also

mine for closed frequent itemsets).

Backup Slides

Result of Apriori

� Apriori provides good run-time performance
when length is small.

� Performance is impacted by:
� Pruning efficiency:Many frequently occuring patterns
=> pruning is less efficient.

If S consists of frequent itemset of length k, there
could be upto 2S – 2 candidates of length k+1 .
Computation is CPU bound.

� Number of database scans: proportional to the length
of the longest frequent itemset . In real world,
itemsets of length 30 or higher is typical

Phase Two

� Procedure ExpandFreqItemSet(Nodes, minsup)

� For every node Ii ∈Nodes
� NewNodes = Ø, I = Ii

� For each sibling Ij after Ii in Nodes

� 1.2.1 I = Ii ∪ Ij and Bcomb = B(Ii) ∩ B(Ij)
� 1.2.2 If Bcomb > minSup

� 1.2.2.1 Add I x Bcomb to the NewNode

� 1.2.3 Else add Ii‘s parents to the NewNode

� 1.3 F = F ∪ I

� If NewNodes ≠ Ø, then ExpandFreqItemSet(NewNodes,
minsup)

Overall Procedure

� Main()

� C = { } // set of closed frequent itemsets

� F = { } // set of frequent itemsets

� Construct attribute value lattice (i.e., Phase one)

� Expand frequent itemsets (i.e., Phase 2)

� For every node Ii ∈ F, add the ancestor set of Ii
to C

Binning Experiments

� Studied two types of data

�Exponential distribution

�Mixed data: Granules are a mix of Zipf and

Exponential distributions

Pre-Apriori : Example (Generating

candidates of length 2)

Apriori – Example (contd.)

(Generating candidates of length 2)

Preliminaries: Poset

� A binary relation ≤ that satisfies reflexive,

symmetric, and transitive relationships on a set Ρ
is said to be a partially ordered set (poset)

� Reflexive: a ≤ a

� Symmetric: a ≤ b ∧ b ≤ a ⇒ a= b

� Transitive: a ≤ b ∧ b ≤ c ⇒ a ≤ c

� Example: (Ν, ≤), where Ν is the set of natural
numbers

Preliminaries: Lattice

� A poset is a lattice if all non-empty finite
subsets have a greatest lower bound and
a least upper bound.

� Let S ⊆ Ρ and u, l ∈ Ρ. Then:
�u is the least upper bound if and only if, ∀s ∈
S, s ≤ u

� l is the greatest upper bound if and only if, ∀s
∈ S, l ≤ s

Putting It All Together

� The set of granules from the database with
the ⊆ relationship defined on the bitmaps
is a poset

� Set of granules for the frequent itemsets
under ⊆ relation is a lattice
�Greatest lower bound: Ø is a subset of all
frequent itemsets

�Least upper bound: Set formed by taking the
union of all the granules

Sample Attribute Value Lattice

A D T

C

W RH

QK

any

