A Fast Algorithm for

Data Mining

Aarathi Raghu
Advisor:
Dr. Chris Pollett
Committee members:
Dr. Mark Stamp, Dr. T.Y.Lin

Our Work

m Interested in finding closed frequent itemsets in
large databases

Large body of work (papers published for over 15
years)

m |n this thesis, build upon the work of Lin et. al.

“Using Attribute Value Lattice to Find Closed
Frequent Iltemsets”

m |n particular, our contributions include ...

" A
Contributions

m |dentify correctness issues with the algorithm
and re-wrote it for clarity

m Implement the algorithm and do a performance
study

m |dentify implementation issues and propose
solutions

m Mechanisms for improving run-time for certain
data-sets — implemented a data checker and a
data binner

Talk Outline

m Algorithm
m Performance Evaluation

m Conclusions

Background

m \We want to efficiently mine a large
database for frequently occurring patterns

Example: Find the set of authors whose
books are frequently bought

m Prerequisites for an algorithm
Computational efficiency
Minimize number of database scans

"
Definitions

m [temset (N): A set consisting of items from
the database .1.e., Nc 9

m Support: Number of transactions in which
an itemset occurs as a subset.

m Minimum support: User specified level of
support . (minsup)

m Frequent itemsets: Itemsets that satisfy
minsup.

" J
ldentifying Frequent ltemsets

m Apriori (Agarwal and Srikant, 1994)
Commonly cited algorithm in the literature

m Approach:

Scan the database to identify frequent
itemsets of length 1

From the frequent itemsets of length N,
generate candidates of size N+1 and test

Stop when no new candidates are generated

"
Apriori

m [he candidate-generation step governs
the computational efficiency

m Key insight: If itemset I is not frequent,
then any candidate that contains I is
guaranteed to be not frequent

Known as downward closure lemma

m Use the downward closure lemma to
prune the candidate-set

" I
Improving Upon Apriori

m Mine frequent itemsets.

A frequent itemset N is said to be closed if
and only if there does not exist another
frequent itemset of which N is a subset.
m If F denotes the set of frequent itemsets
and C denotes the set of closed frequent
itemsets, then C c F.

m Generally, |C| << |F| (Zaki2002)

Mining Closed Frequent ltemsets

m Several algorithms developed recently:
Charm, Pascal, Mafia,

m \We study the algorithm of Lin et. al.

I
Talk Outline

m Background

m Performance Evaluation

m Conclusions

Algorithm Overview

m Two phases for identifying closed frequent
itemsets:

Phase 1: Construct a lattice of frequent
itemsets

Phase 2: Mine the lattice in a
manner to identify closed
frequent itemsets

Preliminaries: Data Representation

m Data can be represented as:

Horizontal view : represent each row with a
unique transaction identifier and a bitmap to
represent items in the transaction.

Vertical view: represent each column with a
unique identifier and a bitmap to represent
transaction in which that item is involved.

Preliminaries: Data Rep. (ll)

m Vertical representation allows operating
only frequent itemsets.

m Bitmaps of non-frequent itemsets can be
discarded leading to reduced memory
footprint.

m Vertical representation of an item in the
database is known as a “granule”.

" I
Putting It All Together

m Represent lattice as a directed acyclic graph
(Phase one of the algorithm)

m Augment the dag with nodes from the dag itself
(Phase two of the algorithm)

m Construct closed frequent itemsets using paths
In the graph
Start from node with in-degree O

Traverse a path in the graph until we reach a node
with out-degree 0

" A
Phase One

Phase One()
1. Construct the bitmap B(l) for each frequent itemset (1) in the
database.
2. Set level number L. ofeach I as 1
3. Construct the set of nodes. IN. that contains I. L and B(I) where
B(I) = minSup
4. Sort the nodes based on level and bitcount . Have these in a priority

queue where the priority 1s set as {2"}*]3([)-

'_
Phase One

5. For each node I; 1in WNodes
S5.1For each sibling I, atter I, in Nodes
S5.1.1 I=1Iw I and B ,,... — B(l;) — B{I;)
5.1.2 I B, e = minSup
5.1.2.1 I B(L) = Bd)
5.1.2.1.1 Remowve I; from Nodes
5.1.2.1.2 Replace all I, with I (1.e [; v 1)
5.1.2.2 Else. it B(l,) < B(Il;)
5.1.2.2.1 Create an edge from [, to I;
5.1.2221L;,=Max (L. L; + 1)

5.1.2.3 Else. 1l B(1;) < B

'_
Phase Two

Procedure ExpandFreqltemSet{Nodes, minsup)
1. Forevery node I; e Nodes
1.1 NewNodes — O, 1 = I;
1.2 For each sibling I; atter I, in Nodes
1.2 1 1 =11 and B.,,.. — Bl — B(l))
1.2.2 11 B.omer = minSup
1.2.2.1 Add 1 x B, to the NewNode

1.2.3 Else add [;"s parents to the NewNode

1.3 F=F ol

2. If NewNodes =). then ExpandFreqltemSet(IWNewNodes., minsup)

Apriori Characteristics

m Advantages: m Disadvantages:
Works well for sparse Pruning efficiency is
O P proportional to the number
databases of frequently occuring
" Sparse => Few ItemSSiest?He set of frequent
. |
frequent itemsets temsets.
Ease of . I'I'hetrrl]uiinber of Ec,ubt_sel;ts of
: : ength k can potentially
Implementatlon grow exponentially in the
size of S.

Number of database scans
depends on the length of
the longest frequent
itemset

" I
Overall Procedure

m Main()

m C ={}// set of closed frequent itemsets

m F ={}// setof frequent itemsets

m Construct attribute value lattice (i.e., Phase1)
m Expand frequent itemsets (i.e., Phase 2)

m For every node |, € F, add the ancestor set of |.
to C

I
Talk Outline

m Background

m Algorithm

m Conclusions

Experimental Setting

m Implemented the algorithm in Java

m Performed a set of experiments using
synthetically generated data

Model the occurrence of an itemin a
transaction using a mathematical distribution

Distributions studied in our work:
m Normal, Exponential, Zipf

" J
Types of Data sets

Exponential distribution
Normal distribution

F(x;o) = VoN@RIT) e ™) Twikipedia] F(x @A) = he™ [Wikipedia] -

p=0.03=02
p=0oi=10
.

Am0S —
i=10

s 4 3 2 4 0 1 2 3 4 5

Zipf Distribution |
Fk:s. N)=(1/k™)/ (2% 1 /n°) [Wikipedia]

o' .

il \ _
s5=1 \\ -
o=l »

1067 8=1
on=4

10 \“.'.

k i

Figure 11 Zipf Distribution [Wikipedia|

. ﬁunnlng time of the Lattice

algorithm on Normal Unbinned
data

Normal data

650-
600-
550
500-
450-
400
3504 m
300
250+
200-
150 m
100
50+
0

B RunTimein's'

Run Time (s)

J J J J J v
0 2500 5000 7500 10000 12500 15000
File Size (kb)
F(x;i.6) = o2) e Gl 1

Wikipedia]

As we increase the file size, the running time increases linearly.
This distribution is therefore chosen for binning.

" S
Run time of Lattice algorithm with
Exponential data and no binning

Exponential data

—

S

N

600+
500+
400+

® Run Timein's'

L L L L L L L L
250 500 750 1000 1250 1500 1750 2000
File Size (kB)

F(x 1 L) = he™

[Wikipedia]

As we increase the file size, the running time increases
exponentially.

Granules that fall under this distribution are chosen for binning
exneriments.

" S
Running time of the Lattice
algorithm on Zipf Unbinned data

Zipf-runtime

5500+
5000-
4500-
4000-
3500+

3000+ B RunTimein's'
2500+
2000+
1500+
1000+
500+
0
-500 v ! ! ! ! ! ! ! ! ! 1
0 10002000300040005000600070008000900a0000

File Size (kB)

Run Time (s)

Fk:s.N)=(1/Kk)/ (2%, 1 /n®) [Wikipedia]

Running time increases logarithmically.

Running time flattens out.

" A
Results

m Zipf data performed better than normal and
exponential

m With zipf-data, numbers are clustered around a
few values (few items appear in most of the
transactions).

m With remaining distributions, data is not
clustered.

m Running the lattice algorithm with large Zipf
datasets seems feasible.

Improving Running Time

m For non-Zipf data, running time of the
algorithm is high

m For such data, it maybe desirable to derive
trends about the data

m Key Idea: Use binning to transform non-
Zipf data into a more tractable form

" J
Binning Procedure

m For each granule, use the Chi-square test to see
which distribution the granule matches closely

m For non-zipf granules:

Divide data into uniform sized bins and construct
histogram

If frequency of a bin exceeds a threshold, then all
data values for that bin are represented by the log of
the bin’s frequency

Otherwise, values are represented as is

Transforming Normal

m Draw a figure that shows how normal
distribution is mapped to zipf distribution

. ﬁunnlng time of the Lattice

algorithm on Zipf-Normal
Unbinned data

Zipf-Normal

60- o
u B imeIns
50-
40-
30-

20-

run time in's'

10-

0= ! y "
0 250 500 750 1000 1250
file size in kB

Unbinned data runs in exponential time as file size increases

We will later bin the granules that are “normal”

. ﬁunnlng time of the Lattice

algorithm on Zipf Normal binned
date

Zipf-Normal-binned

5.5+ o
5. (- u m timeins

run time in's'

. 0 100 200 300 400 500 600 700 800 9001000
file size in kB

Run time increases linearly with increasing file size.

. ﬁunnlng time of the Lattice

algorithm on Unbinned

Fvnnnantial Aata

Exponential data
600

Run Time (s)
N W A WO
o O QO O
o O O O

=
Q
o

pi——

O —— Y Y Y Y Y X
0 250 500 T50 1000 1250 1500 1750 2000

File Size (kB)
Exponential growth is seen with exponential data as file size increases.

. ﬁunnlng time of the Lattice

algorithm on Exponential binned
d at‘ Binned Exponential

395
390
385
380
375
370

365 B Run Time in 'ms’

360

320

gt "

335 - u

330
325
320
315G LJ L) L] L] L L
750 1000 1250 1500 1750 2000

Run Time (ms)

File Size (kB)

The running time slows down and flattens out as file size increases.

" A
Conclusions

m Built upon the algorithm of Lin et. al. for mining
closed frequent itemsets

m |dentified issues with the algorithm and
proposed solutions

m Developed an implementation and did a
performance study

m Developed a novel binning mechanism to
improve the running time for certain datasets

" N
Future work

m Build upon the algorithm using it in an e-
commerce application.

m Explore other binning techniques.

m Compare against other mining algorithms
such as Charm, Closet, Pascal (that also
mine for closed frequent itemsets).

"
Backup Slides

" J
Result of Apriori

m Apriori provides good run-time performance
when length is small.

m Performance is impacted by:

Pruning efficiency:Many frequently occuring patterns
=> pruning is less efficient.

If S consists of frequent itemset of length k, there
could be upto 2/l — 2 candidates of length k+1 .
Computation is CPU bound.

Number of database scans: proportional to the length
of the longest frequent itemset . In real world,
itemsets of length 30 or higher is typical

" A
Phase Two

m Procedure ExpandFreqgltemSet(Nodes, minsup)

m For every node li eNodes
NewNodes = @, | = |i
For each sibling lj after li in Nodes

1.2.11=1liuljand Bcomb = B(li) n B(lj)
1.2.2 If Bcomb > minSup

1.2.2.1 Add | x Bcomb to the NewNode
1.2.3 Else add li's parents to the NewNode
1.3F=FuUl

If NewNodes # G, then ExpandFreqltemSet(NewNodes,
minsup)

" I
Overall Procedure

m Main()

m C ={}// set of closed frequent itemsets

m F ={}// setof frequent itemsets

m Construct attribute value lattice (i.e., Phase one)
m Expand frequent itemsets (i.e., Phase 2)

m Forevery node li € F, add the ancestor set of |
to C

Binning Experiments

m Studied two types of data
Exponential distribution

Mixed data: Granules are a mix of Zipf and
Exponential distributions

" S
Pre-Apriori : Example (Generating
candidates of lenath 2)

.-'['n= I']-. -:“-.
<m= <mim= <mn= <mo=
<n- ~Nim- ~Nn-= <Nno-=

i =0m- ~0On-= <00~

= I
Apriori — Example (contd.)
(Generating candidates of length 2)

o < N-= <=
<m= “<Imn-= <mo=
<N= <N0O=

<=

" A
Preliminaries: Poset

m A binary relation < that satisfies reflexive,
symmetric, and transitive relationships on a set P
IS said to be a partially ordered set ()

Reflexive: a <a
Symmetric:a< bAn b<a=a=>b
Transitive:a<bArb<c= a<c

m Example: (N, <), where N is the set of natural
numbers

" A
Preliminaries: Lattice

m A posetis a lattice if all non-empty finite
subsets have a greatest lower bound and
a least upper bound.

mletScPandu,/ € P. Then:

u is the least upper bound if and only if, Vs &
S, s<u

| is the greatest upper bound if and only if, Vs
eSS, /<s

"
Putting It All Together

m The set of granules from the database with
the c relationship defined on the bitmaps
IS a poset

m Set of granules for the frequent itemsets
under c relation is a lattice

Greatest lower bound: @ is a subset of all
frequent itemsets

Least upper bound: Set formed by taking the
union of all the granules

Sample Attribute Value Lattice

A

© @

