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Our Work

� Interested in finding closed frequent itemsets in 

large databases

� Large body of work (papers published for over 15 

years)

� In this thesis, build upon the work of Lin et. al.

� “Using Attribute Value Lattice to Find Closed 

Frequent Itemsets”

� In particular, our contributions include …



Contributions

� Identify correctness issues with the algorithm 
and re-wrote it for clarity

� Implement the algorithm and do a performance 
study

� Identify implementation issues and propose 
solutions

� Mechanisms for improving run-time for certain 
data-sets – implemented a data checker and a 
data binner



Talk Outline

� Background

� Algorithm 

� Performance Evaluation

� Conclusions



Background

� We want to efficiently mine a large 

database for frequently occurring patterns

�Example: Find the set of authors whose 

books are frequently bought

� Prerequisites for an algorithm

�Computational efficiency

�Minimize number of database scans



Definitions

� Itemset (N): A set consisting of items from 

the database . i.e., N ⊆ ϑ

� Support: Number of transactions in which 

an itemset occurs as a subset.

� Minimum support: User specified level of 

support . (minsup)

� Frequent itemsets: Itemsets that satisfy 

minsup.



Identifying Frequent Itemsets

� Apriori (Agarwal and Srikant, 1994)
�Commonly cited algorithm in the literature

� Approach:
�Scan the database to identify frequent 
itemsets of length 1 

�From the frequent itemsets of length N, 
generate candidates of size N+1 and test

�Stop when no new candidates are generated



Apriori

� The candidate-generation step governs 
the computational efficiency

� Key insight: If itemset Ι is not frequent, 
then any candidate that contains Ι is 
guaranteed to be not frequent
�Known as downward closure lemma

� Use the downward closure lemma to 
prune the candidate-set



Improving Upon Apriori

� Mine closed frequent itemsets.
�A frequent itemset N is said to be closed if 
and only if there does not exist another 
frequent itemset of which N is a subset. 

� If F denotes the set of frequent itemsets 
and C denotes the set of closed frequent 
itemsets, then C ⊆ F. 

� Generally, |C| << |F| (Zaki2002)



Mining Closed Frequent Itemsets

� Several algorithms developed recently:

�Charm, Pascal, Mafia, 

� We study the algorithm of Lin et. al.  
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Algorithm Overview

� Two phases for identifying closed frequent 

itemsets:

�Phase 1: Construct a lattice of frequent 

itemsets

�Phase 2: Mine the lattice in a bottom-up 

breadth-first manner to identify closed 

frequent itemsets



Preliminaries: Data Representation 

� Data can be represented as:

�Horizontal view : represent each row with a 

unique transaction identifier and a bitmap to 

represent items in the transaction.

�Vertical view: represent each column with a 

unique identifier and a bitmap to represent 

transaction in which that item is involved.



Preliminaries: Data Rep. (II)

� Vertical representation allows operating 

only frequent itemsets.

� Bitmaps of non-frequent itemsets can be 

discarded leading to reduced memory 

footprint.

� Vertical representation of an item in the 

database is known as a “granule”.



Putting It All Together 

� Represent lattice as a directed acyclic graph 
(Phase one of the algorithm)

� Augment the dag with nodes from the dag itself 
(Phase two of the algorithm) 

� Construct closed frequent itemsets using paths 
in the graph
� Start from node with in-degree 0

� Traverse a path in the graph until we reach a node 
with out-degree 0



Phase One



Phase One



Phase Two



Apriori Characteristics

� Advantages:
�Works well for sparse 
databases

� Sparse => Few 
frequent itemsets

� Ease of 
implementation

� Disadvantages:
� Pruning efficiency is 
proportional to the number 
of frequently occuring
itemsets:

� S is the set of frequent 
itemsets.

� The number of subsets of 
length k can potentially 
grow exponentially in the 
size of S.

� Number of database scans 
depends on the length of 
the longest frequent 
itemset



Overall Procedure

� Main()

� C = { } // set of closed frequent itemsets

� F = { } // set of frequent itemsets

� Construct attribute value lattice (i.e., Phase1)

� Expand frequent itemsets (i.e., Phase 2)

� For every node Ii ∈ F, add the ancestor set of  Ii
to C
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Experimental Setting

� Implemented the algorithm in Java

� Performed a set of experiments using 

synthetically generated data

�Model the occurrence of an item in a 

transaction using a mathematical distribution

�Distributions studied in our work:

� Normal, Exponential, Zipf



Types of Data sets

Normal distribution
Exponential distribution

Zipf Distribution



Running time of the Lattice 

algorithm  on Normal Unbinned

data
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As we increase the file size, the running time increases linearly.

This distribution is therefore chosen for binning.



Run time of Lattice algorithm with 

Exponential data and no binning
Exponential data
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As we increase the file size, the running time increases 

exponentially. 

Granules that fall under this distribution are chosen for binning 

experiments.



Running time of the Lattice 

algorithm  on Zipf Unbinned data
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Running time increases logarithmically.

Running time flattens out.



Results

� Zipf data performed better than normal and 
exponential

� With zipf-data, numbers are clustered around a 
few values (few items appear in most of the 
transactions).

� With remaining distributions, data is not 
clustered. 

� Running the lattice algorithm with large Zipf
datasets seems feasible.



Improving Running Time

� For non-Zipf data, running time of the 

algorithm is high

� For such data, it maybe desirable to derive 

trends about the data

� Key Idea: Use binning to transform non-

Zipf data into a more tractable form



Binning Procedure

� For each granule, use the Chi-square test to see 

which distribution the granule matches closely

� For non-zipf granules:

� Divide data into uniform sized bins and construct 

histogram

� If frequency of a bin exceeds a threshold, then all 

data values for that bin are represented by the log of 

the bin’s frequency

� Otherwise, values are represented as is



Transforming Normal 

� Draw a figure that shows how normal 

distribution is mapped to zipf distribution 



Running time of the Lattice 

algorithm  on Zipf-Normal 

Unbinned data

Unbinned data runs in exponential time as file size increases

We will later bin the granules that are “normal”



Running time of the Lattice 

algorithm  on Zipf Normal binned 

data

Run time increases linearly with increasing file size.



Running time of the Lattice 

algorithm  on Unbinned

Exponential data

Exponential growth is seen with exponential data as file size increases.



Running time of the Lattice 

algorithm  on Exponential binned 

data

The running time slows down and flattens out as file size increases.



Conclusions

� Built upon the algorithm of Lin et. al. for mining 

closed frequent itemsets

� Identified issues with the algorithm and 

proposed solutions

� Developed an implementation and did a 

performance study

� Developed a novel binning mechanism to 

improve the running time for certain datasets



Future work

� Build upon the algorithm using it in an e-

commerce application.

� Explore other binning techniques.

� Compare against other mining algorithms 

such as Charm, Closet, Pascal (that also 

mine for closed frequent itemsets).
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Result of Apriori

� Apriori provides good run-time performance 
when length is small.

� Performance is impacted  by:
� Pruning efficiency:Many frequently occuring patterns 
=> pruning is less efficient.

If S consists of frequent itemset of length k, there 
could be upto 2S – 2 candidates of length k+1 . 
Computation is CPU bound.

� Number of database scans: proportional to the length 
of the longest frequent itemset . In real world, 
itemsets of length 30 or higher is typical 



Phase Two

� Procedure ExpandFreqItemSet(Nodes, minsup)

� For every node Ii  ∈Nodes
� NewNodes = Ø, I = Ii

� For each sibling Ij after Ii in Nodes

� 1.2.1 I = Ii ∪ Ij and Bcomb = B(Ii) ∩ B(Ij)
� 1.2.2 If Bcomb > minSup

� 1.2.2.1 Add I x Bcomb to the NewNode

� 1.2.3 Else add Ii‘s parents to the NewNode

� 1.3 F = F ∪ I 

� If NewNodes ≠ Ø, then ExpandFreqItemSet(NewNodes, 
minsup)



Overall Procedure

� Main()

� C = { } // set of closed frequent itemsets

� F = { } // set of frequent itemsets

� Construct attribute value lattice (i.e., Phase one)

� Expand frequent itemsets (i.e., Phase 2)

� For every node Ii  ∈ F, add the ancestor set of  Ii  
to C



Binning Experiments

� Studied two types of data

�Exponential distribution

�Mixed data: Granules are a mix of Zipf and 

Exponential distributions



Pre-Apriori : Example (Generating 

candidates of length 2)



Apriori – Example (contd.) 

(Generating candidates of length 2)



Preliminaries: Poset

� A binary relation ≤ that satisfies reflexive, 

symmetric, and transitive relationships on a set Ρ
is said to be a partially ordered set (poset)

� Reflexive: a ≤ a

� Symmetric: a ≤ b ∧ b ≤ a ⇒ a= b

� Transitive: a ≤ b ∧ b ≤ c ⇒ a ≤ c

� Example: (Ν, ≤ ), where Ν is the set of natural 
numbers



Preliminaries: Lattice

� A poset is a lattice if all non-empty finite 
subsets have a greatest lower bound and 
a least upper bound.  

� Let S ⊆ Ρ and u, l ∈ Ρ.   Then:
�u is the least upper bound if and only if, ∀s ∈
S, s ≤ u

� l is the greatest upper bound if and only if, ∀s 
∈ S, l ≤ s



Putting It All Together

� The set of granules from the database with 
the ⊆ relationship defined on the bitmaps 
is a poset

� Set of granules for the frequent itemsets 
under ⊆ relation is a lattice 
�Greatest lower bound: Ø is a subset of all 
frequent itemsets

�Least upper bound: Set formed by taking the 
union of all the granules



Sample Attribute Value Lattice 
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