
A Fast Algorithm for Data Mining 

CS 297 Report 

Aarathi Raghu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Advisor: Dr.Chris Pollett 

December 2005 



A Fast Algorithm For Data Mining 

Abstract 

This report describes the data mining algorithms implemented and 

lessons learned during the course of my CS 297. Data Mining is a 

growing field and a plethora of algorithms have been proposed. The 

Apriori algorithm is a commonly used algorithm in data mining.  We 

studied modifications of the Apriori algorithm and a lattice based 

algorithm in this semester. Implementation of these algorithms formed 

three of the four deliverables for this semester. So far, we have 

successfully completed the three deliverables- the bitmap based apriori 

and the disk-based improvement of the previous implementation. We are 

in the process of completing the fourth deliverables. The last  deliverable 

will be the foundation for work in CS298. 



 Introduction: 

A problem with very large databases (databases with terabytes of data) is 

data mining.  Data mining is the ability to derive from the database 

meaningful data. Data mining tools help in knowledge discovery and help 

in assimilating trends, or deriving association rules from the databases. 

The main advantage with being able to mine this kind of information 

from datasets is that businesses can gauge accurately how their 

businesses are running and assess how they can be improved, based on 

these rules. Generating these rules, however, is time consuming.  Some 

of these algorithms, unfortunately, run in exponential time. This 

semester, we attempted to implement several algorithms, each of which 

will be described in detail in following sections. We also intend to test 

different kinds of datasets to look for improvements in speed.  

 

A common algorithm in Data Mining is the Apriori algorithm. This 

algorithm was pioneered by Agarwal  and Srikant, and has hence been 

modified by various groups. The algorithm is based on generating 

frequent itemsets, and a byproduct of this is also mining deriving the 

association rules.  

 

Lin and Louie have made contributions to data mining by way of 

granular computing.  Their algorithm is based on generating association 

rules based on granular computing. Deliverable 1 is based on this 

algorithm and will be described in the next section.  

 

Lin, Hu, and  Louie proposed another algorithm, wherein they 

considerable reduced the search space by employing a breadth first 

search to construct the basis of a lattice. This basis is used to form an 



association rule. Implementing this algorithm turned out to be 

deliverable 3, which I will describe in an ensuing section.  

 

The above algorithms are in exponential time. However, there may be 

certain distributions of data for which these algorithms may be faster. 

We are yet to try out the lattice-based algorithm with a Zipf distribution 

to look for improvements in the running time. Based on this, we propose 

to improve the algorithm as part of the CS298 project. 

 

In the following sections, we will describe the motivation, goal, and 

results of each of the deliverables, and basis for work in CS298. 

Deliverable 1: 

Motivation: 

The motivation for this deliverable was to get an understanding for a 

commonly used algorithm in data mining, namely the Apriori algorithm 

[Agarwal]. Before implementing this algorithm, we read chapters that 

described the basics of datamining [Ramakrishnan],[Molina]. Lin and 

Louie’s algorithm [Lin2002] using bitmaps was faster than the original 

Apriori algorithm and hence we decided on their algorithm as the basis 

for our work.  Since, we had decided to go with the BitMap approach, we 

wanted to see if we can do better than Java’s BitSet implementation for 

basic bit manipulations. For all of the common operations such as “and”, 

“or”, “cardinality”, “set”, and “clear”, we timed the native implementation 

and our implementation and for the most part, we had better timing than 

the native implementation. 

 

Goal: 

 



The purpose of this deliverable was to implement the Apriori algorithm 

based on bitmaps (granular computing). We also wanted to test the 

scalability of this algorithm and get different modules in place.  

 

Implementation details and results: 

 

The program can roughly be divided into three modules : one module 

ReadFile.java that reads in a file into memory, a driver program 

Apriori.java that makes a call to ReadFile.java and algorithm.java, and 

the  third module algorithm.java that contains the core of this 

implementation by constructing the granular model after reading in  the 

table from the previous module. The algorithm computes the bitmap for 

each distinct attribute value. This is done in the following way. Every 

column (tuple) will be shrunk into bit vectors corresponding to each 

unique value in the column. Only those bit vectors that are above the 

threshold value are retained and this reduced data set is the 1-large 

itemset. A large itemset is defined as an itemset whose bitmap 

representation has cardinality greater than or equal to the threshold, 

that is specified in the program. Since we use bitmaps, computing the 

cardinality involves counting the number of set bits.  

 

The next step is to compute the 2-large itemsets. This is done by 

computing the intersection between any two unique 1-large itemsets. 

Using the bitmap representation speeds up the process. Any two one-

large itemsets are intersected and those values above the threshold 

constitute the 2-large itemsets. 

 

In general, the computation of any n-large itemset is done recursively, 

where the n-large itemset is computed by intersecting an (n-1) large 

itemset with a  1-large itemset. 



 

 

This algorithm had the basic structure in place. However, we could still 

tweak a lot of parameters to make this a better implementation. One of 

them was to stop fetching the entire file into memory. For a very large 

database, which we are yet to test with, this algorithm will not scale. So, 

one of the changes we inevitably had to make was to make this algorithm 

disk-based, as we will do with deliverable 2. Also, we thought we could 

do better than Java’s  BitSet code, which we had initially used, in terms 

of performance. We implemented our own ByteClass class which we later 

used.   

 

The test data set for this algorithm is a set of randomly generated integer 

values. It consists of 5 columns and 20 rows.  Here is a sample output 

we get while running this algorithm. The values on the left are the 

columns to which the bitmaps belong to. We begin with generating the 1- 

large itemsets, followed by 2-large and so on. 

Gener at i ng one- l ar ge i t em set s 
[ 0] :  00011110000000000000 
[ 0] :  00000001111000000000 
[ 0] :  11100000000111000000 
[ 0] :  00000000000000111111 
[ 1] :  00000000000111000000 
[ 1] :  11111110000000000000 
[ 1] :  00000000000000111111 
[ 1] :  00000001111000000000 
[ 2] :  00000001111000000000 
[ 2] :  00000000000111111111 
……………… 
[ 4,  1] :  11100000000000000000 
[ 4,  1] :  00000000101000000000 
[ 4,  3] :  00011110010000000000 
[ 4,  3] :  11100000000000000000 
[ 4,  3] :  00000000000100011111 
[ 1,  0] :  00000001111000000000 
[ 1,  0] :  00011110000000000000 
[ 1,  0] :  11100000000000000000 
[ 1,  0] :  00000000000111000000 
[ 1,  0] :  00000000000000111111 
[ 2,  0] :  00000000000111000000 



 
[ 2,  0] :  00011110000000000000 
[ 2,  0] :  00000001111000000000 
[ 2,  0] :  00000000000000111111 
[ 2,  0] :  11100000000000000000 
[ 3,  0] :  11100000000000000000 
[ 3,  0] :  00011110000000000000 
[ 3,  0] :  00000000000111000000 
[ 3,  0] :  00000000000000011111 
[ 4,  0] :  11100000000010000000 
[ 4,  0] :  00011110000000000000 
[ 4,  0] :  00000000000000111111 
[ 4,  0] :  00000000101000000000 
Done wi t h 2 l ar ge i t em set :  41 
[ 2,  3,  0] :  00000000000000011111 
[ 2,  3,  0] :  11100000000000000000 
[ 2,  3,  0] :  00011110000000000000 
[ 2,  3,  0] :  00000000000111000000 
[ 2,  4,  0] :  11100000000000000000 
[ 2,  4,  0] :  00000000000000111111 
[ 2,  4,  0] :  00011110000000000000 
[ 2,  4,  0] :  00000000101000000000 
[ 4,  1,  3] :  00000000000000011111 
[ 4,  1,  3] :  11100000000000000000 
[ 4,  1,  3] :  00011110000000000000 
[ 2,  1,  0] :  00000000000111000000 
[ 2,  1,  0] :  00000001111000000000 
[ 2,  1,  0] :  11100000000000000000 
[ 2,  1,  0] :  00011110000000000000 
[ 2,  1,  0] :  00000000000000111111 
[ 1,  3,  0] :  11100000000000000000 
[ 1,  3,  0] :  00000000000111000000 
[ 1,  3,  0] :  00011110000000000000 
[ 1,  3,  0] :  00000000000000011111 
[ 4,  1,  0] :  00000000000000111111 
[ 4,  1,  0] :  00000000101000000000 
[ 4,  1,  0] :  11100000000000000000 
[ 4,  1,  0] :  00011110000000000000 
[ 4,  3,  0] :  00000000000000011111 
[ 4,  3,  0] :  00011110000000000000 
[ 4,  3,  0] :  11100000000000000000 
[ 2,  1,  3] :  00011110000000000000 
[ 2,  1,  3] :  00000000000111000000 
[ 2,  1,  3] :  11100000000000000000 
[ 2,  1,  3] :  00000000000000011111 
[ 2,  4,  1] :  00000000101000000000 
[ 2,  4,  1] :  00011110000000000000 
[ 2,  4,  1] :  11100000000000000000 
[ 2,  4,  1] :  00000000000000111111 
[ 2,  4,  3] :  00000000000100011111 
[ 2,  4,  3] :  00011110000000000000 
[ 2,  4,  3] :  11100000000000000000 
Done wi t h 3 l ar ge i t em set :  38 
[ 4,  1,  3,  0] :  00000000000000011111 
[ 4,  1,  3,  0] :  00011110000000000000 



[ 4,  1,  3,  0] :  11100000000000000000 
[ 2,  4,  1,  3] :  00000000000000011111 
[ 2,  4,  1,  3] :  00011110000000000000 
[ 2,  4,  1,  3] :  11100000000000000000 
[ 2,  1,  3,  0] :  00011110000000000000 
[ 2,  1,  3,  0] :  00000000000111000000 
[ 2,  1,  3,  0] :  11100000000000000000 
[ 2,  1,  3,  0] :  00000000000000011111 
[ 2,  4,  1,  0] :  11100000000000000000 
[ 2,  4,  1,  0] :  00000000000000111111 
[ 2,  4,  1,  0] :  00011110000000000000 
[ 2,  4,  1,  0] :  00000000101000000000 
[ 2,  4,  3,  0] :  00000000000000011111 
[ 2,  4,  3,  0] :  11100000000000000000 
[ 2,  4,  3,  0] :  00011110000000000000 

 

Deliverable 2: 

Motivation: 

The motivation behind this deliverable was to improve on the scalability 

and performance of deliverable 1. Although, we had implemented the 

bitmap-based Apriori algorithm, we wanted an algorithm that could 

generate an n-large itemset, where n is large. Additionally, we wanted the 

algorithm to generate n-large itemsets for larger datasets. The basis for 

this work was adapted from Lin and Louie’s paper [Lin2002]. 

 

Goal: 

The goal for this deliverable was to tweak the previous implementation in 

such a way that we simulate disk reads by reading in a block of data at a 

time.  

 

Implementation and results: 

This deliverable had the following programs: 

DiskReader.java: 
 

This program simulates disk-reads by reading in data from a file into 

memory in 4K chunks. The 4K chunk of data in memory is used to build 

the Granular model directly. Once this is built, the next 4K chunk is 



fetched from disk. This ensures that we use memory judiciously, 

especially when we are dealing with large datasets.  

ItemSetInfo.java: 

This program implements the data structure for holding the bitmaps 

corresponding to each unique value in a column.  

Algorithm.java: 

In this program, we set a variable maxValsPerColumn that keeps track of 

the maximum number of (n – 1) large itemsets before we move on to n – 

large itemsets. Limiting the number of (n-1) large itemsets is beneficial 

because we can index into an array to generate the n large array by 

intersecting the ( n-1) large and 1-large itemsets. This array is a two 

dimensional array in which the first dimension keeps track of which 

large itemset we are building and the second dimension keeps track of 

the values obtained by intersecting 2 columns. This dimension has a 

maximum index which limits how many values we generate. Though 

limiting the number of values hinders completeness of results, it ensures 

better scalability by reducing memory usage. 

 

We tried this algorithm out with a dataset as large as 200 columns * 200 

rows and we could generate as many as 15-large itemsets. Here is a 

sample output for a smaller dataset. The values on the left show the 

attribute value corresponding to the bitmap.  The maxValsPerColumn 

was set to 100 for this run. 

 

2 : 00000001111000000000 
8 : 00011110000000000000 
9 : 11100000000111000000 
5 : 00000000000000111111 
2 : 00000000000000111111 
3 : 11111110000000000000 
5 : 00000000000111000000 
0 : 00000001111000000000 
15 : 11100000000000000000 
8 : 00011110000000000000 



12 : 00000000000111111111 
0 : 00000001111000000000 
2 : 00011110010000000000 
4 : 00000000000111011111 
5 : 11100000000000100000 
8 : 00000000000100111111 
9 : 11100000000010000000 
6 : 00011110010001000000 
7 : 00000000101000000000 
Done. . . 19 
Done wi t h one l ar ge i t em set . . .  
Gener at i ng 2 l ar ge i t em set  
2 0 : 00000001111000000000 
8 3 : 00011110000000000000 
9 3 : 11100000000000000000 
9 5 : 00000000000111000000 
5 2 : 00000000000000111111 
2 0 : 00000001111000000000 
8 8 : 00011110000000000000 
9 15 : 11100000000000000000 
9 12 : 00000000000111000000 
5 12 : 00000000000000111111 
8 2 : 00011110000000000000 
9 4 : 00000000000111000000 
9 5 : 11100000000000000000 
5 4 : 00000000000000011111 
2 7 : 00000000101000000000 
8 6 : 00011110000000000000 
9 9 : 11100000000010000000 
5 8 : 00000000000000111111 
2 12 : 00000000000000111111 
3 15 : 11100000000000000000 
3 8 : 00011110000000000000 
5 12 : 00000000000111000000 
0 0 : 00000001111000000000 
2 4 : 00000000000000011111 
3 2 : 00011110000000000000 
3 5 : 11100000000000000000 
5 4 : 00000000000111000000 
2 8 : 00000000000000111111 
3 9 : 11100000000000000000 
3 6 : 00011110000000000000 
0 7 : 00000000101000000000 
15 5 : 11100000000000000000 
8 2 : 00011110000000000000 
12 4 : 00000000000111011111 
15 9 : 11100000000000000000 
8 6 : 00011110000000000000 
12 8 : 00000000000100111111 
0 7 : 00000000101000000000 
2 6 : 00011110010000000000 
4 8 : 00000000000100011111 
5 9 : 11100000000000000000 
Done. . . 41 
Gener at i ng 3 l ar ge i t em set  



2 0 0 : 00000001111000000000 
8 3 8 : 00011110000000000000 
9 3 15 : 11100000000000000000 
9 5 12 : 00000000000111000000 
5 2 12 : 00000000000000111111 
8 3 2 : 00011110000000000000 
9 3 5 : 11100000000000000000 
9 5 4 : 00000000000111000000 
5 2 4 : 00000000000000011111 
2 0 7 : 00000000101000000000 
8 3 6 : 00011110000000000000 
9 3 9 : 11100000000000000000 
5 2 8 : 00000000000000111111 
8 8 2 : 00011110000000000000 
9 15 5 : 11100000000000000000 
9 12 4 : 00000000000111000000 
5 12 4 : 00000000000000011111 
2 0 7 : 00000000101000000000 
8 8 6 : 00011110000000000000 
9 15 9 : 11100000000000000000 
5 12 8 : 00000000000000111111 
8 2 6 : 00011110000000000000 
9 5 9 : 11100000000000000000 
5 4 8 : 00000000000000011111 
Done. . . 24 
Gener at i ng 4 l ar ge i t em set  
8 3 8 2 : 00011110000000000000 
9 3 15 5 : 11100000000000000000 
9 5 12 4 : 00000000000111000000 
5 2 12 4 : 00000000000000011111 
2 0 0 7 : 00000000101000000000 
8 3 8 6 : 00011110000000000000 
9 3 15 9 : 11100000000000000000 
5 2 12 8 : 00000000000000111111 
8 3 2 8 : 00011110000000000000 
9 3 5 15 : 11100000000000000000 
9 5 4 12 : 00000000000111000000 
5 2 4 12 : 00000000000000011111 
8 3 2 6 : 00011110000000000000 
9 3 5 9 : 11100000000000000000 
5 2 4 8 : 00000000000000011111 
8 3 6 2 : 00011110000000000000 
9 3 9 5 : 11100000000000000000 
5 2 8 4 : 00000000000000011111 
8 8 2 6 : 00011110000000000000 
9 15 5 9 : 11100000000000000000 
5 12 4 8 : 00000000000000011111 
Done. . . 21 
Gener at i ng 5 l ar ge i t em set  
8 3 8 2 6 : 00011110000000000000 
9 3 15 5 9 : 11100000000000000000 
5 2 12 4 8 : 00000000000000011111 
8 3 8 6 2 : 00011110000000000000 
9 3 15 9 5 : 11100000000000000000 
5 2 12 8 4 : 00000000000000011111 



8 3 2 8 6 : 00011110000000000000 
9 3 5 15 9 : 11100000000000000000 
5 2 4 12 8 : 00000000000000011111 
Done. . . 9 

 

Deliverable 3: 

Motivation: 

While the above two deliverables are data mining algorithms, they are 

more relevant while considering smaller datasets. The reason behind this 

is that these algorithms need to generate frequent itemsets one at a time, 

and this could be resource-intensive as datasets get larger. Lin, Hu, and 

Louie, described an attribute-value lattice [Lin2003] for mining 

association rules, in which the search-space for finding frequent itemsets 

is reduced considerably. This factor single-handedly makes this a more 

feasible algorithm for data-mining. 

 

 

Goals: 

Our goal was to implement this algorithm to use this as a basis for 

future work. We intend to test this algorithm out with different datasets 

to check how the algorithm will respond to different kinds of datasets. 

We are yet to check the running time of this algorithm for different 

datasets. 

 

Implementation and Results: 

The attribute value lattice consists of a set of nodes, where each node is 

set at a certain level and has a keyset and a bitmap which tracks the 

rows in which the keyset appears. For graph construction, each node 

also tracks its parents. 

For generating the attribute value lattice, we used the DiskReader class 

which was developed for deliverable 2. The nodes in the lattice are built 

by looking at the bitmaps and considering only those that exceed the 



minimum support value specified in the algorithm. We construct the 

attribute value lattice based on Lin, Hu and Louie’s paper [Lin2003]. The 

next step is to find the closed frequent itemsets, which form  the 

association rules we are looking for. This is done by looking at the level 1 

nodes ( which form the greatest lower bounds) and making sure 

combinations of these are over the minimum support. If they are, then 

the parents are automatically considered to be part of the closed frequent 

itemsets. If they are not, then the sibling’s parent in combination with 

the node itself is tested to check if the combination exceeds the minimum 

support. The algorithm runs until all the level 1 nodes and  parents (of 

sibling nodes) are exhausted. The reduced number of nodes we consider 

makes this algorithm faster than the previous two. 

 

 

 

 

Future Work: 

We will test this algorithm with different kinds of datasets to suggest 

improvements to this algorithm. Using data that follows the Zipf 

distribution is one such test. We also will test this algorithm in different 

ways to check if this will run in polynomial time with the necessary 

improvements made and for certain kinds of data. This will be done in 

CS298. 

 

 

 

 

 

 

 



 

 



 

References: 

[Ramakrishnan] R.Ramakrishnan and J.Gehkre. Fundamentals of Database 
Systems.McGraw-Hill, 2002 

[Molina] H.Garcia-Molina, J.Ullman, and J.Widom. Database System 
Implementation.Prentice-Hall, 2000 

[Agarwal1994] R.Agarwal, and R. Srikant. Fast Algorithms for Mining Association 
Rules. Proc. Intl. Conf. on Very Large Databases. pp1522-1534. 

[Lin2003] T.Y.Lin, X.T.Hu, and E.Louie. Using Attribute Value Lattice to Find Frequent 
Itemsets. Data Mining and Knowledge Discovery: Theory,Tools and Technology. 
2003.pp 28-36.  

[Lin2002] T.Y.Lin, and Eric Louie. Finding Asscoiation Rules by Granular Computing: 
Fast Algorithm for finding association rules. Data Mining, Rough Sets and Granular 
Computing. 2002.pp 23-42. 

 

 



 

 

 


