

ASH - A SCHEDULER FOR HOAs

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

by

Qian Li

September 2005

© 2005

Qian Li

ALL RIGHTS RESERVED

 2

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

__
 Dr. Chris Pollett

__
 Dr. Sami Khuri

__
 Dr. David Taylor

 3

ABSTRACT

ASH - A SCHEDULER FOR HOAs
By Qian Li

The resource constrained scheduling problem is a basic problem in computer

science research, supply chain management research, and operations research. My project

focuses on developing job scheduler, Super-ASH, capable of aiding homeowner

associations in achieving an efficient schedule for repair jobs. The goal is not only to

have customers’ requests fulfilled in a timely manner, but also to give immediate

feedback of a timeframe in which activities jobs will be completed. Moreover, job

scheduler enables homeowner associations to set up their own configurations, allowing

them to set the job type table, define the scheduling queue model, and change the interval

and amounts of the incoming budget based on their own real conditions. The two basic

scheduling objectives we seek to optimize are to minimize the (actual) average flow time,

and to minimize the (actual) average stretch. To achieve these goals, we considered the

advantages and drawbacks of a multi-level-queue scheduling algorithm, the simplicity of

First In First Out (FIFO) and Shortest Processing Time First (SPTF), and the semi-

clairvoyant R algorithm. From considering these, we developed our Super-ASH

scheduler. In this report, the detailed design and implementation of a Super-ASH

scheduler is described. Also the different test cases and results will be investigated in

various ways to yield good scheduling performance.

 4

TABLE OF CONTENTS

1. INTRODUCTION .. 9

1. 1 Scheduling Problems ... 11
1. 2 Define HOAs Scheduling Problem.. 13

2. BACKGROUND and RELATED WORK ... 15

2. 1 Performance Measures on Scheduling Algorithms.. 15
2. 2 Original Scheduling Algorithms .. 16

2. 2. 1 Greedy UnitTask Scheduling Algorithm ... 16
2. 2. 2 First In First Out (FIFO) .. 19
2. 2. 3 Shortest Processing Time First (SPTF).. 20
2. 2. 4 Semi-clairvoyant R algorithm (Sc-R) .. 20
2. 2. 5 Comparisons on Sc-R, FIFO and SPTF... 23

2. 3 Inspirations from Our Initial Research .. 24

3. DESIGN and IMPLEMENTATION .. 27

3. 1 Supplemental Constraints .. 27
3. 2 Job Type Table and Contractors .. 29
3. 3 Configuration Objectives ... 30
3. 4 Configuration Parameters .. 31

3. 4. 1 Budget Intervals and Amounts... 31
3. 4. 2 Queue Models .. 33
3. 4. 3 Statistical Results and Other Display Options ... 36

3. 5 Super-ASH Algorithm ... 42
3. 5. 1 Super-ASH Overview .. 42
3. 5. 2 Class Organization ... 42

4. EXPERIMENTS and ANALYSIS ... 45

4. 1 Discoveries in Experiments ... 45
4. 1. 1 Number of Jobs .. 46
4. 1. 2 Cost of Jobs.. 46
4. 1. 3 Intervals and Budget Amounts... 50
4. 1. 4 Different Scheduling Queue Models ... 58
4. 1. 5 Yearly Performance Comparison... 58

4. 2 Test Results Analysis... 61

5. CONCLUSION and FUTURE WORK .. 63

6. ASH User’s Guide .. 65

6.1 Creating Job Type Table... 65

 5

6.2 Creating Job List ... 67
6.3 Choosing Scheduling Method... 69

REFERENCES ... 72

 6

LIST OF TABLES

Table 2-1. Schedule result for no job late for their deadlines... 17
Table 2-2. Schedule results for some jobs late for deadlines and got penalties................ 18
Table 2-3. One example of the combinational scheduler scheduling results.................... 23
Table 2-4. Enumeration of some results on different number of jobs 23
Table 4-1. Low cost jobs with time 5 scheduling statistical results.................................. 47
Table 4-2. High cost jobs with Time 5 scheduling statistical results................................ 48
Table 4-3. Mix cost jobs with Time 5 scheduling statistical results................................. 49
Table 4-4. Same amounts and different intervals for high cost jobs 51
Table 4-5. Same amounts and different intervals for low cost jobs.................................. 52
Table 4-6. Same intervals and different amounts for high cost jobs 54
Table 4-7. Same intervals and different amounts for low cost jobs.................................. 56
Table 4-8 Yearly performance test on high competition jobs... 60
Table 4-9 Yearly performance test on low competition jobs.. 60

 7

LIST OF FIGURES

Figure 2-1. Visualized results comparison of table 4 ... 24
Figure 3-1. Two supplement constraints – priority and budget .. 28
Figure 3-2. Job type table and contractors .. 30
Figure 3-3. Three scheduling queue models ... 34
Figure 3-4. Step one: display the current HOAs’ job type table....................................... 37
Figure 3-5. Step two: show the partial HOAs’ release table based on budget (15, 2000) 38
Figure 3-6. Step three: display the categorized scheduling results................................... 39
Figure 3-7. Step four: display the categorized scheduling time flow 40
Figure 3-8. Step five: display the categorized scheduling statistics results...................... 41
Figure 3-9. Super-ASH class organization ... 44
Figure 4-1. Visualization on low cost jobs with time 5 scheduling results 47
Figure 4-2. Visualization on high cost jobs with time 5 scheduling results 48
Figure 4-3. Visualization on mix cost jobs with time 5 scheduling results 49
Figure 4-4-1. Same amounts $10,000 different intervals for high cost jobs.................... 51
Figure 4-4-2. Same amounts different intervals for high cost jobs - AFT, AAFT. AS and

AAS... 52
Figure 4-5-1. Same amounts $10,000 different intervals for low cost jobs..................... 53
Figure 4-6-1. Same interval 6 different amounts for high cost jobs 54
Figure 4-6-2. Same interval 6 different amounts for high cost jobs with AAFT, AFT, AS

and AAS.. 55
Figure 4-7-1. Same interval 6 different amounts for low cost jobs 56
Figure 4-7-2. Same interval 6 different amounts for low cost jobs with AAFT, AFT, AS

and AAS.. 57
Figure 4-8 Yearly performance test on high competition Jobs... 60
Figure 4-9 Yearly Performance test on low competition jobs .. 61
Figure 6-1-2. Add job type one by one once click the “Add” button in “Type” category 66
Figure 6-1-3. The created Job Type Table after one by one “Add” and default generator

... 66
Figure 6-2-1. Adding jobs one by one .. 67
Figure 6-2-2. One job added into the Job List .. 68
Figure 6-2-3. Using job generator to generate jobs .. 68
Figure 6-2-4. Job List table shows all the added and generated jobs 69
Figure 6-3-1. Make scheduling window for budgets and scheduling method setting 70
Figure 6-3-2 Scheduling results based on the above configurations 70

 8

1. INTRODUCTION

Homeowner Associations are in charge of scheduling many repair jobs every day. Good

job scheduling plays an important role in homeowner satisfaction. Job scheduling is the

task of efficiently allocating limited resources towards jobs to be performed in a given

timeframe. An effective allocation will result in an efficient scheduling of a set of

activities on a set of resources. This is a basic problem in both computer science research

and real application research. Due to the difficulty of this problem, most of the research

in this field has incorporated some potentially inapplicable assumptions, such as all the

jobs arrive at the same time, each job’s processing time is one unit, and so on. The goal

of this project is to develop an applicable and configurable job scheduler capable of

aiding the homeowner associations (HOAs) in achieving efficient scheduling results by

providing immediate feedback on when the customers’ requests will be completed and by

fulfilling jobs in a timely manner.

Depending on the jobs, scheduling performance is optimized by using different

scheduling algorithms. Some algorithms aim to minimize the average response time,

while others are concerned with variables such as the average actual processing time or

average actual waiting time. For those specific goals to be achieved, the scheduling

algorithm plays a significant role during the process. Algorithms that assign the start and

end times schedule the jobs waiting in a queue. Jobs’ processing time is optimized by

constraints based on certain objective functions. Those constraints are typically either

time constraints (completion deadline) or resource constraints (competition for the same

resource or limited resources). To develop an efficient scheduling algorithm for HOAs,

 9

we must have a well-defined scheduling problem that specifies all the particular

objectives, considerations, constraints and requirements.

Based on the HOAs scheduling problem, we began by researching the classical and

original scheduling algorithms. The first scheduling algorithm we considered was the

Greedy task-scheduling algorithm [CLR90]. This algorithm will efficiently schedule unit-

time jobs on a single processor. The other scheduling algorithms considered in my project

are First In First Out (FIFO), Shortest Processing Time First (SPTF), and the Semi-

clairvoyant R algorithm [BMLP04]. These algorithms are differentiated in their methods

and objectives. The new scheduling algorithm, the Super-ASH algorithm, was designed

based on HOAs' scheduling problem. The new algorithm can effectively ameliorate the

advantages and disadvantages of the other algorithms. This algorithm is suitable for

alternate requirements and configurable for different needs under different conditions.

Based on the analysis of these classical algorithms, plus considerations of the real

applications in HOAs, we developed Super-ASH. Super-ASH is capable of handling jobs

with random arrival times and scheduling them without association relationship

constraints according to their particular types under budget and resource constraints.

Although those jobs are not completely predictable, there is some pre-knowledge about

the upcoming jobs, such as the estimated process time, approximate cost, and the

approximate frequency. We call a scheduler that operates under such conditions of

limited pre-knowledge a semi-clairvoyant scheduler. The Super-ASH algorithm is such a

semi-clairvoyant scheduler. Our main contribution is to compare how different semi-

 10

clairvoyant scheduling algorithms perform on HOA scheduling problem. This involves

analyzing these algorithms on the HOA scheduling problem under various different

conditions. Our results shed light on the relatively complicated relationship between the

initial conditions and the scheduling algorithms.

This report illustrates the development process and implementation of Super-ASH. The

report is divided into four sections. The first section describes the background and related

work. The second section focuses on the design and implementation of the Super-ASH.

Section 3 describes the experiments we conducted and also gives our analysis of them.

The last section discusses the conclusions and significance for future work based on the

results of this project.

1. 1 Scheduling Problems

In general, scheduling problems are denoted as α|β|γ [GKLL79], where α stands for the

machine environment, β stands for the various side constraints and characteristics, and γ

stands for a desirable criterion. In this project, the HOAs scheduling problem is defined

according to the standard notation α|β|γ. At the beginning of each scheduling problem,

we have a set of jobs J, numbered from 1 to n. Each job, Ji , has a release time ri, a

processing time pi, a deadline di and weight wi. A job Ji can then be denoted as tuple (ri,

pi,,di ,wi). If a job must be finished without interruption, it called non-preemptive

scheduling environment. In a preemptive environment, a job in process can be interrupted

and continued at a later point of time.

 11

Next we focus on β - side constraints and characteristics, which will specify the machine

environment and many possible side limitations and characteristics, such as logical

dependence or independence among jobs, and the jobs arrival internals. Of course, the job

release time should always before its actual processing time and finish time. No matter

which side constraints or characteristics are taken into consideration, the final goal of

scheduling is to produce a good schedule for certain objectives. The better understanding

on the scheduling environment characteristics and special constraints will surely result in

more efficient scheduling performance.

However, there are no consistent rules to define what kind of scheduling algorithm is

good because it is application dependent. Sometimes the goal is to minimize the

completion time, and sometimes the goal is to maximize the total weights gained from

matching the deadline of each job. Formally, the goal is the desirable criterion γ, and the

purpose of the scheduling algorithm is to construct the algorithm to optimize this

criterion.

 12

1. 2 Define HOAs Scheduling Problem

In this section, we define the HOA scheduling problem. First, we consider the processing

environment. Only one association is in charge of scheduling all the requested repair jobs

and assigning those jobs to different types of contractors. Also, the HOAs’ environment

is non-preemptive. This means there is no interruption during the processing of jobs. That

is, once a job starts, the job will keep running until it is completed.

Given randomly arriving jobs, the HOA scheduler’s task is to continually allocate and

reallocate the constrained resources as they arrive and are completed. This kind of

problem is classified as a classical resource-constrained scheduling problem. This class of

problems can be summarized as the following: the incoming project set which consists of

J independent jobs labeled as 1, . . . , n. The set of jobs referred to as J = {1, . . . ,n}

respectively, and categorized according to the association pre-defined job type table. All

the jobs in any category are undividable as well as independent.

Each job requires certain resources to be performed. The set R, stands for the budgets and

contractors used by the HOA. The processing time of job j is denoted as Pj and its request

for resource R is denoted by Rj. Once a job starts, it cannot be preempted. Each job also

has its own time descriptor. This descriptor consists of a time of receipt, a release time, a

start time, and a completion time. Without loss of generality, we assume that certain

operations such as depositing money into an account, releasing jobs to contractor, and

similar operations, take no time to perform.

 13

All the parameters in the scheduling are assumed to be non-negative and integer valued.

The objective is to determine a schedule with minimal (actual) average flow time, and an

(actual) average stretch, so that both goals are fulfilled: timely feedback and efficient

resource use.

 14

2. BACKGROUND and RELATED WORK

The design of scheduling algorithms has a significant history as scheduling problems

arise in a variety of settings. In this section, we will discuss some of this history and some

of the common scheduling algorithms.

 2. 1 Performance Measures on Scheduling Algorithms

As we discussed before, each algorithm has its own objectives. Some algorithms focus on

scheduling jobs within their deadlines in order to incur the lowest penalties for going over

the due dates. In addition to the deadlines and missed deadline penalties, both average

flow time and average stretch are important measurements for job scheduling algorithms.

Average flow time is the average response time for each job. And the average stretch is

the average proportion between the actual processing time and predicted processing time.

The following formula will give the detail description on these two objectives. For a set

of jobs Ji where i =1, 2, …n, each job has release time ri (non-negative integer), and

processing time pi (non-negative integer). After the scheduling of jobs, each job has its

own completion time c. The average flow time is ∑ =
+

n

in 1 ii 1)}r -c {(1 and the average

stretch is equal to ∑ =

+n

in 1
i

ii }
p

1)r -c ({1 . During the scheduling of jobs, active jobs can be

divided into two categories: partial jobs and total jobs [BLMP04]. Partial jobs have

already been began in the past by the scheduler; whereas, the total jobs have never been

executed by the scheduler. All of the above parameters are calculated and compared in

this project.

 15

2. 2 Original Scheduling Algorithms

2. 2. 1 Greedy UnitTask Scheduling Algorithm

The Greedy algorithm, as its name implies, always makes the choice that looks the best at

that time. That is, it tries to make a locally optimal choice that could lead to the final

global optimal solution. However, Greedy algorithms rarely find the globally optimal

solution. This is because they usually do not operate exhaustively on all the possible data.

The Greedy task-scheduling algorithm is effective because in real applications it is easy

to implement and often come-up with good approximations to the optimum. Of course,

the most important benefit of Greedy algorithms lies in their conceptual simplicity and

their computational efficiency. If a Greedy algorithm can be proven to yield the global

optimum for given problems class, it typically becomes the actual method of choice.

The Greedy Unit Task Scheduling algorithm takes as input a job set J that includes a set

of unit-time tasks with deadlines. Each Ji (i∈1,2,…n) is independent from the other jobs

.When M = (J, Ji) is a weighted set with weight function w, the Greedy unit task

scheduling (M, w) returns an optimal subset [CLR90]. By this theorem, the algorithm can

be used to find a maximum weight independent job set. This method is an efficient

algorithm for scheduling unit-time tasks with deadline and penalties for a single

processor α=1. Its running time is O (n2) no matter what kind of sorting algorithm is

applied in the process of scheduling.

 16

The Greedy unit task scheduling algorithm is as follows:

Initiate n time slots empty
Sort the n waiting for scheduling jobs by their weights
 For (time=1; time<=n; time++)
 Schedule the highest weighted job Ji (i∈1,2,…n) in the currently waiting queue
 If (Ji deadline time slot is empty)

 then assign Ji at that time slot
 else if (before Ji deadline time slots available)
 then assign the latest available time slot in deadline to Ji

 Otherwise pick the latest open time slot before Ji’s deadline.

To test an algorithm such as the above, one typically uses a program to generate jobs

randomly. Each job has its own description parameters, such as the job number, weights,

processing time and deadline. At the beginning, jobs are generated in the waiting queue

and the sorter sorts all the active jobs based on their weights. The sorted jobs will then be

scheduled in a decreasing weight sequence.

The following tables display two typical results:

Jobno Weight Deadline Time Job no
1 59 18 1 3
2 43 6 2 18
3 23 1 3 9
4 29 15 4 8
5 71 16 5 19
6 51 16 6 2
7 99 16 7 15
8 14 6 8 12
9 11 16 9 11
10 30 13 10 4
11 21 15 11 10
12 75 8 12 6
13 97 17 13 14
14 55 16 14 16
15 38 7 15 5
16 56 16 16 7
17 29 19 17 13
18 75 2 18 1
19 39 6

19 17

The schedule
results:

The number of late
tasks = 0

The schedule

results:

The total penalties
= 0

Greedy
Unit Task
scheduling

Table 2-1. Schedule result for no job late for their deadlines

 17

Jobno Weight Deadline Time Job no
1 46 7 1 3
2 50 23 2 23
3 44 1 3 22
4 84 9 4 14
5 29 15 5 16
6 25 12 6 13
7 94 13 7 1
8 8 9 8 9
9 65 9 9 4
10 80 10 10 10
11 37 4 11 20
12 69 19 12 6
13 43 11 13 7
14 40 4 14 8
15 46 23 15 5
16 15 12 16 17
17 81 16 17 18
18 12 9 18 11
19 37 22 19 12
20 49 11 20 21
21 37 1 21 19
22 66 3 22 15
23 97 2

23 2

The schedule
results:

The number of
late tasks = 4

The total

penalties = 94
(8+12+37+37)

Greedy
UnitTask

scheduling

Table 2-2. Schedule results for some jobs late for deadlines and got penalties

The scheduling results in Table 2-1 and Table 2-2 show us the efficient scheduling

algorithm with respect to minimizing penalties. Table 2-1 and Table 2-2 were calculated

without taking into consideration a fixed budget. Its other limitations include an

assumption of unit processing time and non-release time. That is, assumes all the jobs

can be done in unit-time; in actuality, each job should have its particular processing time.

Additionally, the coming jobs could not all arrive at the same moment as each of them

has its specific receiving time and release time. However, based on our research, the

HOAs do not have a detailed deadline schema and corresponding penalizations on those

overdue jobs. Therefore, in this project the deadline is not included as a scheduling

 18

parameter. These results will thus serve as a guide when we incorporate budget

constraints.

2. 2. 2 First In First Out (FIFO)

The FIFO scheduling strategy assigns priority to the jobs in the order in which they

request processing. The priority of each job is computed by the enqueuer by time

stamping all incoming jobs; this project used the automatically generated increased Job

ID as a substitute. And this is also the measure to decide each job’s priority in the queue.

Every time the new jobs come, the enqueuer will add the job to the tail of the queue with

a unique Job ID, and the dispatcher will remove the jobs from the head of the queue.

This is a non-preemptive scheduling environment. The greatest benefit of this algorithm

is its ease to implement, without fear of starvation at all. Starvation is a resource

competition phenomenon in many resource allocation scenarios in which certain sets of

processes are perpetually ignored because their priority is not as high as that of other

processes [NG02]. Although FIFO is not completely capable of handling the HOA's

complicated scheduling problem, it can be improved by combining with the Sc-R

algorithm. That is, a scheduling strategy to achieve better scheduling performance by

applying the predictable knowledge of the coming jobs during the scheduling. Also, we

applied the priority strategy to the highest number queue that holds a number of jobs with

long processing time requests. This idea is inspired by a multiple-level queue scheduling

algorithm in the operating system. On the other hand, this is also a good reference for

comparing the scheduling algorithms.

 19

2. 2. 3 Shortest Processing Time First (SPTF)

The SPTF scheduling algorithm always chooses the job that requires minimum

processing time to run first. It surely guarantees that the scheduler can obtain the best

average flow time. However, it might ignore those jobs with long service time requests. If

the ready queue is saturated, the jobs with long service time requests tend to be left in the

ready queue while those jobs with short process time requests receive service. In some

extreme cases where the schedule system has little idle time, jobs with large processing

time requests will never be served. As a result, the total starvation of those jobs that have

large processing time requests may be a serious liability of the scheduling algorithm.

Before the design of the HOA scheduling algorithm, we built up a combinational

scheduler that can schedule the same set of randomly generated jobs by applying

different scheduling algorithms. They are Sc-R algorithm, FIFO and SPTF respectively.

2. 2. 4 Semi-clairvoyant R algorithm (Sc-R)

Semi-clairvoyant algorithm is an algorithm that will make serial decisions on each input

with some knowledge under uncertainty. In our project, we use the predictable job

processing time to define the scheduling queue model and size in order to get better

scheduling performance. In a study of an online problem similar to ours involving web

servers [SRRJ97], it was found that currently most web servers apply First In First Out

(FIFO) scheduling instead of the Shortest Processing Time First (SPTF) scheduling even

though SPTF can give smaller average flow time. The most important issues in choosing

 20

between these two algorithms are: a) SPTF is 2-competitive, which means the SPTF

performance is conceptionally never more than twice as the optimal performance that

could be achieved, with respect to average stretch and b) web servers use FIFO because

of the fear of long process time job trapped into starvation. Some developers and

researchers insist that the web servers should take SPTF as another scheduling choice.

It has been shown that the semi-clairvoyant R (Sc-R) algorithm is O (1)-competitive with

respect to average flow time on a single machine. Under certain condition, the semi-

clairvoyant R algorithm is O (1)-competitive with respect to average stretch on a single

machine. However, the algorithm cannot simultaneously be O (1)-competitive with

respect to both average flow time and average stretch [BLMP04]. Because of the

scheduling efficiency of Semi-clairvoyance R algorithm, we implement the algorithm as

a reference for developing Super-ASH although Sc-R is a preemptive scheduling

algorithm.

The Sc-R algorithm can guarantee that at all times each queue of jobs has at most one

partial job. This fact is also useful for algorithm analysis. The overall scheduler will put

the released jobs into different queues. The queues are numbered as k from 1 to n. A job

belongs to queue k∈(1, 2, . . n) means that pi ∈ [2k, 2 k+1). Scheduling from the lowest

numbered queue:

If at any time, all the jobs in the queue k, then pick the partial job to execute if one exists,

otherwise, pick any one of the total jobs to run;

 21

o If at any certain time, there are two lowest numbered queue m, n (m<n) and both

of them have jobs in them:

o If m has exactly one total job Ji, and n has exactly one partial job Jj, then

run the partial job Jj;

o Under any other situations, run the partial jobs in m if there is one,

otherwise run a total job in m.

And this method implemented in my code as following:
Class Rscheduler extends Scheduler{

public Rscheduler(){
int i;
jobsClass = new Queue [4];
for(i=0; i<4; i++)
{

jobsClass[i] = new Queue();
}
}

public Job run(int time)
{
 …
for(i=0; i<jobsClass. length; i++)
{

count = jobsClass[i]. getItemNum();
if(count == 0)
{

continue;
}
else

… return (firstJob);
 } …

As the algorithm shows these jobs are executed in a preemptive environment. In Super-

ASH, all the jobs will be processed under a non-preemptive condition because of the real

application considerations. However, the implementation will give us some light on

 22

developing Super-ASH. Consequently, the HOAs scheduling problems will not be

necessary to worry the distinction between the partial and total jobs.

2. 2. 5 Comparisons on Sc-R, FIFO and SPTF

The following tables show one of our test cases and statistical result:

Sc-R algorithm SPTF algorithm FIFO algorithm ID ri pi
si ci fi si ci fi si ci fi

1 1 4 1 7 7 1 4 4 1 4 4
2 2 14 16 29 28 69 82 81 5 18 17
3 4 1 4 4 1 5 5 2 19 19 16
4 4 2 5 6 3 6 7 4 20 21 18
5 5 3 8 10 6 8 10 6 22 24 20
6 5 13 30 42 38 43 55 51 25 37 33
7 6 9 43 51 46 16 24 19 38 46 41
8 7 5 11 15 9 11 15 9 47 51 45
9 8 13 52 64 57 56 68 61 52 64 57
10 8 9 65 73 66 25 33 26 65 73 66
11 9 9 74 82 74 34 42 34 74 82 74
Average Flow time 30. 45 27. 0 35. 55

Average Stretch 3. 46 2. 9 6. 36

Table 2-3. One example of the combinational scheduler scheduling results

(Note: ri stands for release time, pi stands for process time, si stands for start time,

ci stands for complete time, fi stands for finish time, and fi = ci - si + 1)

5 jobs 6 jobs 7 jobs 8 jobs 9 jobs 10 jobs No.
Alg. A. F A. S A. F A. S A. F A. S A. F A. S A. F A. S A. F A. S
Sc-R 25. 0 4. 65 20. 0 2. 38 27. 43 3. 15 22. 25 2. 82 31. 4 3. 74 47. 7 3. 877
SPTF 21. 2 1. 92 18. 67 2. 11 24. 43 2. 33 20. 75 2. 33 27. 78 2. 89 45. 5 3. 36
FIFO 28. 4 8. 41 28. 16 9. 49 38. 42 12. 25 25. 63 4. 31 38. 0 6. 83 59. 9 9. 13

(Note: A.F stands for average flow time and A.S stands for average stretch)

Table 2-4. Enumeration of some results on different number of jobs

 23

Results comparison

0
10
20
30
40
50
60
70

A.F A.S A.F A.S A.F A.S A.F A.S A.F A.S A.F A.S

5 jobs 6 jobs 7 jobs 8 jobs 9 jobs 10 jobs

Sc-R SPTF FIFO

Figure 2-1. Visualized results comparison of table 4
(Note: A. F stands for Average Flow Time, A. S stands for Average Stretch)

The above table shows the random results of a different number of jobs’ schedules. The

calculation on average flow time and average stretch. This is not a formal statistics

analysis, but it is given anecdotal evidence. Because the scheduling performance mostly

depends on randomly generated jobs, it is not possible to make real cover-all statistical

comparisons. However, the data can present the overview performance of different

algorithms. Through the data and the chart, the SPTF scheduler shows significant

difference from the other two with respect to average flow time and average stretch. But

this algorithm still has some fatal flaws, such as a long process time job that leads to

starvation.

2. 3 Inspirations from Our Initial Research

These researched and tested scheduling algorithms partly satisfy the requirements of

HOAs scheduling problems. For example, a Greedy unit task-scheduling focuses on

 24

meeting deadlines in order to minimize the penalties, a Semi-clairvoyant R algorithm

focuses on achieving better average flow time, a FIFO focuses on obtaining the easy

implementation and fairness among jobs, and a SPTF just focuses on reaching the

shortest waiting time in the queue and average turnaround time. Obviously, none of them

can independently become a satisfactory solution to the HOAs scheduling problem. This

is because these algorithms did not take the budget as a pre-condition in scheduling the

jobs. Although the Greedy unit task scheduling algorithm did consider the penalties on

budget aspect, it assumed the budget is always enough to afford all the costs of those

jobs. In our situation, it may be the case that jobs have to be put on hold because of

insufficient budget. That is, jobs can be scheduled only as long as there is enough money

to pay for them. To find a feasible way out, we can try to apply those algorithm methods

and combine them with a kind of trade off to come up with the Super-ASH scheduling

algorithm.

During the development of Super-ASH, we designed an ASH scheduling algorithm that

uses the Semi-clairvoyant R algorithm. The algorithm assures that the partial knowledge

about the coming jobs, such as the processing time of the coming repair and maintenance

jobs, can be taken into account in the performance and be used to apply the priority

methodology embraced in the Greedy unit task scheduling algorithm.

Two important issues not taken into consideration throughout the original scheduling

algorithms are budget and cost per job. Another limitation of the tested algorithms are the

assumptions: Greedy unit task scheduling algorithm assumes every job can be done in

 25

one unit time, FIFO assumes each job’s ID number is its real timestamp, Semi-

clairvoyant R algorithm assumes that there is always enough budget to get the job done,

and SPTF assumes that each job has no deadline limitation. So, in the design and

implementation of Super-ASH, we took away all these assumptions and developed an

algorithm that works under the real constraints of HOA job scheduling.

The Super-ASH algorithm receives and processes the coming jobs in partial amounts. In

serving each request the Super-ASH algorithm has a choice of several alternatives, each

with a particular cost. The alternative chosen at one step may influence the costs of

alternatives on future requests. This characteristic requires a semi-clairvoyant algorithm

to make appropriate decisions for the scheduler.

 26

3. DESIGN and IMPLEMENTATION

As we discover, there are still many constraints that have not been taken into

consideration during the original scheduling process, such as the cost, the budget, and

emergency and non-emergency jobs. It is necessary to add those factors into Super-ASH,

so that it will be as relevant to the HOA scheduling problem as possible.

3. 1 Supplemental Constraints

We begin with two additional factors – Priority and Budget. The requested jobs from the

customers can be divided into two categories: emergency and normal. Each category is

presented as Priority = 1 and Priority = 0 respectively. Naturally, the jobs with priority

value “1” will be considered ahead of jobs with priority value “0”. However, prioritizing

the jobs is not enough to assure whether these jobs can be scheduled. We also need to

consider another critical real life issue – budget. The cost of jobs will be compared with

the current available budget; if the budget is sufficient to process the jobs, then jobs will

be sent to a different scheduler to be scheduled. Meanwhile, the current budget will

subtract the costs of the released emergency jobs. Then the rest of the budget can be used

to pay the normal jobs. The first step on scheduling the jobs will be as the follows:

 27

 28

Figure 3-1. Two supplement constraints – priority and budget

After adding these two parameters, two more variables are decided upon the jobs’ time of

receipt and release time. The time of receipt represents when the HOAs receive the

requested the jobs from the homeowners. The release time represents when the HOAs

officially release the job to the contractors when the budget is adequate to afford those

jobs.

As we discussed before, the disadvantage to SPTF as a scheduler is that it can have

starvation issue. To avoid starvation, our algorithm applies the three different queues

models to assign priorities to different queue levels. Moreover, all the jobs in the same-

leveled queue will be processed based on First In First out scheduling method. So, within

No Yes

NoYes

J1 Jn

Priority = 1 and
Budget-1 >= Cost-1

Homeowner Association

Send to corresponding
Scheduler and proceed

Priority = 0 and
Budget-2 >= Cost-2

Note: Budget-1re presents the amounts before scheduling all the requested jobs;
Budget-2 represents the amounts left after releasing the emergency jobs. Cost-1 equals
the costs of to-be-released emergency jobs; Cost-2 equals the costs of to-released
normal jobs.

a queue starvation cannot happen. Starvation might happen between different queue

levels, but this should be rare as it would receive a larger amount of job requests than

would naturally occur in the HOA setting.

3. 2 Job Type Table and Contractors

The job type table and the contractors are the two schemas are used in homeowner

associations. The association is the only entity that holds the rights to read, write, and

modify the job type table. In other words, the associations are in charge of maintaining

the job type table according to their own contracts and experience.

This job type table behaves as a reference to the schedulers. It directs a scheduler on how

to work under the specific constraints and conditions. Schedulers can look at reference

data from HOAs’ job type table, such as the job’s corresponding contractor, the job’s

approximate cost, and the job’s approximate process time. If the job type table accurately

reflects the properties of the repair jobs, then the scheduling results will be a more

efficient arrangement of those jobs. Also, more experienced HOAs can obtain more

accurate data through long period time of experience and knowledge.

Each HOA has various contractors in charge of different types of jobs. There might be a

contractor for plumbing, a contractor for painting, a contractor for roofing and some

contractors who have other specific skills. Because the contractors are mutually

independent from each other, they can do their jobs concurrently without any conflicts.

Consequently, the Super-ASH scheduler will categorize the jobs which correspond to the

 29

job type table first, and then schedule them independently. As illustrated in the below

diagram, jobs come in and then are categorized into different independent schedulers

according to their types:

ID = 3
ID = 4

ID = 2

J1 J2 Jn

ID = 5 ID = 0
ID = 1

Plumbing
scheduler

Roofing
scheduler

Painting
scheduler

Nursery
scheduler

Electronic
scheduler

Cleaning
scheduler

Figure 3-2. Job type table and contractors

After the homeowner association releases the jobs and then sends these jobs to

corresponding contractors, the contractors perform the further scheduling.

3. 3 Configuration Objectives

Different types of schedulers are needed handle different requirements and distinctive

objectives. Because the main purpose of developing a scheduling algorithm for HOAs is

to satisfy the homeowners’ requests in a timely manner and efficient way, the developing

Super-ASH algorithm will assure minimizing the two most basic objective functions. One

 30

is the actual average flow time (AAFT), ∑ =
+′n

in 1 ii 1)}r -c {(1 where stands for the

HOAs release time. The second is the actual average stretch (AAS), which equals

′
ir

∑ =

+′
n

in 1
i

ii }
p

1)r -c ({1 . The goal of trying minimizing average flow time and minimal

average stretch will focus on finishing all the jobs by the earliest time possible. The goals

of minimizing the actual average flow time and actual average stretch will concentrate on

releasing the jobs as soon as possible. Actually, we cannot always achieve the best

performance by reaching the lowest AAFT and AAS. Sometime we need to do some

trade off between AAFT and AAS. For example, there are two jobs, one is roof job and

its process time is around 30 time units, another is a cleaning job with process time

around 1 time units. If we schedule the roof job in 2 months and the cleaning in one day,

there will be around thirty time units wasted in the total time flow but the stretch do not

have any affects. On the other hand, for two jobs with the same process time, the actual

average flow time becomes more important than the actual average stretch. In our

algorithm, we will concentrate on obtaining the best actual average flow time during our

scheduling if it is necessary to make a trade-off between these two measures. However,

we cannot set the configurations only based on our goals, we need to consider the

application reality as well.

3. 4 Configuration Parameters

3. 4. 1 Budget Intervals and Amounts

The frequency with which the HOAs’ budget will be recharged and how much the

HOAs’ budget will be refilled directly affects a job release time ′
ir . If the budget can be

 31

filled as much as possible and as often as necessary, then jobs need not to be delayed,

waiting until there is sufficient money to send them to the related contractor.

Consequently, the customers’ repair job requests can be released immediately by the

HOAs. As a result, the average flow time equals to the actual average flow time, and the

average stretch is the same as the actual average stretch. However, this is an ideal

condition during scheduling. It will not happen all the time, so we need to configure

Super-ASH by setting our own budget recharging intervals and amounts, as follows:

public void setBudget(int interval, int delta) {
 budgetInterval = interval;
 budgetDelta = delta;
 } …
 admin. setBudget(30, 10000); …

Also, our algorithm will assume the HOAs have some amount money as the start-up

condition of the entire system. That is, at the very beginning, the HOAs account will start

with certain amount of money, and get money at the end of each specified time interval.

Actually, the purpose of adding the budget recharging intervals and amounts is not only

to satisfy the real application request, but also to offer opportunities to improve the whole

algorithm’s performance. Some smart ways exist to configure your data to get better AAF

and AAS even if the amounts are the same. For example, the AAA homeowner

association has a $10,000. 00 deposit every 30 days. They have many ways to recharge

their accounts, such as admin. setBudget (30, 10000) or admin. setBudget (15, 5000).

Both of them get $10,000.00 per thirty days with these two different depositing ways.

However, the scheduling results are totally different. More detailed results will be

revealed in Section 4.

 32

3. 4. 2 Queue Models

A variety of queues are used during scheduling. For example, the emergency job queue,

the normal job queue, and the scheduling queue. Each queue has its own specific width

and length. Obviously, the length of the queue is the number of items in this queue. The

width of the queue is actually the range of values stored in it. For instance, there is a Q1

[2, 8] that its width is 8 – 2 + 1 = 7.

Both width and length affect the scheduling performance to some extent. The queue

width of the contractors’ scheduling queues will especially affect the performance

according to our research. In our program, the length of the queues will be assumed to be

unbounded, and the queue width will be used to specify the queue models. Different

queue models can benefit different groups of jobs. Most of a job’s scheduling

performance is highly dependent on the jobs themselves. Thus, different choices on the

queue models bring different results and different performance. In our project, we use the

semi-clairvoyance strategy to design the width of different queue models and build up

three scheduling queue models based on the pre-setup job type table: Power2 scheduling

queue model, UpdownTriangle scheduling queue model, and Even scheduling queue

model, illustrated as below:

 33

20 21

1 9 1 5
21 22

22 23 9 12 5 9
23 24

12 14 9 13
14 16

13 17

2n 2n+1

Note: From the left to the right, they are Power2 Queue, UpdownTriangle Queue and
Even Queue respectively. And the numbers listed on their edges means its width on
that layer, for example [2n , 2n+1).

Figure 3-3. Three scheduling queue models

The Power2 scheduling queue and the Even scheduling queue are expandable queues,

therefore both of them beat the UpdownTriangle scheduling queue in terms of flexibility.

The middle queue model width is really constrained by the all the possible jobs’

processing times. But this is just one aspect of comparing these models; they also show

their different efforts during the scheduling. Super-ASH allows the HOAs to select more

than one model to schedule their jobs if they are not sure which one they should choose.

If you do not specify a choice, Super-ASH will pick the Power2 scheduling model as its

default.

The following code implements the Power2, Even and UpdownTriangle queues in the

Super-ASH algorithm:

 public static void setQueueModel(int model)
 {

 34

 if (model >= POWER2 && model <= EVEN)
 queueModel = model;

 }

 public int getJobLevel(int pocessingTime)
 {
 int jobLevel;

 if (queueModel == POWER2)
 jobLevel = getPower2JobLevel(pocessingTime);
 else if (queueModel ==UPDOWNTRIANGLE)
 jobLevel = getTriangleJobLevel(pocessingTime);
 else
 jobLevel = getEvenJobLevel(pocessingTime);
 return (jobLevel);
 }

 private int getPower2JobLevel(int pocessingTime)
 {
 int jobLevel = 1;
 while (pocessingTime >= (int)Math. pow(2. 0, (double)jobLevel))
 {
 jobLevel++;
 }
 Return (jobLevel);
 }

 private int getTriangleJobLevel(int pocessingTime)
 {
 int jobLevel;

 if(pocessingTime<9)
 {
 jobLevel = 1;
 }
 else if(pocessingTime<12)
 {
 jobLevel = 2;
 }

 35

 else if(pocessingTime<14)
 {
 jobLevel = 3;
 }
 else
 {
 jobLevel = 4;
 }
 Return (jobLevel);
 }

 private int getEvenJobLevel(int pocessingTime)
 {
 int jobLevel;

 if(pocessingTime < 1)
 {
 jobLevel = 1;
 }
 else
 {
 jobLevel = (pocessingTime - 1) / 4 + 1;
 }
 Return (jobLevel);
 }

Because job-scheduling performance is highly job dependent, none of these three

scheduling queue models stand out from the others under arbitrary conditions.

Nevertheless, there are still strategies for making a good choice among these three. This

will be demonstrated in Section 4.

3. 4. 3 Statistical Results and Other Display Options

As mentioned before, there are many choices to be made by the HOAs before scheduling.

If the HOAs do not have a concept of Super-ASH is doing, the whole scheduling process

is an absolute black box. Therefore, there is no way to help them determine what options

 36

to set for will cause better scheduling performance. In order to guide the user, Super-ASH

offers a series of statistical results and mid-procedure results display options, such as the

average flow time, actual average stretch, release job table, every contractor’s scheduling

time flow, etc. The users can choose to define interval variables used by the scheduling

for scheduler, such as the budget interval and amount. The algorithm may appear as a

black box, but the complete scheduling process, from the beginning to the end, is actually

transparent and traceable. To understand better, the snapshots below will give the overall

picture of the process flow of Super-ASH scheduling:

Figure 3-4. Step one: display the current HOAs’ job type table

This Job Type Table is modified and maintained by the homeowner associations. It

includes the job type name, job type ID, minimum and maximum process times,

minimum and maximum costs. This table is an important reference for HOAs in

configuring their schedulers.

 37

 Release jobs under the current budget setting, $2000 per 15 days

Figure 3-5. Step two: show the partial HOAs’ release table based on budget (15, 2000)

At the top of the HOA Job Release Table, the current budget interval and amount are

shown. There are eleven columns in the table. They are unique job ID, job type name, job

priority number (“1” for emergency, “0” for normal), job cost, receive time, process time,

start time, complete time, finish time, and actual finish time respectively. Since these jobs

are waiting in the queue to be released to corresponding contractors, they do not have a

start time, complete time, and (actual) finish time. Thus they are all initialized as “0”.

Each job’s release time is given by the releasing procedure Figure 3-1.

 38

Figure 3-6. Step three: display the categorized scheduling results

The released jobs are then sent to different contractors. The contractors will start the

schedulers and schedule the classified jobs. The scheduling results will be shown as

above. Because of the page limitation, we truncate one of contractors’-Roofing

scheduling results. The table shows the scheduling method and the applied queue model,

followed by categorized scheduling results. The results list each job’s start time, complete

time, and (actual) finish time. This information demonstrates the final results of each

contractor, yet it does not show how each job processes. In step 4, it gives the full picture

on each job process.

Since Super-ASH acts as a job scheduler simulator, it will schedule every released job

until all of them to be scheduled. So, if you would like to check the number of jobs is left

 39

in the system at the end of each simulation at certain time slot, you can simply check the

scheduling results table and their complete times. Based on their complete times, it is

really easy to figure out how many jobs still waiting in the queue.

Figure 3-7. Step four: display the categorized s

The categorized scheduling time flow gives detailed inform

column stands for the time slots, and the right column stan

 40
more...

cheduling time flow

ation on each job. The left

ds for the job ID.

Figure 3-8. Step five: display the categorized scheduling statistics results

The last step, step 5, will give categorized scheduling results which shows the AFT,

AAFT, AS and AAS based on the all the scheduled jobs in a certain time period, in this

example, it shows the scheduling results yearly. In each category, there are the number

jobs completed in each year, and the (actual) average flow time, and the (actual) averag

stretch of each year. Additionally, the overall (actual) average flow time and (actual)

average stretch are demonstrated at the end.

The above steps are the regular default steps. If the HOAs would like to compare the

different results under different configurations, they also can make multiple

configurations as needed, such as setting the budget as (15, 5000) or (30, 10000) at the

same time. The flexibility in Super-ASH will be explored in the following sections.

 41
more...

 of

e

3. 5 Super-ASH Algorithm

3. 5. 1 Super-ASH Overview

Super-ASH combines various mathematical models for achieving efficient scheduling

results with respect to the Average Flow Time, Actual Average Flow Time, Average

Stretch and Actual Average Stretch. Also, it got rid of some potentially inapplicable

assumptions, such as the jobs’ same arrival times, the job unit process time, and so on.

Super-ASH considers the jobs exactly as they appear in the real application, such as

arbitrary arrival time, various process time, different expenses of each job, several

contractors to make the job process parallelizable etc. Therefore, this is a scheduling

algorithm that is more appropriate for dealing with HOAs’ realistic data compared with

original FIFO, SPTF and Greedy unit task scheduling algorithms.

Besides its applicability, another outstanding characteristic is its flexibility. It allows the

HOAs to configure Super-ASH in different ways based on their own conditions and

regulations. They can modify the job type table based on their association’s own

experience, change the budget interval and amounts depending on the facts, and select the

appropriate scheduling queue model for different types of jobs in order to get better

scheduling performance.

3. 5. 2 Class Organization

There are nine major classes in Super-ASH implementation. They are JobAdministrator,

ScheduleSimulator, Job, Jobtype, JobQueue, JobGroup, FIFO_Scheduler,

SFP_Scheduler and ASH-Scheduler. JobAdmnistrator manages all job groups in a job

 42

type table and releases those jobs according to the budget; then it classifies the released

jobs into each job group. ScheduleSimulator simulates the homeowners’ requests and

generates repair jobs, then selects the scheduler type and display options. The Job class

maintains all attributes of a job, including job basic attributes such as job type, start time,

and finish time. Job class has methods for running at a specific time, for sorting jobs in a

collection and for displaying job attributes. The JobType class maintains all attributes of a

job type, including process time and cost range for a specific job type. The JobQueue

class holds a sequence of Jobs. A JobGroup is associated with a job type. The JobGroup

class holds all jobs of a type. Each job group makes its schedule independently with

various algorithms. FIFO_Scheduler, SFP_Scheduler and ASH-Scheduler are the three

schedulers used for job scheduling.

The relationship among them is shown as follows:

 43

Figure 3-9. Super-ASH class organization

 44

4. EXPERIMENTS and ANALYSIS

This project aims to develop a configurable scheduling algorithm by getting rid of some

potential assumptions and taking the real application parameters into consideration.

Therefore, the test cases are designed to verify these two aspects of the algorithm as well

as the performance. For the purposes of comparison, we added two more original

scheduling algorithms – FIFO and SPTF into the test cases.

4. 1 Discoveries in Experiments

The complete test case plan is divided into two parts: a white box test and a black box

test. The white box test is a code-based testing. That is, all the tests are based on the

understanding of the code. In the white box test, we focus on the precision and accuracy

of the scheduling results. Most of the white box tests focused on code debugging and

brainstorming, and then the details skipped in this paper. We will reveal some interesting

discoveries in black box test cases and results.

The black box tests we re-subdivided it into five categories: job number tests, job cost

tests, budget interval and amounts tests, scheduling model tests, and yearly performance

tests. To make the results clear on what issues are compared, we only chose to test two

types of jobs, roofing and electricity. Because these present two extreme conditions and

cover almost all the possibilities, we only listed and calculated the roofing and electricity

jobs in our tests. The roofing jobs are the long period time jobs with high costs, and the

electricity jobs are the short period time jobs with low costs.

 45

4. 1. 1 Number of Jobs

In Super-ASH, jobs can arrive at arbitrary times. So it is impossible to directly set the

number of incoming jobs. In order to figure out the performance under a different number

of jobs, we changed the time period to change the number of jobs. And the time

parameter is treated as the number of days. In increasing order, we set the time as 5 days,

10 days, one month, a half year and one year, and the number of the jobs ranged from 10

to 1,000. The test sample data and diagram are shown in Table and Figures 4-1, 4-2 and

4-3.

4. 1. 2 Cost of Jobs

The budget is a critical issue in the HOA problem. If the budget is not sufficient to afford

a job, then the job must not to be sent to the contractor until there is enough in the budget

to cover the payments. If the job’s cost is very high, the time period to wait for the

deposit into the budget account will be relatively longer than low cost jobs. The actual

average flow time (AAFT) is equal to ∑ =
+′n

in 1 ii 1)}r -c {(1 and the actual average stretch

(AAS) is ∑ =

+′
n

in 1
i

ii }
p

1)r -c ({1 where ′
ir stands for the HOAs release time, the r really

affects Super-ASH’s actual performance. If it is postponed for a long time, the value of

Actual Average Flow Time and Actual Average Stretch will rise. Therefore, different

costs of jobs affect our objectives – minimal Actual Average Flow Time and Actual

Average Stretch.

′
i

 46

Since roofing is the most expensive job class and electricity is the lowest cost job class,

they are used to distinguish the performance differences. As shown in the job type table,

the roofing costs range from $300 to $10,000 and the electricity costs range from $50 to

$1,250. For the low-cost jobs table, it shows the scheduling results on electricity jobs-low

cost job. And the high-cost jobs table demonstrates the results of only scheduling the high

cost jobs-roofing. The detailed results are shown in three parts, low-cost jobs, high-cost

jobs, and combination of low-cost jobs and high-cost jobs.

I. Low-Cost Jobs:

Average : Low-Cost-Time-5
 Budget [15, 5000] Budget [30, 10,000]
 ASH_P2 ASH_Tr ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF

A.F.T 35. 63 34. 33 33. 57 45. 91 37. 91 39. 23 38. 41 37. 17 50. 00 36. 43
A.A.F.T 39. 72 38. 41 37. 66 50. 00 42. 00 39. 23 38. 41 37. 17 50. 02 36. 43

A.S 4. 11 4. 28 3. 61 9. 07 4. 00 4. 60 5. 056 4. 13 9. 84 3. 88
A.A.S 4. 88 5. 06 4. 38 9. 84 4. 78 4. 60 5. 056 4. 11 9. 84 3. 88

Table 4-1. Low cost jobs with time 5 scheduling statistical results

Low-Time-5 & [15,5000]

0
10
20
30
40
50
60

ASH_P2 ASH_Tri ASH_Even FIFO SPF

A.F.T A.A.F.T A.S A.A.S

Low-Time-5 & [30,10000]

0
10
20
30
40
50
60

ASH_P2 ASH_Tri ASH_Even FIFO SPF

A.F.T A.A.F.T A.S A.A.S

Figure 4-1. Visualization on low cost jobs with time 5 scheduling results
Note: The number on Y-axis stands for processing time units per job if it represents AFT
or AAFT. Otherwise, the number on Y-axis stands for the ratio if it presents AS or AAS.

It is clear that Super-ASH is better than the FIFO and SPTF in terms of the Average Flow

Time, Actual Average Flow Time, Average Stretch and Actual Average Stretch. The

 47

Even queue model beats the Power2 and UpdownTriangle models with respect to the

performance. FIFO is the worst example among the schedulers.

II. High-Cost Jobs:

Average : High-Cost-Time-5

 Budget [15, 5000] Budget [30, 10,000]
 ASH_P2 ASH_Tri ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF

A.F.T 8. 84 8. 72 8. 72 9. 65 82. 21 10. 31 10. 35 10. 25 11. 77 74. 47
A.A.F.T 86. 53 86. 41 86. 41 87. 34 159. 90 86. 58 86. 61 86. 51 88. 04 150. 73

A.S 1. 26 1. 24 1. 24 1. 85 12. 63 1. 60 1. 66 1. 60 2. 39 11. 40
A.A.S 20. 79 20. 77 20. 77 21. 38 32. 15 19. 75 19. 80 19. 74 20. 54 29. 54

Table 4-2. High cost jobs with Time 5 scheduling statistical results

High-Time-5 & [15, 5000]

0

50

100

150

200

ASH_P2 ASH_Tri ASH_Even FIFO SPF

A.F.T A.A.F.T A.S A.A.S

High-Time-5 & [30, 10000]

0
20
40
60
80

100
120
140
160

ASH_P2 ASH_Tri ASH_Even FIFO SPF

A.F.T A.A.F.T A.S A.A.S

Figure 4-2. Visualization on high cost jobs with time 5 scheduling results
Note: The number on Y-axis stands for processing time units per job if it represents AFT
or AAFT. Otherwise, the number on Y-axis stands for the ratio if it presents AS or AAS.

As with the low-cost jobs test result, Super-ASH is the best one in relation to scheduling

performance. It always has the lowest value in Average Flow Time, Actual Average Flow

Time, Average Stretch and Actual Average Stretch compared with FIFO and SPTF. One

difference from the low-cost job scheduling performance result is that SPTF becomes the

worst scheduler instead of FIFO. Moreover, for high cost jobs there is a big gap between

AFT and AAFT, AS and AAS. Because of the effects on the budget, the difference

 48

between release time and receive time grows with respect to low cost jobs. Additionally,

the Super-ASH even queue model performed less well in low-cost job scheduling.

III. Mixed Cost Jobs:

Average : Mix-Cost-Time-5
 Budget (15, 5000) Budget (30, 10,000)
 ASH_P2 ASH_Tr ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF

A.F.T 14. 48 14. 34 14. 11 16. 48 48. 94 16. 66 16. 64 16. 33 19. 39 44. 48
A.A.F.T 48. 18 48. 04 47. 81 50. 19 82. 64 42. 64 42. 63 42. 32 45. 38 70. 47

A.S 2. 05 2. 15 1. 98 3. 39 6. 31 2. 11 2. 34 2. 12 4. 22 5. 44
A.A.S 12. 52 12. 62 12. 46 13. 86 16. 78 9. 82 10. 04 9. 82 11. 93 13. 15

Table 4-3. Mix cost jobs with Time 5 scheduling statistical results

Mix-Time-5 & [15, 5000]

0
20
40
60
80

100

ASH_P2 ASH_Tri ASH_Even FIFO SPF

A.F.T A.A.F.T A.S A.A.S

Mix-Time-5 & [30, 10000]

0

20

40

60

80

ASH_P2 ASH_Tri ASH_Even FIFO SPF

A.F.T A.A.F.T A.S A.A.S

Figure 4-3. Visualization on mix cost jobs with time 5 scheduling results
Note: The number on Y-axis stands for processing time units per job if it represents AFT
or AAFT. Otherwise, the number on Y-axis stands for the ratio if it presents AS or AAS.

Super-ASH is still the best scheduler with the best scheduling performance in the three

test cases. SPTF is the worst scheduler due to its poor performance in scheduling the high

cost jobs. The difference between Average Flow Time and Actual Average Flow Tim &

Average Stretch and Actual Average Stretch is smaller than the high cost jobs and greater

than the low cost jobs.

 49

4. 1. 3 Intervals and Budget Amounts

As we mentioned in the previous section, the budget does affect AAF and AAS. It works

on the Actual Average Flow Time and Actual Average Stretch in two distinct ways:

intervals and amounts. The interval presents how often the budget will be recharged, and

the amount stands for how much the budget account was filled. If the budget account

were refilled as frequently as possible and as much as possible, there would be no job

delayed by the HOA because of insufficient funds. As a result, the ′
ir will equal to the ri

and the Actual Average Flow Time will equal to the Average Flow Time and Actual

Average Stretch will be the same as Average Stretch.

This part was tested under two conditions: same amount, different intervals; same

interval, different amounts. We wrote these conditions as an ordered pair, for example

(15, 5000), it means $5,000 budget amounts added into HOA's budget account every 15

days. The same amount, different intervals cases are (30, 10000), (15, 5000), (6, 2000)

and (3, 1000). The same interval, different amounts cases are (6, 2000), (6, 5000), (6,

10000) and (6, 100000) respectively. In order to show the distinct difference, we

exaggerated the job generation frequency, that is, we tested the scheduling results based

on certain extreme conditions, such as the roofing jobs happens twice a day. Therefore,

some of the data is super high that cannot really present the ASH performance.

The four tables of data obtained from the scheduling are from the same one hundred and

one jobs. And these jobs are from two types of job: roofing and electricity. As we said

before, the two types of jobs covered almost all the possibilities regarding the generation

 50

of jobs. As illustrated in the following table, we set the same amounts as $10,000 and its

intervals are 30, 15, 6 and 3. The same interval is 6 and its amounts are $2,000, $5,000,

$10,000 and $100,000. Because of the space limitation, the table under one condition is

split into two parts, and they are marked as “1” and “2”.

High Cost - Same Amounts Different Intervals -1

 Budget (30, 10000) Budget (15, 5000)

 ASH_P2 ASH_Tr ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF
A.F.T 13. 86 13. 78 13. 78 13. 78 13. 76 11. 86 11. 81 11. 81 11. 81 11. 81

A.A.F.T 423. 07 422. 98 422. 98 422. 98 422. 97 356. 84 356. 79 356. 79 356. 79 356. 79
A.S 1. 57 1. 55 1. 55 1. 55 1. 55 1. 34 1. 33 1. 33 1. 33 1. 33

A.A.S 58. 42 58. 40 58. 40 58. 40 58. 40 49. 19 49. 18 49. 18 49. 18 49. 18
High Cost - Same Amounts Different Intervals – 2

 Budget (6, 2000) Budget (3, 1000)

 ASH_P2 ASH_Tr ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF
A.F.T 12. 31 12. 05 12. 05 12. 05 12. 05 19. 62 19. 34 19. 34 19. 34 19. 34

A.A.F.T 363. 59 363. 33 363. 33 363. 33 363. 33 377. 67 377. 40 377. 40 377. 40 377. 40
A.S 1. 41 1. 36 1. 36 1. 36 1. 36 2. 17 2. 13 2. 13 2. 13 2. 13

A.A.S 50. 85 50. 80 50. 80 50. 80 50. 80 52. 36 52. 32 52. 32 52. 32 52. 32

Table 4-4. Same amounts and different intervals for high cost jobs

Same amounts $10,000- High Cost Jobs

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

Budget [30, 10000] Budget [15, 5000] Budget [6, 2000] Budget [3, 1000]

A.F.T A.A.F.T A.S A.A.S

Figure 4-4-1. Same amounts $10,000 different intervals for high cost jobs
Note: The number on Y-axis stands for processing time units per job if it represents AFT
or AAFT. Otherwise, the number on Y-axis stands for the ratio if it presents AS or AAS.

 51

Figure 4-4-2. Same amounts different intervals for high cost jobs - AFT, AAFT. AS
and AAS

Note: The number on Y-axis stands for processing time units per job if it represents AFT
or AAFT. Otherwise, the number on Y-axis stands for the ratio if it presents AS or AAS.

Although the amounts are the same $10,000, we can get different scheduling performance

by setting different intervals. Budget (15, 5000) is the best setting over the others. The

appropriate deposit frequency and amount is the best choice for high cost jobs.

Low Cost - Same Amounts Different Intervals -1

 Budget (30, 10000) Budget (15, 5000)

 ASH_P2 ASH_Tr ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF

A.F.T 13. 51 13. 11 13. 11 13. 11 13. 07 24. 02 23. 60 23. 60 23. 60 23. 56
A.A.F.T 306. 49 306. 09 306. 09 306. 09 306. 04 172. 67 172. 24 172. 24 172. 24 172. 20

A.S 1. 63 1. 56 1. 56 1. 56 1. 55 3. 17 3. 09 3. 09 3. 09 3. 08
A.A.S 85. 02 84. 95 84. 95 84. 95 84. 94 43. 21 43. 13 43. 13 43. 13 43. 12

Low Cost - Same Amounts Different Intervals - 2

 Budget (6, 2000) Budget (3, 1000)

 ASH_P2 ASH_Tr ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF

A.F.T 62. 20 60. 53 60. 47 60. 47 60. 20 67. 16 64. 02 63. 91 63. 91 63. 58
A.A.F.T 153. 33 151. 67 151. 60 151. 60 151. 33 140. 96 137. 82 137. 71 137. 71 137. 38

A.S 6. 93 6. 62 6. 61 6. 61 6. 53 7. 08 6. 48 6. 46 6. 46 6. 39
A.A.S 30. 91 30. 59 30. 58 30. 58 30. 50 26. 10 25. 50 25. 49 25. 49 25. 41

Table 4-5. Same amounts and different intervals for low cost jobs

 52

Same Amounts $10,000 - Low Cost Jobs

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

AS
H_

P2

AS
H-

tri

AS
H-

ev

FI
FO SP

F

AS
H-

p2

AS
H-

tri

AS
H-

ev

FI
FO SP

F

AS
H-

p2

AS
H-

tri

AS
H-

ev

FI
FO SP

F

AS
H-

p2

AS
H-

tri

AS
H-

ev

FI
FO SP

F

Budget [30, 10000] Budget [15, 5000] Budget [6, 2000] Budget [3, 1000]

A.F.T A.A.F.T A.S A.A.S

Figure 4-5-1. Same amounts $10,000 different intervals for low cost jobs
Note: The number on Y-axis stands for processing time units per job if it represents AFT
or AAFT. Otherwise, the number on Y-axis stands for the ratio if it presents AS or AAS.

Figure 4-5-2. Same amounts $10,000 different intervals for low cost jobs with AFT,
AAFT, AS and AAS

Note: The number on Y-axis stands for processing time units per job if it represents AFT
or AAFT. Otherwise, the number on Y-axis stands for the ratio if it presents AS or AAS.

 53

Compared with the high cost job scheduling, the low cost job scheduling is more

sensitive to the changes in the deposit frequency and amount. Adding to the budget more

frequently will result in better scheduling performance. With more frequently added

funds, the difference between AFT and AAFT, AS and AAS gets smaller.

High Cost - Same Intervals Different Amounts -1

 Budget (6, 2000) Budget (6, 5000)

 ASH_P2 ASH_Tr ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF

A.F.T 14. 21 13. 98 13. 98 13. 98 13. 98 93. 97 93. 07 93. 02 93. 02 92. 72
A.A.F.T 368. 79 368. 57 368. 57 368. 57 368. 57 227. 29 226. 40 226. 34 226. 34 226. 05

A.S 1. 59 1. 55 1. 55 1. 55 1. 55 9. 42 9. 25 9. 25 9. 25 9. 19
A.A.S 51. 48 51. 44 51. 44 51. 44 51. 44 27. 67 27. 50 27. 50 27. 50 27. 44

High Cost - Same Intervals Different Amounts -2

 Budget (6, 10000) Budget (6, 100000)

 ASH_P2 ASH_Tr ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF

A.F.T 145. 48 139. 67 139. 34 139. 34 138. 33 207. 67 199. 41 198. 28 198. 28 196. 66
A.A.F.T 214. 50 208. 69 208. 36 208. 36 207. 34 207. 67 199. 41 198. 28 198. 28 196. 66

A.S 14. 48 13. 38 13. 28 13. 28 13. 07 21. 73 20. 18 19. 81 19. 81 19. 46
A.A.S 24. 05 22. 95 22. 85 22. 85 22. 64 21. 73 20. 18 19. 81 19. 81 19. 46

Table 4-6. Same intervals and different amounts for high cost jobs

Same Interval - 6 High Cost

0.00
50.00

100.00
150.00
200.00
250.00
300.00
350.00
400.00

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

Budget [6, 2000] Budget [6, 5000] Budget [6, 10000] Budget [6, 100000]

A.F.T A.A.F.T A.S A.A.S

Figure 4-6-1. Same interval 6 different amounts for high cost jobs

 54

Figure 4-6-2. Same interval 6 different amounts for high cost jobs with AAFT, AFT,
AS and AAS

Note: The number on Y-axis stands for processing time units per job if it represents AFT
or AAFT. Otherwise, the number on Y-axis stands for the ratio if it presents AS or AAS.

Obvious performance improvement appears from the budget (6, 2000) to the budget (6,

5000). Slight changes are seen in the budgets (6, 10000), (6, 1000000). Both AFT and

AS increase as the amount increases, and AFT equals to AAFT, AS equals to AAS when

the amount in the budget is enough to pay off all incoming jobs. In other words, the job

release times are equal to their receive times. Moreover, the AFT will increase with the

increment in the amount because more jobs get into the contractor’s ready queue will

generate more competition and longer waiting time in the ready queue.

Unlike the previous test cases, Super-ASH cannot beat the other scheduling algorithms in

this extreme case. However, so far, it still has a good overall average performance.

 55

Low Cost - Same Intervals Different Amounts -1

 Budget (6, 2000) Budget (6, 5000)

 ASH_P2 ASH_Tr ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF

A.F.T 67. 24 64. 64 64. 58 64. 58 64. 29 80. 76 77. 82 77. 69 77. 69 77. 20
A.A.F.T 158. 84 156. 24 156. 18 156. 18 155. 89 127. 96 125. 02 124. 89 124. 89 124. 40

A.S 7. 37 6. 87 6. 86 6. 86 6. 79 8. 76 8. 20 8. 18 8. 18 8. 07
A.A.S 31. 52 31. 02 31. 01 31. 01 30. 94 21. 70 21. 14 21. 12 21. 12 21. 01

Low Cost - Same Intervals Different Amounts -2

 Budget (6, 10000) Budget (6, 100000)

 ASH_P2 ASH_Tr ASH_Ev FIFO SPF ASH_P2 ASH_Tr ASH_Ev FIFO SPF

A.F.T 84. 40 82. 02 81. 93 81. 93 81. 38 114. 53 107. 38 106. 38 106. 38 105. 64
A.A.F.T 127. 69 125. 31 125. 22 125. 22 124. 67 114. 53 107. 38 106. 38 106. 38 105. 64

A.S 8. 83 8. 37 8. 35 8. 35 8. 24 12. 44 11. 07 10. 71 10. 71 10. 54
A.A.S 21. 75 21. 28 21. 27 21. 27 21. 15 12. 44 11. 07 10. 71 10. 71 10. 54

Table 4-7. Same intervals and different amounts for low cost jobs

Low Cost Same interval - 6

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

A
SH

-p
2

A
SH

-tr
i

A
SH

-e
v

FI
FO SP

F

Budget [6, 2000] Budget [6, 5000] Budget [6, 10000] Budget [6, 100000]

A.F.T A.A.F.T A.S A.A.S

Figure 4-7-1. Same interval 6 different amounts for low cost jobs
Note: The number on Y-axis stands for processing time units per job if it represents AFT
or AAFT. Otherwise, the number on Y-axis stands for the ratio if it presents AS or AAS.

 56

Figure 4-7-2. Same interval 6 different amounts for low cost jobs with AAFT, AFT,
AS and AAS

Note: The number on Y-axis stands for processing time units per job if it represents AFT
or AAFT. Otherwise, the number on Y-axis stands for the ratio if it presents AS or AAS.

In case of low cost jobs, an increased budget amount does not improve the scheduling

performance. But, it still works to decrease the difference between actual average flow

time/stretch and average flow time/stretch. The small interval made Super-ASH lose its

outstanding performance among those scheduling algorithms.

Another obvious fact is that the performance will be improved by increasing the initiation

amounts in HOAs account. So, if the HOAs can ask the homeowners to prepay the

homeowner association fees, it can also help the ASH achieve better AAFT and AAS.

 57

4. 1. 4 Different Scheduling Queue Models

Power2, UpdownTriangle and Even are the three models used during the whole process

of testing. They have been tested under all of the above conditions, such as different

number of jobs, different budget intervals and amounts, different type of jobs and so on.

The differences between the models’ shapes are demonstrated by their different

characteristics. The most important reason why their performances differ is the queue

level classification. Each queue model has its own different level definitions, such as the

Power2 queue model, its 1st level is defined as [1,2), and 2nd level is defined as [2,4) and

so on. Different levels have different priorities, the lowest numbered level with the

highest priority and the highest numbered level with the lowest priority. Every time the

scheduler goes through the ready-to-process queue it prioritizes jobs from the lowest

numbered level to the highest numbered level. If there are always jobs in the lowest

numbered level, then the jobs in the higher numbered level will starve. Therefore, a

design based on the width of each level and the shape of the queue will make the

scheduler behave differently during the processing procedure.

The detailed sample test results are shown in the above Tables and Figures 4-1, 4-2 and

4-3. They are divided into three parts: low-cost jobs, high-cost jobs and the mixed-cost

jobs.

4. 1. 5 Yearly Performance Comparison

To evaluate whether an algorithm is applicable or not depends on not only its current

performance (performance in a short time period) but its long term overall performance

 58

and performance trend changes. If this trend is exponential, it means the jobs in the

waiting queue can never be finished. It is surely unfavorable one. If the performance

trend sticks around certain expected value, it is favorable performance trend. Our tests

covered a span of one hundred years on different kinds of jobs under different conditions.

As we have said before, job scheduler performance is closely related to the incoming

jobs. To get the realistic yearly performance test results, we developed a simulator to

randomly generate the repair jobs at a given frequency. Different aveRxInterval and

IntervalDelta can change the frequency. The code where this is handled is below:

 … type = admin. getJobType(name);
 if(type != null)
 {

aveProcTime = (type. getMinProcTime() + type.
getMaxProcTime()) / 2;

 aveRxInterval = aveProcTime * 5 / 4;
 IntervalDelta = aveRxInterval / 2;
 time = randomCount. nextInt(3) + 1;
 while(time <= term)
 {
 admin. addJob(time, type);
 time += aveRxInterval
 + randomCount. nextInt(IntervalDelta * 2) + 1
 - IntervalDelta;
 }
 }
 else
 System. out. println("\r\n" + name + "job type is not found!"); ….

The yearly performance test is performed over 4594 jobs that include 3843 electricity

jobs and 751 roofing jobs over one hundred years. In addition, all the scheduling is under

the budget with interval 15 and an amount of $5,000.

 59

Yearly Performance Test on Super-ASH Power 2

Elec 1st 2nd 3rd 4th 5th 6th 7th

… 97th 98th 99th 100th

A.F.T 10. 82 9. 17 10. 15 8. 36 10. 19 7. 16 8. 58 … 9. 78 7. 23 10. 27 9. 32
A.A.F.T 11. 13 9. 17 10. 15 8. 36 10. 19 7. 16 8. 58 … 9. 78 7. 23 10. 27 9. 32

A.S 1. 81 1. 61 1. 89 1. 55 1. 66 1. 30 1. 23 … 1. 33 1. 23 1. 67 1. 35
A.A.S 1. 96 1. 61 1. 89 1. 55 1. 66 1. 30 1. 23 … 1. 33 1. 23 1. 67 1. 35

Table 4-8 Yearly performance test on high competition jobs

Super-ASH Performance on High Competition Jobs

0.00

5.00

10.00

15.00

20.00

25.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
Year

AFT AAFT AS AAS

Figure 4-8 Yearly performance test on high competition Jobs

The performance varies with changes in incoming jobs as shown above. This

demonstrates an unpredictable performance change trend. Moreover, the budget (15,

5,000) can satisfy the low cost jobs; the budget will not delay the low cost jobs, so it

avoids big gaps between the actual average flow time/stretch and the average flow

time/stretch.

Yearly Performance Test on Super-ASH Power 2

Roof 1st 2nd 3rd 4th 5th 6th 7th

… 97th 98th 99th 100th

A.F.T 9. 00 8. 17 8. 71 7. 88 7. 75 9. 11 7. 67 … 9. 11 9. 00 9. 14 10. 38
A.A.F.T 10. 88 8. 17 8. 71 7. 88 7. 75 9. 11 7. 67 … 9. 11 9. 00 9. 14 10. 38

A.S 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 … 1. 00 1. 00 1. 00 1. 00
A.A.S 1. 17 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 … 1. 00 1. 00 1. 00 1. 00

Table 4-9 Yearly performance test on low competition jobs

 60

Super-ASH Performance on Low Competition Jobs

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100
Year

AFT AAFT AS AAS

 Figure 4-9 Yearly Performance test on low competition jobs

However, the budget (15, 5,000) is insufficient to pay off all high cost jobs, and many of

the jobs cannot be completed in one year and are thus delayed until the next year.

Consequently, the scheduling burden grows heavier as more high cost jobs are postponed.

Fortunately, HOAs usually have enough funds to feed those high cost jobs, and as a

matter a fact, the high cost jobs do not really high appearance frequency so that HOAs

cannot afford the expense. So, the pressure on high cost jobs scheduling is not serious, as

Figures 4-9 shows.

4. 2 Test Results Analysis

As shown in Section 4. 1. 2, Super-ASH always stands out from the classical scheduling

algorithms FIFO and SPTF no matter which queue model is chosen. With an increase in

the job numbers, all the performance variables values increase especially the AAF and

 61

AAS . That is, the gaps between AF and AAF, AS and AAS increase in size. Some

reasons for this are:

• An insufficient budget cannot afford all of the jobs, and some of the jobs release

times are delayed;

• The jobs’ costs are so high that the budget cannot take over all of them at the

same time;

• The emergency jobs (priority =1) skew the budgets and keep all other jobs

waiting until they can proceed.

As demonstrated in the Section 4. 2. 2, the AAF and AAS are highly affected by budget

intervals and amount. Nevertheless, the budget does not affect AF and AS that much

compared with actual performance variables. If we can set the budget interval small

enough and budget amount high enough, the AAF, AAS will be equal to AF and AS

respectively. As a result, the overall performance will be the same as the individual

contractor schedulers.

The yearly performance test results proved that Super-ASH has a favorite change trend

on AAF, AAS, AF and AS with respect to the yearly comparisons. Moreover, Super-

ASH can beat the original scheduling algorithms FIFO and SPTF under various tests

including the long term one. Thus, this is a worthwhile scheduling algorithm in the

HOAs’ domain.

 62

5. CONCLUSION and FUTURE WORK

First of all, we can see that scheduling performance is highly job dependent. Even the

Super-ASH algorithm with its configuration options set correctly cannot be guaranteed to

perform well on all job sequences. As far as is known, from our studies there is no one set

of rigid configuration data that can achieve the best performance under arbitrary

conditions. However, this does not mean there is no way to make a set of smart

configurations to try to optimize performance. Experience and knowledge of the received

or the coming jobs will greatly benefit the scheduling performance. With accumulated

experience and knowledge of the repair jobs, the job type table will be more accurate and

applicable. If we set the costs of the jobs more-than their actual costs, then the budget

will not be able to release as many as possible jobs to the contractors as early as possible.

If we set the costs of the jobs less-then their actual costs, and then the budget cannot

afford those jobs we released. Both wrong estimates of the job cost will cause

unfavorable scheduling results. On the other hand, we can dramatically improve the

scheduling performance by accurately estimate repair jobs’ costs.

Also, experience and knowledge of those repair jobs can help the homeowner

associations to make a good classification of the jobs. So far, there are only two

categories to distinguish the jobs, emergency ones and normal ones. If they can apply

their experience and knowledge to better classify those jobs in terms of their actual

priorities, they can get more elaborate and more efficient scheduling results.

 63

Therefore, the most effective way to improve Super-ASH will depend on this heuristic

method applied during the scheduling process. Applying the heuristic strategy can help

an HOA to accumulate the knowledge about the processed and processing jobs; as a

result, it makes the future jobs more predictable. This is also the way to help HOAs to

build up an applicable and precise job type table. Heuristic queue model generation can

be another way to improve Super-ASH. It can help HOAs to pick the appropriate

scheduling queue model depending on processing times without any experience from the

HOAs as a requirement.

 64

6. ASH User’s Guide

6.1 Creating Job Type Table

The Job Type Table is maintained and updated by the Homeowner Associations, it

includes the job type name, job ID, job maximum cost, job minimum cost, job maximum

process time and job minimum process time. There are two ways to create the job type

table; either by clicking the “Add” button in “Type” category to add types of job one by

one, or by just clicking the “Gen” button in “Type” category to generate the job type

table for you. The screen shots below illustrate this:

Figure 6-1-1. Job Type Table without adding any job types

To create a Job Type Table by adding the job type one by one, you can click the “Add”

button in the “Type” category. The screen shot shows the edit window once you click the

“Add” button:

 65

Figure 6-1-2. Add job type one by one once click the “Add” button in “Type” category

In this window, you can edit the job “Type name”, “Minimum Process Time”,

“Maximum Process Time”, “Minimum Cost” and “ Maximum Cost”. After you finish the

editing, you can click “OK” button to proceed; or you can click “Cancel” button to cancel

the adding action.

Figure 6-1-3. The created Job Type Table after one by one “Add” and default
generator

 66

6.2 Creating Job List

After creating the Job Type Table, we need to use the “Job Type Table” as the reference

to generate the “Job List”. There are also two buttons in the “Job” field, that is, “Add”

and “Gen”. It is capable of adding jobs one by one with “Add” steps, or just clicks the

“Gen” to generate a job list for you. The following figures will show you the detailed

steps:

 Figure 6-2-1. Adding jobs one by one

In the adding job step, you only need to edit the job “Receive Time” and pick the job type

from the scrolling list. Click the “OK” button to confirm the adding behavior. In this

example, one “Nursery” job with receive time “10” will be added into the job list table,

shown as below:

 67

Figure 6-2-2. One job added into the Job List

 Or you can use the job generator to help you generate a set of jobs by clicking the “Gen”

button in the “Job” field; the pop-up window will show as the following:

Figure 6-2-3. Using job generator to generate jobs

The “Time (months) ” means the time period you would like to create jobs. The

“Frequency (0..10)” stands for the frequency of the job appearance. The bigger number

means higher density of jobs will be generated. If it is “5”, it means the new job will

generate once the precious job is done. In this example, it asks the job generator to create

jobs in twelve months period of time. After setting the job generator two parameters, we

will get the following job list table:

 68

Figure 6-2-4. Job List table shows all the added and generated jobs

Once you get your job list table, you can still go back to reset your Job Type Table or add

some specific jobs as needed.

6.3 Choosing Scheduling Method

After setting up the Job Type Table and creating the Job List, it is time to choose the

scheduling method and edit the budget interval and amount by clicking the “Run” button

in the “Schedule” field.

 69

Figure 6-3-1. Make scheduling window for budgets and scheduling method setting

In this example, we set $5,000 deposit into the HOA every 15 days, and choose ASH-

Power2 as the current scheduling method. After everything is set, the “OK” button will

process the scheduling as our configurations.

Figure 6-3-2 Scheduling results based on the above configurations

 70

If you would like to go back and reset the budget and scheduling method based on the

same job list what we got from the first two steps, you can simply re-click the “Run”

button and reset as you want. Or you can start from the very beginning by click the

“Reset” button on the leftmost concern of Super-ASH window.

 71

REFERENCES

[Al90] A. Allen. Probability, Statistics, and Queueing Theory with Computer Science

Applications. Academic Press, inc. 1990.

[AL99] Susanne Albers, Stefano Leonardi, Online algorithm, Volume 31, Issue 3

 (September 1999) Article No. 4, 1999 ISSN:0360-0300.

[ATCH] Algorithms and Theory of Computation Handbook, page 10-17, 1999 by CRC

Press LLC. Appearing in the Dictionary of Computer Science, Engineering and

Technology, 2000 CRC Press LLC.

[BLMP04] B. Luca, L. Stefano, M. Alberto, P. Kirk, Semi-clairvoyant scheduling.

Theoretical Computer Science 324 (2004) 325 –335.

[BNR02] Allan Borodin, Morten N. Nielsen, Charles Rackoff, (Incremental) Priority

Algorithms, Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete

algorithms pp: 752 – 761, Year of Publication: 2002, ISBN:0-89871-513-X.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduction to

algorithms. MIT Press. 1990.

[EJ99] E. Jeff, Scheduling in the Dark, the full version of this paper appears at www. cs.

yorku. cs/jeff/researches, York University, Canada.

 72

[GKLL79] R. L. Graham,A. H. G. Rinnooy Kan. ,E. L. Lawler, J. K. Lenstra.

Optimization and approximation in deterministic sequencing and scheduling: survey.

Annuals of Discrete Mathematics, 5:287-326,1979.

[KSW] David Karger, Massachusetts Institute of Technology, Cliff Stein, Dartmouth

College, Joel Wein, Polytechnic University. Scheduling Algorithms. Lecture notes.

[MR95] M. Rajeev, R. Prabhakar, Randomized Algorithms, Cambridge University Press,

1995.

[NG02] Nutt G. Operating Systems – A Modern Perspective 2nd Edition LAB UPDATE

Year 2002.

[RP04] Ryan Porter, Mechanism design for online real-time scheduling, pp: 61 - 70, 2004

ISBN: 1-58113-711-0.

[SRRJ97] S. Muthukrishnan, R. Rajaraman, R. Shaheen, J. Gehrke, Online scheduling to

minimize average stretch, IEEE Symp. Foundations of Computer Science, 1997, pp 433 –

442.

 73

	TABLE OF CONTENTS
	LIST OF TABLES
	INTRODUCTION
	1. 1 Scheduling Problems
	1. 2 Define HOAs Scheduling Problem

	BACKGROUND and RELATED WORK
	2. 1 Performance Measures on Scheduling Algorithms
	2. 2 Original Scheduling Algorithms
	2. 2. 1 Greedy UnitTask Scheduling Algorithm
	
	
	
	
	Table 2-1. Schedule result for no job late for their deadlines
	Table 2-2. Schedule results for some jobs late for deadlines and got penalties

	2. 2. 2 First In First Out (FIFO)
	2. 2. 3 Shortest Processing Time First (SPTF)
	2. 2. 4 Semi-clairvoyant R algorithm (Sc-R)
	2. 2. 5 Comparisons on Sc-R, FIFO and SPTF
	
	
	
	
	Table 2-3. One example of the combinational scheduler scheduling results
	Table 2-4. Enumeration of some results on different number of jobs
	Figure 2-1. Visualized results comparison of table 4

	2. 3 Inspirations from Our Initial Research

	DESIGN and IMPLEMENTATION
	3. 1 Supplemental Constraints
	
	
	
	
	
	
	Figure 3-1. Two supplement constraints – priority

	3. 2 Job Type Table and Contractors
	
	
	
	
	
	
	Figure 3-2. Job type table and contractors

	3. 3 Configuration Objectives
	3. 4 Configuration Parameters
	3. 4. 1 Budget Intervals and Amounts
	3. 4. 2 Queue Models
	
	
	
	
	
	Figure 3-3. Three scheduling queue models

	3. 4. 3 Statistical Results and Other Display Options
	
	
	
	
	
	Figure 3-4. Step one: display the current HOAs’ j
	Figure 3-5. Step two: show the partial HOAs’ rele
	Figure 3-6. Step three: display the categorized scheduling results
	Figure 3-7. Step four: display the categorized scheduling time flow
	Figure 3-8. Step five: display the categorized scheduling statistics results

	3. 5 Super-ASH Algorithm
	3. 5. 1 Super-ASH Overview
	3. 5. 2 Class Organization
	
	
	
	
	
	Figure 3-9. Super-ASH class organization

	EXPERIMENTS and ANALYSIS
	4. 1 Discoveries in Experiments
	4. 1. 1 Number of Jobs
	4. 1. 2 Cost of Jobs
	
	
	
	
	Table 4-1. Low cost jobs with time 5 scheduling statistical results
	Figure 4-1. Visualization on low cost jobs with time 5 scheduling results

	Table 4-2. High cost jobs with Time 5 scheduling statistical results
	Figure 4-2. Visualization on high cost jobs with time 5 scheduling results

	Table 4-3. Mix cost jobs with Time 5 scheduling statistical results
	Figure 4-3. Visualization on mix cost jobs with time 5 scheduling results

	4. 1. 3 Intervals and Budget Amounts
	
	
	
	
	Table 4-4. Same amounts and different intervals for high cost jobs
	Figure 4-4-1. Same amounts $10,000 different intervals for high cost jobs
	Figure 4-4-2. Same amounts different intervals for high cost jobs - AFT, AAFT. AS and AAS

	Table 4-5. Same amounts and different intervals for low cost jobs
	Figure 4-5-1. Same amounts $10,000 different intervals for low cost jobs

	Table 4-6. Same intervals and different amounts for high cost jobs
	Figure 4-6-1. Same interval 6 different amounts for high cost jobs
	Figure 4-6-2. Same interval 6 different amounts for high cost jobs with AAFT, AFT, AS and AAS

	Table 4-7. Same intervals and different amounts for low cost jobs
	Figure 4-7-1. Same interval 6 different amounts for low cost jobs
	Figure 4-7-2. Same interval 6 different amounts for low cost jobs with AAFT, AFT, AS and AAS

	4. 1. 4 Different Scheduling Queue Models
	4. 1. 5 Yearly Performance Comparison
	
	
	
	
	Table 4-8 Yearly performance test on high competition jobs
	Figure 4-8 Yearly performance test on high competition Jobs

	Table 4-9 Yearly performance test on low competition jobs
	Figure 4-9 Yearly Performance test on low competition jobs

	4. 2 Test Results Analysis

	5. CONCLUSION and FUTURE WORK
	ASH User’s Guide
	Creating Job Type Table
	
	
	
	
	
	
	Figure 6-1-2. Add job type one by one once click
	Figure 6-1-3. The created Job Type Table after on

	Creating Job List
	
	
	
	
	
	
	Figure 6-2-1. Adding jobs one by one
	Figure 6-2-2. One job added into the Job List
	Figure 6-2-3. Using job generator to generate jobs
	Figure 6-2-4. Job List table shows all the added and generated jobs

	6.3 Choosing Scheduling Method
	
	
	
	
	
	
	Figure 6-3-1. Make scheduling window for budgets and scheduling method setting
	Figure 6-3-2 Scheduling results based on the above configurations

	REFERENCES

