ASH - A Scheduler For HOAs

by Qian Li (Sabrina)

Advisor: Dr. Chris Pollett Committee: Dr. David Taylor Dr. Sami Khuri

- Introduction
- Background and Related Work
- Design and Implementation
 - Design Objectives
 - Super-ASH algorithm
- Experiments and Analysis
- Conclusion and Future Work

Introduction

- Problems
 - **Request repair** Ο jobs with paper forms;
 - Schedule the \bigcirc requested jobs manually;
 - Hard to archive \bigcirc and analyze data.
 - Solution

September 26, 2005

Introduction

Solution:

- Accept online applications;
- Schedule the requested jobs with particular scheduler- ASH.

Introduction

HOA scheduling problem

	Standard Notation	HOA Scheduling
α	Machine environment	One administrator & several contractors
β	Side constraints	Limited resources
Y	Optimized criterion	Customers' ©

Background & Related Work

- Original Scheduling Algorithms
 - Greedy Unit Task Scheduling Algorithm
 - First In First Out Algorithm (FIFO)
 - Shortest Processing Time First (SPTF)
 - Semi-clairvoyant R Algorithm (Sc-R)

Comparisons and Inspirations

Job characteristics

- HOA scheduling problem
 A set of jobs J = { j₁, j₂, j₃....j_n };
 - Job property descriptor:
 - *p_i* represents job *j_i* process time, *d_i* represents job *j_i* deadline and w_i represents job *j_i* weight;
 - r_i represents job j_i release time;
 - c_i represents job j_i complete time, f_i
 represents job j_i finish time, where f_i = c_i r_i.

Greedy Unit Task Scheduling algorithm

Greedy Unit Task Scheduling Algorithm

- Method: make a locally optimal choice that could lead to the final global optimal solution
- Advantage: conceptual simplicity
- Disadvantage: rarely find the globally optimal solution

First In First Out (FIFO)

- Method: assigns priority to the jobs in the order in which they request
- Advantage: simple implementation and fairness
- Disadvantage: cannot handle different job priorities

Where $P_5 > P_3 > P_2 > P_4 > P_1$

- Shortest Processing Time First (SPTF)
 - Method: choose the job that requires minimum processing time to run first
 - Advantage: obtain the minimum average processing time
 - Disadvantage: starvation - ignore those jobs with long service time requests

			J _i		R _i		P _i		C _i	$F_i = C$	C _i -R _i ∙	+1		
			J ₁		1		8							
			J ₂		4		1							
			J ₃		4		3							
						_								
			1	2	3	4	5	6	7	8	9	10	11	12
I	[1,2	2)												
II														
	[4,8	3)		J ₁	J ₁									
IV	[8,16	6)	J ₁											

		J _i		R _i		P _i		C _i	$F_i = C$	C _i -R _i ·	+1		
		J_1		1		8							
		J_2		4		1							
		J_3		4		3							
					_								
		1	2	3	4	5	6	7	8	9	10	11	12
I	[1,2)				J ₂								
11	[2,4)				J_3								
	[4,8)		J ₁	J ₁	J ₁								
V	[8,16)	J ₁											

J _i	R _i	P _i	C _i	$F_i = C_i - R_i + 1$
J ₁	1	8		
J ₂	4	1		
J ₃	4	3		

		1	2	3	4	5	6	7	8	9	10	11	12
Ι	[1,2)				J ₂					J ₁			
=	[2,4)				J_3	J_3	J_3	J ₁ J ₃	<mark>J₁</mark> J₃	J_3			
Ш	[4,8)		J ₁										
IV	[8,16)	J ₁											

J _i	R _i	P _i	C _i	$F_i = C_i - R_i + 1$
J ₁	1	8		
J ₂	4	1		
J ₃	4	3		

		1	2	3	4	5	6	7	8	9	10	11	12
Ι	[1,2)				J ₂					J ₁			J ₃
=	[2,4)				J_3	J_3	J ₃	$J_1 J_3$	J ₁ J ₃	J_3	J ₃	J ₃	
Ш	[4,8)		J ₁										
IV	[8,16)	J ₁											

J _i	R _i	P _i	C _i	$F_i = C_i - R_i + 1$
J ₁	1	8	9	9
J ₂	4	1	4	1
J ₃	4	3	12	9

		1	2	3	4	5	6	7	8	9	10	11	12
I	[1,2)				J ₂					J ₁			J ₃
Ш	[2,4)				J_3	J_3	J ₃	$J_1 J_3$	J ₁ J ₃	J_3	J ₃	J ₃	
Ш	[4,8)		J ₁										
IV	[8,16)	J ₁											

- Method: Applied some knowledge under uncertainty and multiple queues with different priorities
- Advantage:O(1)-competitive with respect to average flow time *or* average stretch
- Disadvantage: not fully developed and implemented method

Comparisons and Inspirations

Comparison measures:

• Average Flow Time – total processing time divided by the number of jobs:

$$AFT = 1/n \sum_{i=1}^{n} (c_i - r_i + 1)$$

• Average Stretch (AS) – average proportion between the real process time and minimum process time:

$$AS = 1/n \sum_{i=1}^{n} \{(c_i - r_i + 1) / p_i\}$$

Comparisons and Inspirations

A.F represents Average Flow Time, A.S represents Average Stretch,

Sc-R stands for Semi-clairvoyance R algorithm, SPTF stands for Shortest Processing Time First algorithm, and FIFO stands for First In First Out Algorithm.

Comparisons and Inspirations

- SPTF performs best with respect to AFT and AS, Sc-R stands in the middle, FIFO lags behind both SPTF and Sc-R
- SPTF will cause starvation, and the processing queue is lack of flexibility compared with Sc-R
- Balance the pros and cons in the original scheduling algorithms and the constraints of HOA, apply multi-level queue with multi-level priorities in ASH

The Super-ASH Algorithm (1 of 2)

Supplemental considerations

- Budget and Cost
- One HOA with multiple Contractors parallel processing
- Job Type Table knowledge on the job property, such as the job approximate cost and process time
- Emergency jobs and normal jobs

The Super-ASH Algorithm (2 of 2)

Super-ASH flexibility

Update job type information e.g: add, modify and delete

Set budget interval and amount

e.g: admin. setBudget(30, 10000);

Choose scheduling method

e.g: setQueueModel(int model);

Design and Implementation

- Design Objectives
 - Minimize Actual Average Process Time

-- the average time that users experience to have their jobs done (QoS) (more details in the next slide)

 Minimize Actual Average proportion between real process time and minimum process time

-- the average ratio of a job's actual process time to its expected process time (efficiency) (more details in the next slide)

Design Objectives (1 of 2)

 Minimize Actual Average Flow Time

 $AAFT = 1/n \sum_{i=1}^{n} (c_i - r_i' + 1)$

- c_i depends on scheduling results,
- *r*_i' depends on receive time and budget

 Minimize Actual Average Stretch

 $AAS = 1/n \sum_{i=1}^{n} \{(c_i - r_i' + 1) / p_i\}$

- c_i depends on scheduling
 results,
 - r_i['] depends on receive time and budget

Design Objectives (2 of 2)

- Actual Average Flow Time and Actual Average Stretch stands on the Homeowner Association and customers' point of view;
- Average Flow Time and Average Stretch stands on the contractors and schedulers' point of view.

The Super-ASH Algorithm - HOA handling

Step One:

- Update the Job Type Table if necessary
 - Add, modify and delete
- Configure the variables if needed
 - Scheduler (ASH-Power2, ASH-Even or ASH-Tri, FIFO or SPTF)
 - Budget (Interval, amounts)

The Super-ASH Algorithm - ноа handling

Maintain the Job Type Table and create Job List

🛅 Job Type	Table					
TYPE NAME	ID	Min Process	Max Process	Min Cost	MaxCost	
Plumbing	0	1	3	80	2500	
Roofing	1	3	14	300	10000	
Painting	2	3	7	200	1000	
Nursery	3	1	7	100	300	
Electricity	4	1	14	50	1250	
Cleaning	5	1	2	50	500	-
lob List					∞∞ ⊏ ⊡? D	त्र
	Tupo Nomo	priority	~~~*	receive time		-
1	Plumbing		746	1 1 1	process time	
2	Plumbing	0	209	. 7	3	
	Plumbing	0	394	11	2	
4	Plumbing	0	2489	14	2	
5	Plumbing	Ö	543	18		
6	Plumbing	0	283	23	3	
7	Plumbing	0	153	27	3	
8	Plumbing	0	1451	30	3	
9	Plumbing	0	2225	35	1	
10	Plumbing	0	962	38	3	
11	Plumbing	0	686	44	2	
12	Plumbing	0	1178	48	1	
13	Plumbing	1	2086	54	2	
14	Plumbing	0	1912	58	2	
15	Plumbing	1	1331	63	1	
16	Plumbing	0	444	66	2	
17	Plumbing	0	2446	69	2	
18	Plumbing	0	2492	72	3	
19	Plumbing	0	788	77	1	
20	Plumbing	0	2381	80	3.	
21	Plumhing	0	1530	85	1	-

The Super-ASH Algorithm - нод handling

Step Two: Release jobs

Note: Budget-1 represents the amounts before scheduling all the requested jobs; Budget-2 represents the amounts left after releasing the emergency jobs.Cost-1 equals the costs of to-be-released emergency jobs, Cost-2 equals the costs of to-released normal jobs.

The Super-ASH algorithm

Step Three: Hand to relative contractors

The Super-ASH Algorithm

Step Four: Scheduling

Implementation

Screen Shot – Job Type Table

📋 Job Type Table 👘 🗗 🖾											
TYPE NAME	ID	Min Process Time	Max Process Time	Min Cost	Max Cost						
Plumbing	0	1	3	80	2500						
Roofing	1	3	14	300	10000						
Painting	2	3	7	200	1000						
Nursery	3	1	7	100	300						
Electricity	4	1	14	50	1250						
Cleaning	5	1	2	50	500						

Screen Shot - Job List Table

🛅 Job List 👘					• 다 꼬
Job ID	Type Name	priority	cost	receive time	process time
1	Plumbing	0	1713	2	3 🔺
2	Plumbing	0	1217	8	2 🚃
3	Plumbing	0	678	13	2
4	Plumbing	0	387	18	1
5	Plumbing	0	1372	24	3
6	Plumbing	0	1627	28	1
7	Plumbing	0	1801	34	1
8	Plumbing	0	1605	37	1
9	Plumbing	0	1815	42	1
10	Plumbing	0	1856	45	2
11	Plumbing	0	1877	51	2
12	Plumbing	0	1016	56	2
13	Plumbing	0	1074	60	3
14	Plumbing	0	1970	64	1
15	Plumbing	1	2017	67	1
16	Plumbing	0	1820	71	2
17	Plumbing	0	966	75	2
18	Plumbing	0	852	80	1
19	Plumbing	0	2122	83	3
20	Plumbing	0	2485	86	3
21	Plumbing	0	349	91	1
22	Plumbing	0	532	96	1
23	Plumbing	0	704	100	1
24	Plumbing	0	523	106	1
25	Plumbing	0	400	111	2
26	Plumbing	0	1960	117	1
27	Plumbing	0	187	120	2
28	Plumbing	1	1819	126	2
29	Plumbing	0	445	129	1
30	Plumbing	0	535	135	1
31	Plumbing	1	1610	138	3
32	Plumbing	0	350	142	3
33	Plumbing	0	911	145	2
34	Plumbing	0	1946	148	1
35	Plumbing	Π	1935	153	1 💌

Scheduling Result Table

👙 SUPER-ASH										
File Edit										
New Open Save Copy Cut Paste										
Job Sched	ule	la de la compañía de								
Plumbing	Roofing Pair	nting Nursery	Electricity	Cleaning						
Job ID	Type Name	priority	cost	receive time	process time	release time	start time	complete time	finish time 🛛 Ad	tual finish ti
365	Electricity	1	814	3	10	3	3	12	10	10 🔺
366	Electricity		808	13	9	16	16	24	9	12
363	Electricity		809	24	9	31	31	39	9	16
369	8 Electricity	1	288	55	10	61	61	70	10	16
370	Electricity	1	1012	64	3	76	76	78	3	15
371	Electricity	1	53	78	8	91	91	98	8	21
361	B Electricity		1067	45	8	91	99	106	16	62
376	Electricity	1	532	150	7	151	151	157	7	8
373	2 Electricity		489	96	4	196	196	199	4	104
37:	BElectricity		294	108	10	211	211	220	10	113
374	Electricity		627	122	11	241	241	251	11	130
37	Electricity	(874	141	13	271	271	283	13	143
37.	Electricity		1/1	170	13	331	331	343	13	1/4
3/1	Electricity		316	184	12	361	361	372	12	189
375	Electricity		739	200	13	376	376	388	13	189
39.	Electricity	1	864	388	14	391	391	404	14	17
381	Electricity		1099	218	5	406	406	410	5	193
38	Electricity		165	238	13	421	421	433	13	196
384	Electricity		100	276	11	466	466	4/6	11	201
38.	Electricity		6/5	256		481	481	491	11	236
38.	BEIECTRICITY		906	267	4	496	496	499	4	233
38	Electricity		132	323	9	526	526	534	9	212
38:	Electricity		9/4	293	5	541	941	545	5	203
		(1020	240	10	646	646	010	10	297
200			1029	340	13	661	661	672	10	220
201			233	200	12	676	676	670	2	210
410	Electricity	1	575	600	2	601	601	600	2	510
201	Electricity		1072	279	11	706	706	716	11	220
20.	Electricity		1073	A17	12	736	700	710	12	331
39.	Relectricity		1106	71 0 802	12	751	751	751	12	356
39	Electricity	1	1003	431	13	781	781	793	13	363
393	Electricity	1	124	466	14	781	794	807	27	342
391	Electricity	1	859	449	9	811	811	819	9	371
39	BElectricity		1038	486	10	886	886	895	10	410
399	Electricity	0	237	506	14	916	916	929	14	424
400	Lootriaitu	1	764	507	10	0.64	0.64	070	10	

Jemo in Process

Experiments and Analysis

- Test Case 1: Different Job Costs affects scheduling results
 - Low-Cost
 - High-Cost
 - Mixed-Cost
- Test Case 2: Different Budget setting affects scheduling results
 - Same amounts, Different intervals
 - Same intervals, Different amounts
- Test Case 3: Queue Models result in different scheduling results
 - Power-2
 - Up-down triangle
 - Even

Test Case One – Job Cost

NOTE: For y-axis, it represents time units per job if they are either AFT or AAFT;

and it represents ratio if they are either AS or AAS. ASH - A Scheduler for HOAs

37

Test Case Two – Budget and Interval (1 of 4)

Same Amount, Different Interval (1 of 2)

For y-axis, it represents time units per job if they are either AFT or AAFT;

and it represents ratio if they are either AS or AAS.

Test Case Two – Budget and Interval (2 of 4)

Same Amount, Different Interval (2 of 2)

and it represents ratio if they are either AS or AAS.

ASH - A Scheduler for HOAs

Test Case Two – Budget and Interval (3 of 4)

Same Interval, Different amount

For y-axis, it represents time units per job if they are either AFT or AAFT;

and it represents ratio if they are either AS or AAS.

Test Case Two – Budget and Interval (4 of 4)

Same Interval, Different amount

For y-axis, it represents time units per job if they are either AFT or AAFT;

and it represents ratio if they are either AS or AAS.

Test Case Three – Queue Models

Note: From the left to the right, they are Power2 Queue, UpdownTriangle Queue and Even Queue respectively. And the numbers listed on their edges means its width on that layer, for example $[2^n, 2^{n+1}]$.

Test Case Three – Queue Models

For y-axis, it represents time units per job if they are either AFT or AAFT;

and it represents ratio if they are either AS or AAS.

Conclusion

- The Super-ASH algorithm is mostly better than FIFO and SPTF in terms of AAFT and AAS
- The Super-ASH algorithm is flexible for offering HOAs' different configurations
- The Super-ASH algorithm performance is highly dependable to the coming jobs as all the other scheduling algorithms (more)

Conclusion

- More accurate Job Type Table can improve the scheduling performance
- More appropriate budget setting can improve the scheduling performance
- More knowledge about the job property will improve the scheduling performance

 Further study on the relationship between job property and queue shape

 Apply heuristic knowledge applied in the Super-ASH algorithm, such as heuristic queue model generator

Acknowledgements

First of all, I would like to thank my advisor Dr. Pollett for your infinite guidance, support and insights. Also, many thanks to Dr. Khuri and Dr. Taylor for sharing your invaluable ideas. Clearly, this thesis would not be possible without you.

Thank you !

Thank you

