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Outline
� Kinematics and Inverse Kinematics
� [Elias04] 

� Character Physics
� [Jakobsen03]

� Bayesian Networks
� [Tozour04], [Ghahramani01], [Russell03]

� Hierarchical Hidden Markov Models
� [Ueda04]



Kinematics
� Motion of objects w/o concerning force
� Includes acceleration, velocity, position

� Top-down approach
� In skeletal animation, typically angles 
are defined for each joint in hierarchy
� Transforming by each angle gives final 
orientation/position of object



Inverse Kinematics
� Reverse of kinematics, bottom-up
� Given: position of “effecter” e.g. hand
� Find: orientations/positions of 
everything else higher up in hierarchy



Inverse Kinematics
� Can have infinite solutions
� Basically a minimization problem
� [Elias04] uses simple gradient descent
� Using only IK can look bad
� Typically used for small adjustments 
� Climbing stairs (terrain following)
� Grabbing objects



Character Physics
� [Jakobsen03] describes physics used for 

Hitman: Codename 47
� Uses Verlet integration (not Euler)
� Velocity is kept implicitly -> more stable
� Euler: v’ = v + a*dt; s’ = s + v’ * dt
� Fix timestep and assume v’ = s - sold
� s = 2s – sold + a * dt2



Character Physics
� Everything is a particle system
� System has constraints e.g.
� stick – keep certain distance
� bound – keep within this area

� Each frame, for particle:
� feelForces();
� Verlet integration i.e. update pos.
� Satisfy (or relax) constraints
� Relaxation could give better visuals



Character Physics
� Used for everything from cloth, to rigid 
bodies, to articulated bodies (chars)
� Works as an IK solver e.g.
� Constrain hand to certain position
� Satisfy other constraints
� Used for dragging bodies in hitman
� Also used for animation of being hit



Bayesian Networks
� Concise representation of full joint prob. dist. 
� DAG showing dependencies
� B directly dependent on A
� B and C conditionally independent given A

A

B C



Bayesian Networks
� Each node has conditional prob. table

A

B C

P(A) = 0.7  P(¬A) = 0.3

P(B|A) = 0.6  P(¬B|A) = 0.4
P(B| ¬ A) = 0.3  P(¬B| ¬ A) = 0.7

P(C|A) = 0.2  P(¬C|A) = 0.8
P(C| ¬ A) = 0.4  P(¬C| ¬ A) = 0.6



Bayesian Networks - Uses
� Causal Inference (Prediction): given 

A what’s prob. C
� Diagnostic Inference (Induction): 

given C what’s prob. A using Baye’s 
Theorem 
P(A|B) = P(B|A) P(A)/P(B)

� Intercausal Inference (“Explaining 
away”): given C, how does prob. A 
affect prob. B.

A B

C



HMM as Bayesian Network
� HMM is really a special case of Dynamic 

Bayesian Network (BN with time)
� One can represent HMM as a DAG

S1 S2 S3

Y1 Y2 Y3

St = hidden state at time t. Yt = observation



HMM as DBN
� Difference is HMM is allowed only one 

“Megavariable”, whereas DBN is “locally-
structured”. DBN = Concise HMM

a = 0.3    b = 0.1
c = 0.9

d = false
e = good

a = 0.3 b = 0.1

c = 0.9
d=false e=good

HMM state DBN state



Problem with HMMs
� Overfitting and inefficiency
� Without going DBN one could use:

S11
S21
Y1

S12
S22
Y2

S11
S21
Y1

S12
S22
Y2

factorial HMM
tree structured HMM

X1 X2
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