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i Motivation: Why Games?

= Games are relevant financially
= Huge industry rivaling film industry

= Games are relevant academically

=« It's difficult!
= Games are large projects

=« Games cover a wide area of CS
Graphics, Al, Physics, S/W Engineering, Ul
=« Games must run in real-time



i Motivation: Why Game AI?

= Common game Al techniques|[3]:
=« FSMs, decision trees, A* path-finding
= Developer defines all behavior
= Leads to a static world

= Promising game Al techniques[4]:
= Neural networks, genetic algorithms, etc.
= Next step = machine learning
=« Developer defines rules
= Emergent behavior, adaptation, dynamic world



i Goal: 3D Fighting Game




i Requirements

= Very simple game mechanics
= Two playable characters
= Simple and small set of fighting moves
= Goal is just to beat your opponent

= Provides context to showcase adaptive Al
= Non-player character (NPC) adapts to player
= Provide extensibility



Game Architecture:
i Major Modules

= Al = Graphics
= Physics = Sound
= Game logic = Controls
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Game Architecture:
i Graphics, Sound, Controls

= Graphics: Direct3D
= CGraphics class, CThing::render()

= Sound: DirectMusic and DirectSound
= playSound(), playMusic()

= Controls: DirectInput
= keyPressed(), keySingle(), etc.
= processInput()




Game Architecture:
i Game Logic, Physics

= Game Flow
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= Physics
= Simple kinematics (pos, vel, acc)
= Collision detection — spheres & capsules
= Collision reaction — body part state



Game Architecture:
i Collision Detection/Reaction
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UML Class Diagram
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i Game AlI: The Three Layers[2]

= Strategic Layer
= Choose attack set or defense set

= Tactical Layer
= Choose a tactic from set decided above

= Operational Layer
= Execute the tactic




i Game Al: Strategic Layer

= The only non-adaptive layer
= Normally offensive(regular tactics)

= Defense(counter) when “see” attack coming.
= NPC does not know which attack it is.
= Mimic reactionary behavior of human player.
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i Game AI: Tactical Layer
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i Game AI: Tactical Layer

= A Tactic is a sequence of Steps

= Ex 1: Move within kicking range and attack

= BEGIN_TACTIC Long_Attack O(regular) 1(init points)
= MoveWithinRange 1(kicking)

= Attack

= END_TACTIC

= EXx 2: Block for at most 2 seconds then attack
= BEGIN_TACTIC Block_2_Attack 1(counter) 1

= Block 2 (max seconds, or until attacked)

= Attack

= END _TACTIC




i Game AI: Operational Layer

= Carries out details of a Step

= Attack — Which attack to use?
=« Based on NPC Attack AI Model

= Block — Block high or low?
= Based on Player Attack AI Model

= MoveWithinRange — How?
= Based on simple conditional logic



Game Al
i The Two Model Types

= HMM Tree Array
=« Used by Player Attack Model
= Used for prediction

= Matrix of Sets

= Used by Regular Tactics Model, Counter
Tactics Model, and NPC Attack Model

= Used for production




i Game AI: HMM Tree Array[1]

= Level i contains n-gram of degree .

= [0 predict: traverse to level n — 1 and pick
most probable child.

= To learn: traverse to node at level n and add
points.

Level 1:
Unigram

Level 2:
bigram




i Game Al: Matrix of Sets

= [0 produce (probabilistic production):
« Find the set.
= Pick random number r [0,sum of points in set].
= [terate through set until sum of points >=r.

i

\

CTactic or CAction
Paoirt=




i Game Al: Matrix of Sets

= To learn (reinforcement with discount):
= Logs are kept of recent tactics/actions

= On a reinforcing event:
= (1) Adjust points of newest logged element by x
= (2) Discount x by discount factor
= (3) If x '= 0 and more in log repeat (1) with next
= Note points are integers so x != 0 makes sense.

Initial armount = -8
Falloff factor=0.5

current | Tactic A | Tactic B | Tactic © | Tactic & |Tactic D | Tactic B |oldest
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Game AI: Reinforcing Events

Event Reinforcement
NPC hurts player + +
Player misses NPC +

NPC misses player —

Player hurts NPC - —
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