
Adaptive Behavior for Fighting
Game Characters

May 24, 2005
Leo Lee

Committee Members:
Dr. Chris Pollett
Dr. Rudy Rucker
Dr. Jeffrey Smith

Outline

! Motivation and Goal
! Requirements
! Game Architecture
! AI System

! The Three Layers
! The Two AI Model Types

! Conclusion and Future Work
! Demo Alpha Fighter

Motivation: Why Games?

! Games are relevant financially
! Huge industry rivaling film industry

! Games are relevant academically
! It�s difficult!

! Games are large projects
! Games cover a wide area of CS

! Graphics, AI, Physics, S/W Engineering, UI

! Games must run in real-time

Motivation: Why Game AI?

! Common game AI techniques[3]:
! FSMs, decision trees, A* path-finding
! Developer defines all behavior
! Leads to a static world

! Promising game AI techniques[4]:
! Neural networks, genetic algorithms, etc.
! Next step = machine learning
! Developer defines rules
! Emergent behavior, adaptation, dynamic world

Goal: 3D Fighting Game

Requirements

! Very simple game mechanics
! Two playable characters
! Simple and small set of fighting moves
! Goal is just to beat your opponent

! Provides context to showcase adaptive AI
! Non-player character (NPC) adapts to player
! Provide extensibility

Game Architecture:
Major Modules

! AI
! Physics
! Game logic

! Graphics
! Sound
! Controls

Game Architecture:
Graphics, Sound, Controls

! Graphics: Direct3D
! CGraphics class, CThing::render()

! Sound: DirectMusic and DirectSound
! playSound(), playMusic()

! Controls: DirectInput
! keyPressed(), keySingle(), etc.
! processInput()

Game Architecture:
Game Logic, Physics

! Game Flow

! Physics
! Simple kinematics (pos, vel, acc)
! Collision detection � spheres & capsules
! Collision reaction � body part state

Game Architecture:
Collision Detection/Reaction

Blocking

Neutral

Attacking

Sphere

Capsule

h

r

UML Class Diagram

Game AI: The Three Layers[2]

! Strategic Layer
! Choose attack set or defense set

! Tactical Layer
! Choose a tactic from set decided above

! Operational Layer
! Execute the tactic

Game AI: Strategic Layer

! The only non-adaptive layer
! Normally offensive(regular tactics)
! Defense(counter) when �see� attack coming.

! NPC does not know which attack it is.
! Mimic reactionary behavior of human player.

Game AI: Tactical Layer

! AI models choose
tactic from given
set

! Based on a Matrix
of Production Sets
(described later)

! Note each takes
two inputs as
indices into the
matrix

Game AI: Tactical Layer

! A Tactic is a sequence of Steps
! Ex 1: Move within kicking range and attack
! BEGIN_TACTIC Long_Attack 0(regular) 1(init points)
! MoveWithinRange 1(kicking)
! Attack
! END_TACTIC

! Ex 2: Block for at most 2 seconds then attack
! BEGIN_TACTIC Block_2_Attack 1(counter) 1
! Block 2 (max seconds, or until attacked)
! Attack
! END_TACTIC

Game AI: Operational Layer

! Carries out details of a Step
! Attack � Which attack to use?

! Based on NPC Attack AI Model

! Block � Block high or low?
! Based on Player Attack AI Model

! MoveWithinRange � How?
! Based on simple conditional logic

Game AI:
The Two Model Types

! HMM Tree Array
! Used by Player Attack Model
! Used for prediction

! Matrix of Sets
! Used by Regular Tactics Model, Counter

Tactics Model, and NPC Attack Model
! Used for production

Game AI: HMM Tree Array[1]
! Level i contains n-gram of degree i.
! To predict: traverse to level n � 1 and pick

most probable child.
! To learn: traverse to node at level n and add

points.

Game AI: Matrix of Sets

! To produce (probabilistic production):
! Find the set.
! Pick random number r [0,sum of points in set].
! Iterate through set until sum of points >= r.

Game AI: Matrix of Sets
! To learn (reinforcement with discount):

! Logs are kept of recent tactics/actions
! On a reinforcing event:

! (1) Adjust points of newest logged element by x
! (2) Discount x by discount factor
! (3) If x != 0 and more in log repeat (1) with next
! Note points are integers so x != 0 makes sense.

Game AI: Reinforcing Events

� �Player hurts NPC

�NPC misses player

+Player misses NPC

+ +NPC hurts player

ReinforcementEvent

Player Attack Model NPC Attack Model

Current Tactic and Steps

Player Attack Prediction

unigram
bigram

trigram

References
[1] CHARNIAK, E. 1996. Statistical Language Learning. MIT Press,

Cambridge, MA.

[2] KAUKORANTA, T., SMED, J., AND HAKONEN, H. 2004. Understanding
pattern recognition methods. In AI Game Programming Wisdom 2,
S. RABIN, Ed. Charles River Media, Hingham, MA, 579-589.

[3] RABIN, S. 2004. Common game AI techniques. In AI Game
Programming Wisdom 2, S. RABIN, Ed. Charles River Media, Hingham,
MA, 3-24.

[4] RABIN, S. 2004. Promising game AI techniques. In AI Game
Programming Wisdom 2, S. RABIN, Ed. Charles River Media, Hingham,
MA, 15-27.

