Adaptive Behavior for Fighting

!'_ Game Characters

May 24, 2005
Leo Lee
Committee Members:
Dr. Chris Pollett
Dr. Rudy Rucker
Dr. Jeffrey Smith

i Outline

= Motivation and Goal
= Requirements
= Game Architecture

s Al System
= The Three Layers
= The Two Al Model Types

= Conclusion and Future Work
= Demo Alpha Fighter

i Motivation: Why Games?

= Games are relevant financially
= Huge industry rivaling film industry

= Games are relevant academically

=« It's difficult!
= Games are large projects

=« Games cover a wide area of CS
Graphics, Al, Physics, S/W Engineering, Ul
=« Games must run in real-time

i Motivation: Why Game AI?

= Common game Al techniques|[3]:
=« FSMs, decision trees, A* path-finding
= Developer defines all behavior
= Leads to a static world

= Promising game Al techniques[4]:
= Neural networks, genetic algorithms, etc.
= Next step = machine learning
=« Developer defines rules
= Emergent behavior, adaptation, dynamic world

i Goal: 3D Fighting Game

i Requirements

= Very simple game mechanics
= Two playable characters
= Simple and small set of fighting moves
= Goal is just to beat your opponent

= Provides context to showcase adaptive Al
= Non-player character (NPC) adapts to player
= Provide extensibility

Game Architecture:
i Major Modules

= Al = Graphics
= Physics = Sound
= Game logic = Controls

eeeeeeeee

Graphics

CCCCCCC

Device Lagic

nnnnn
‘1 Device

''''''

Physics

Collision Audio
eeeeeeeee

Game Architecture:
i Graphics, Sound, Controls

= Graphics: Direct3D
= CGraphics class, CThing::render()

= Sound: DirectMusic and DirectSound
= playSound(), playMusic()

= Controls: DirectInput
= keyPressed(), keySingle(), etc.
= processInput()

Game Architecture:
i Game Logic, Physics

= Game Flow

Fun Quit

L 1 s

Title Salect Playing RESing Pauszed

i Game Over |

Cluit to Title

= Physics
= Simple kinematics (pos, vel, acc)
= Collision detection — spheres & capsules
= Collision reaction — body part state

Game Architecture:
i Collision Detection/Reaction

b

I o1
o Terr
m ! ¥ ,l);)

Blocking

Neutral

UML Class Diagram

CThing
CContraller 1_4; CGame | CGraghics .1;_1 CTesturelfanager f,;_* CTexture
|
T COhject
Chamedtate 0| CSeenelraph
= CCamera CCuollisionCbject
CBrain o O R U Cvisusl
CGameStateTale CGameStaeFlaing | | CGameStatePaused - l I I] | =
CFloor CwordBox | | CHotyPart [— CFigher (b
F=3
. . ') CSprit Chiodel CHeakhMater
CBrainHuman CBrainkpcFighter < CFighterMpe AriE ¢ FasNE
T ’_;‘
- ,) FighterP WodelSki Madsl<Fil
CPredictionhode] | CErainHurmanFighter & CFighterPiayer ChodelSkinned ChadelFile
Caction ChadeEog
=)
CatsatMadelsCArnnAtacks
CAchionALack CAtvanBlock | | CAtbanhove | | CActionHurimg | | CACtanlurmp

CStatModelog=CTactic=

—e{ CSirateqy |jo—{ C2dStatModel<CTactic=

! CStatlist=CTactkics jo—

Cotaode<CTacic [m— CTaClc o]

CStep

i Game AlI: The Three Layers[2]

= Strategic Layer
= Choose attack set or defense set

= Tactical Layer
= Choose a tactic from set decided above

= Operational Layer
= Execute the tactic

i Game Al: Strategic Layer

= The only non-adaptive layer
= Normally offensive(regular tactics)

= Defense(counter) when “see” attack coming.
= NPC does not know which attack it is.
= Mimic reactionary behavior of human player.

choice
Threat controls .
Analyzer
1] actics

i Game AI: Tactical Layer

[| AI mOdeIS Choose LkLLWDrId Regular tactics
tactic from given |

category

set s
Fegular tactics model choice

= Based on a Matrix =
of Production Sets
EL I Fes D]

(described later)

T e B

= Note each takes i |
tWO inputs aS Z'tltaaj.fcekr _ Counter tactics model .:hmg
indices into the rose | 7

matrix

i Game AI: Tactical Layer

= A Tactic is a sequence of Steps

= Ex 1: Move within kicking range and attack

= BEGIN_TACTIC Long_Attack O(regular) 1(init points)
= MoveWithinRange 1(kicking)

= Attack

= END_TACTIC

= EXx 2: Block for at most 2 seconds then attack
= BEGIN_TACTIC Block_2_Attack 1(counter) 1

= Block 2 (max seconds, or until attacked)

= Attack

= END _TACTIC

i Game AI: Operational Layer

= Carries out details of a Step

= Attack — Which attack to use?
=« Based on NPC Attack AI Model

= Block — Block high or low?
= Based on Player Attack AI Model

= MoveWithinRange — How?
= Based on simple conditional logic

Game Al
i The Two Model Types

= HMM Tree Array
=« Used by Player Attack Model
= Used for prediction

= Matrix of Sets

= Used by Regular Tactics Model, Counter
Tactics Model, and NPC Attack Model

= Used for production

i Game AI: HMM Tree Array[1]

= Level i contains n-gram of degree .

= [0 predict: traverse to level n — 1 and pick
most probable child.

= To learn: traverse to node at level n and add
points.

Level 1:
Unigram

Level 2:
bigram

i Game Al: Matrix of Sets

= [0 produce (probabilistic production):
« Find the set.
= Pick random number r [0,sum of points in set].
= [terate through set until sum of points >=r.

i

\

CTactic or CAction
Paoirt=

i Game Al: Matrix of Sets

= To learn (reinforcement with discount):
= Logs are kept of recent tactics/actions

= On a reinforcing event:
= (1) Adjust points of newest logged element by x
= (2) Discount x by discount factor
= (3) If x '= 0 and more in log repeat (1) with next
= Note points are integers so x != 0 makes sense.

Initial armount = -8
Falloff factor=0.5

current | Tactic A | Tactic B | Tactic © | Tactic & |Tactic D | Tactic B |oldest
= -4 -2 -1 I I

Game AI: Reinforcing Events

Event Reinforcement
NPC hurts player + +
Player misses NPC +

NPC misses player —

Player hurts NPC - —

-

Range: 1872
3149 KICKIMNG 430

=~ Player Attack Model *= 1= NPC Attack Model o

Uump YWeak

:[] 15F unigram
I[]_QSB bigram

1 5 trigram
I

High Weak
0219
571

0.25

I

hed Wealk
0219

L

|
| ow Weak

0
0
vﬂ e -

E’['._._'- f

Jump Strong
00625

0143
025

: Jump Weak Jump Strong | T
1 B

High Strong

Med Strong
0213

0 |
0 I

L o SIan@/

00313

=t
I
ck Med-Veak AHECM@HQ
4

-
=

slock High]l High Wealk || Block High || High YWeakFBlack High || High Weal || Elock High || Hurt High

ons: Jump [[Bleck High || Jump Weak || Jump || High Strong || HighitStrong || High Strong || High Strong || Higl

s Log Fwd_Jump_ Aftacki1) || Block _2_Attar

21 || Block 2 Attack(s) || Block 2 Attack(tl) || Jump_Attack 0

References

[1] CHARNIAK, E. 1996. Statistical Language Learning. MIT Press,
Cambridge, MA.

[2] KAUKORANTA, T., SMED, J., AND HAKONEN, H. 2004. Understandin
pattern recognition = methods. In A7 Game Programming Wisdom 2,
S. RABIN, Ed. Charles River Media, Hingham, MA, 579-589.

[3] RABIN, S. 2004. Common game Al techniques. In A7 Game
ﬁrggga%m/hg Wisdom 2, S. RABIN, Ed. Charles River Media, Hingham,

[4] RABIN, S. 2004. Promising game Al techniques. In Al Game
ﬁrggf?sn;?/hg Wisdom 2, S. RABIN, Ed. Charles River Media, Hingham,

