

INTELLIGENT BEHAVIOR FOR COMPUTER GAME
CHARACTERS USING PREDICTION AND LEARNING

CS 297 Report

by
Leo Lee

Advisor: Dr. Chris Pollett
Department of Computer Science

San Jose State University
December 2004

ABSTRACT
This report details the work done and knowledge learned during the first semester of the
author’s thesis (CS 297). Although video game graphics has improved tremendously,
artificial intelligence in games has taken a much smaller step forward. One of the most
promising new prospects in game AI is for the computer to learn and adapt to the
environment, and in particular to the player. The thesis aims to create a fighting game
with an AI system capable of learning and adapting to the player. Four deliverables were
attempted this first semester. All were completed with good results with the exception of
deliverable three, which will be completed before next semester. Deliverables one and
four explored three AI techniques: n-grams, string-matching prediction, and Hidden
Markov Models in detail. Deliverable two was to generate a document recording the
concept and ideas for the game, called Alpha Fighter. Deliverable three was to create
character models and animations. From the work completed this semester, the author is
equipped with the assets and knowledge necessary for implementation of the game next
semester.

TABLE OF CONTENTS

Introduction 1
Motivation for Advanced Game AI 1
Overview of Thesis 1
Deliverable 1: Prediction Using N-grams and String-Matching 2
Deliverable 2: Game Concept 7
Deliverable 3: Character Modeling and Animation 9
Deliverable 4: Prediction Using Hidden Markov Models 11
Summary of Work Completed 14
Future Work 14
References 15

LIST OF TABLES AND FIGURES

Tables

Table 1. RPS game with string-matching prediction effectiveness survey. 6
Table 2a. Attack-attack payoff matrix. 8
Table 2b. Attack-defend payoff matrix. 8

Figures

Figure 1. N-gram word predictor main window. 3
Figure 2. N-gram word predictor model display window. 4
Figure 3a. RPS game with string-matching prediction, MFC version. 5
Figure 3b. RPS game with string-matching prediction, Java applet version. 5
Figure 4. Female character model. 10
Figure 5. Partially shown HMM used for HMM move predictor. 12
Figure 6. HMM move predictor applet. 13

 1

1. INTRODUCTION
This report provides comprehensive details on the work performed in CS 297 for the
author’s thesis entitled, “Intelligent Behavior for Computer Game Characters Using
Prediction and Learning.” Section 2 presents the motivation behind the thesis, in
particular, why the topic of choice is new and relevant. Section 3 describes the goal of
the thesis and the expected final product. Sections 4 through 7 explain in detail the four
CS 297 deliverables. Each of these sections is broken down into four subsections. The
first subsection explains the relevance of the deliverable in the context of the thesis. The
second subsection presents the goal of the deliverable. The third subsection details the
methodology behind the deliverable, as well as the outcome. Lastly, the fourth
subsection gives some concluding thoughts on the results of the deliverable. Section 8
summarizes all of the work performed this semester in CS 297. Finally, Section 9
outlines the work to be done next semester in CS 299.

2. MOTIVATION FOR ADVANCED GAME AI
Computer games have come a long way, especially in the area of graphics. However,
artificial intelligence in games has not advanced nearly as far. Many games today still
the simplest techniques such as finite state machines (FSMs) and decision trees [11,12].
These simple methods have the advantage of being easy to develop and debug. However,
as gamers demand more sophisticated AI, these techniques simply cannot keep up. A
major drawback of these traditional AI techniques is that the programmer predefines all
behavior. A FSM can be made extremely complex by adding tons of states, or even by
introducing a hierarchy. However in the end, the behavior is still static. If a non-player
character (NPC) is controlled by a FSM, its behavior cannot change to adjust to the
environment of which the player is most notably a part of. In other words, the player is
simply choosing preset paths, as opposed to being able to defined new paths.

One of the most exciting prospects on the horizon in AI for games is the ability for NPCs
to learn and adapt to their environment [13]. The ability to learn from mistakes and
change one’s strategy is the cornerstone by which a human gamer plays. The human
player cannot cheat as the AI system can, by processing the opponent’s input before
making a decision. The human player can only observe the video and audio output of the
game. In creating NPCs that can dynamically adapt to the changing environment, in
particular to the player, the game would in turn become a more realistic and enjoyable
experience for the player.

3. OVERVIEW OF THESIS
The final product of this thesis is a 3d fighting game for the PC called Alpha Fighter.
This is a single player game. The game puts two fighters against each other. The fighters
can damage each other by perform various attacks, as well as defend oneself using
various blocking and dodging techniques. The first fighter to lose all of his or her health
is the loser.

 2

The NPC will be backed by an AI system that can learn and adapt to the player’s actions.
This will provide an opponent who is always at about the same level as the player, which
makes the game’s difficulty at an enjoyable level. More importantly, the NPC will act
more like a human player would, learning from mistakes and developing new strategies
based on observation. One can view this project as a Turing Test in the context of video
games; that is, the goal is to make the NPC indistinguishable from a human controlled
character. Some may argue that passing the Turing Test does not conclude the agent is
intelligent. However in the realm of video games, for the NPC to exhibit human-like
behavior is the mark by which the AI system is judged, since it is after all a human who is
playing the game.

4. DELIVERABLE 1: PREDICTION USING N-GRAMS AND
STRING-MATCHING

4.1 Motivation
The main objective at this point was to gain a broad perspective on the AI techniques
available, in particular focusing on the methods with good potential for incorporating into
the design of the Alpha Fighter AI system. Before starting this deliverable, extensive
literature on game AI and AI in general were studied [1,3,5,6,7,8,9,14]. Afterwards, it
was decided that two methods would be investigated further at this point, n-grams [1,6]
and string-matching [9]. Being simple to implement, both of these techniques were good
candidates as a first wave of experiments in designing the AI system. It should be kept in
mind that in choosing an AI technique for a game, the designer must factor in the
execution time. In many case, accuracy must be sacrificed for the benefit of speed, as
games must run in real-time. Despite their simplicity, both n-grams and string-matching
prediction are both used in the games industry. This showed they were practical and
relevant to Alpha Fighter. Therefore, knowledge of these techniques would be useful in
designing the final AI system of Alpha Fighter.

4.2 Goals
The goal was to produce two small programs, one using n-grams and the other using
string-matching. The n-gram program was to perform word prediction. To keep the
program simple, neither the meanings nor parts of speech of the words were considered.
The words were simply to be interpreted as a string of consecutive alphabetic characters.
Using this program, the user would be able to input training text, construct an n-gram
model with the input, and receive the program’s prediction of the next word based on the
statistical probability defined in the n-gram model.

The second program was to use string-matching to predict the next move in a Rock-
Paper-Scissors (RPS) game. This would be a one player game against the computer,
where the player could input one of three moves: rock, paper, or scissors. The computer
would then respond with its choice. Rock defeats scissors, scissors defeats paper, and
paper defeats rock. It is important to note that the computer does not use the player’s

 3

current move in deciding its move, doing so would constitute as cheating. The purpose
of this program is to predict the player’s next move, and based on that prediction, the
computer would do the single counter-move that defeats the predicted move.

4.3 Implementation and Results
The n-gram word predictor was implemented using Microsoft Foundation Classes (MFC)
as a Windows program. Figure 1, shows the main window of the program.

Figure 1. N-gram word predictor main window.

As shown, there is a large area for the user to input text. On the lower left, the user can
choose the value of n. For example, choosing two creates a bigram, three a trigram, and
so forth. The higher the value of n, the more precise the prediction will be. However,
lower n values are more robust as higher values can suffer from overfitting (see section
7.1 for more detail). On clicking the “Learn” button, the program will train the existing
n-gram model with the text in the text area. The program periodically updates the
prediction, which is shown in the lower right. In the screenshot, it is clear that with a
bigram model, the most likely word statistically is “book.” A bigram only takes into
consideration the previous word, in this case, “a.” The model was trained using the text
shown in the input text area. The word “book” appears twice after the word “a,” while all

 4

other words only appear once. Therefore, the word “book” is twice as likely to come
after “a” according to the statistical bigram model.

Figure 2. N-gram word predictor model display window.

In addition to the main window in Figure 1, the program also displays a model display
window as shown in Figure 2. This window depicts the current n-gram model. As it
corresponds with the training text and n value of Figure 1, the model is a bigram
populated with the words in Figure 1’s input training text. The display, as well as the
underlying model is represented in a tree structure. The tree is always complete and has a
depth of n, where n is the n-gram n value. The display of the tree in Figure 2 is shown
such that the deepest level, in this case 2, is furthest to the right. To predict the next word,
the program does the following. It takes as input the previous n – 1 words. So in our
example, that would be the single word “a.” It takes the first of these words and starting
at the root traverses down the branch leading to that word. For higher values of n this
process would be repeated for all words. In our bigram case, there is only level of
traversal. At this point, the next level down contains leaf nodes. Each leaf node has a
count as well as the word. Going back to the example, these leaf nodes would be “book,”
“pen,” and “student.” These represent the words that have followed the word “a” in the
training text. The count is the number of times that particular sequence has occurred.
Therefore, the word with the highest count, in this case “book,” has the highest
probability of coming after the input sequence of words, in this case “a.” Note that the
actual probability does not need to be calculated.

The RPS program was initially done as an MFC application, but later converted to Java
applet. Thus there are two fully functional versions, but the applet is more polished.
Figure 3a shows the MFC version and Figure 3b shows the applet version.

 5

Figure 3a. RPS game with string-matching prediction, MFC version.

Figure 3b. RPS game with string-matching prediction, Java applet version.

The discussion will focus on the applet version since it is more refined. The user chooses
a move by clicking the respective button on the left. On the right, the scores and last
move of the player and computer are displayed. When checked, the “Show Sequence”
checkbox will allow the display of the underlying string using in the string-matching

 6

prediction scheme. It will also allow the display of the computer’s prediction of the
player’s next move.

The string-matching algorithm from [9] finds the longest substring within a given string s
that matches the end of s. This algorithm can be used for prediction simply by finding
the end of the string match, and taking the next character as the prediction. For example,
given the string abcabc the algorithm would find the longest match to be the first
substring abc. The prediction would then be a, the immediately next character. In the
RPS applet, the first character of the move name is used to represent the move. For
example, R stands for rock. The sequence in Figure 3b shows the player has made the
sequence of moves: rock, paper, scissors, rock, paper, and scissors. See [9] for details on
the algorithm uses the numbers displayed. The algorithm finds the longest substring
match to be the first rock, paper, scissors sequence, thus it predicts the next move to be
rock. This in turn will cause the computer to choose paper for its next move, the counter
to rock.

4.4 Remarks
Both of the programs were completed satisfactorily. The effectiveness of both prediction
schemes was evident in the respective programs. Although these two methods for
prediction may not be directly incorporated into the final Alpha Fighter AI system, the
knowledge gained from this deliverable will undoubtedly have impact on the design of
the system.

A small survey was taken using the RPS MFC program. Three people were asked to play
around 20 rounds of RPS with the computer then to report the scores of both the player
and computer. The results are summarized in Table 1. Two of the three participants
decided to play multiple matches; that is, restart the program after a certain number of
rounds. The match number is indicated in the first column following the name.

Table 1. RPS game with string-matching prediction effectiveness survey.

Player Player Score Computer Score # Rounds % Computer Won
Michelle 1 7 14 21 66.67
Michelle 2 15 10 25 40
Si Si 1 9 8 17 47.06
Si Si 2 6 9 17 52.94
Si Si 3 8 5 12 41.67
Young 1 11 9 20 45

On average, the computer won 49.1% of the time. If a strategy of random guessing were
used instead, the expectation would be that the computer wins 33.3% of the time. That
means there is a 15.8% improvement with the string-matching prediction strategy over
random guessing.

 7

5. DELIVERABLE 2: GAME CONCEPT

5.1 Motivation
Having focused on the AI system in Deliverable 1, it was important to take a broader
look at the game as a whole. As such, a game concept document was needed to lay down
the foundations for Alpha Fighter. The document would help to define the key elements
of the game as well as paint an overview of the work to be done. Later work could
simply build on the elements as described in this document.

5.2 Goal
The purpose of this deliverable was to write down the game concept. This is different
from a game design document, which has much greater detail and can be between 50 to
300 pages long [15]. Due to the limited time frame of this thesis, writing a complete
game design document was simply not feasible. Furthermore, since the focus is on the
game AI, the game itself serves just as a medium to exhibit the AI system. In other
words, although as much effort as possible will be put into creating a good game, the
development of the AI system holds higher priority.

5.3 Implementation and Results
The document of game concept consisted of the following sections: concept, game-play,
characters, style, payoff matrix, and concept art. In addition, a means of research section
was subsequently added to explain the method by which the payoff matrix was created.
The concept section presents the story behind the game. The game-play section describes
what type of game Alpha Fighter is and its main feature, the AI system. The characters
and style sections presents the characters and fighting styles that are planned to be
included in the game.

The most interesting section is the payoff matrix section. A payoff matrix outlines the
outcome of performing a certain action in a certain state. Two matrices were created, an
attack-attack matrix (Table 2a), and an attack-defend matrix (Table 2b). In both matrices,
the possible actions of one fighter, Fighter A, are labeled along the leftmost column,
while the possible actions of the other fighter, Fighter B, are labeled along the top row.
Each cell, cij, where i is the row and j is the column, shows how much damage each
fighter sustains as a consequence of Fighter A performing the action of row i and Fighter
B performing the action at column j. The number following the letter A indicates the
damage to Fighter A, and similarly for Fighter B. Low numbers are favorable.

 8

Table 2a. Attack-attack payoff matrix.

 B

A

high
long
fast

high
long
slow

high
short
fast

high
short
slow

low
long
fast

low
long
slow

low
short
fast

low
short
slow

high
long
fast

A1 B1 A0 B1 A2 B1 A0 B1 A1 B1 A0 B1 A2 B1 A0 B1

high
long
slow

A1 B0 A3 B3 A2 B0 A5 B3 A1 B0 A3 B3 A2 B0 A5 B3

high
short
fast

A1 B2 A0 B2 A2 B2 A0 B2 A1 B2 A0 B2 A2 B2 A0 B2

high
short
slow

A1 B0 A3 B5 A2 B0 A5 B5 A1 B0 A3 B5 A2 B0 A5 B5

low
long
fast

A1 B1 A1 B0 A1 B2 A1 B0 A1 B1 A1 B0 A2 B1 A1 B0

low
long
slow

A1 B0 A3 B3 A2 B0 A5 B3 A1 B0 A3 B3 A2 B0 A5 B3

low
short
fast

A1 B2 A0 B2 A2 B2 A0 B2 A1 B2 A0 B2 A2 B2 A0 B2

low
short
slow

A1 B0 A3 B5 A2 B0 A5 B5 A1 B0 A3 B5 A2 B0 A5 B5

Table 2b. Attack-defend payoff matrix.

B

A

high
long
fast

high
long
slow

high
short
fast

high
short
slow

low
long
fast

low
long
slow

low
short
fast

low
short
slow

block high A0 B0 A0 B0 A0 B0 A0 B0 A1 B0 A3 B0 A2 B0 A5 B0
block low A1 B0 A3 B0 A2 B0 A5 B0 A0 B0 A0 B0 A0 B0 A0 B0
strafe left A0 B0 A0 B0 A0 B0 A0 B0 A0 B0 A0 B0 A0 B0 A0 B0
strafe right A0 B0 A0 B0 A0 B0 A0 B0 A0 B0 A0 B0 A0 B0 A0 B0
jump A1 B0 A3 B0 A2 B0 A5 B0 A0 B0 A0 B0 A0 B0 A0 B0

 9

The attack-attack payoff matrix shows what would happen if the two fighters
simultaneously performed the same attack. This shows the effectiveness of each attack
relative to every attack. The attack labels along the top and left are not specific fighting
moves, but rather three attributes. These attributes are target, range, and speed. Each
attribute has a binary value. Target can be high or low, range long or short, and speed
fast or slow. So for example, a high, long and fast attack by Fighter A will always
damage Fighter B by 1 point if Fighter B is doing a low, long and slow attack, regardless
of the actual fighting move.

There were several reasons why attacks were put into classes as opposed to using the
actual move. One reason was to simplify the game mechanics, since dealing with several
classes is simpler than dealing with dozens of moves. Secondly, since the characters and
their animations were not yet developed, it would have been unwise to settle on a set of
moves at this point. Thirdly, classifying the moves would allow easier incorporation into
the AI system later, as the attributes point out the important aspects of the movements.
Finally, by generalizing multiple moves into a single class, the efficiency of the game
logic and AI system will undoubtedly be increased.

Research was done to derive the two payoff matrices. Video of live martial arts
tournaments and commercial fighting games were studied. It should also be noted that
the author has eleven years of background in martial arts, so some of his experience and
knowledge also influenced the final outcome of the matrices. The three attributes
mentioned earlier: target, range, and speed, were determined by the research. It was
observed that these three factors were the most significant in classifying the effectiveness
of the attack relative to various other attacks and defenses.

5.4 Remarks
The resulting document was satisfactory in explaining the high level idea of the game.
The most significant portion, the payoff matrices, will likely be used in the final game
with little or no modification. At this stage, the design of the fighting mechanics of
Alpha Fighter was basically complete.

6. DELIVERABLE 3: CHARACTER MODELING AND
ANIMATION

6.1 Motivation
Having laid down the foundations for Alpha Fighter with the game concept document in
Deliverable 2, it was time to begin building resources to be used in the game. It was
important to begin the process of creating graphic resources, as the author had no prior
experience with 3d modeling or animation.

 10

6.2 Goal
For this deliverable, the task was to create the characters for Alpha Fighter as described
in the game concept document. The characters would have to be modeled, textured, and
animated.

6.3 Implementation and Results
Since the game will be using the Direct3D graphics library, it was important to ascertain
the finished models could be loaded into a Direct3D environment. The native format for
Direct3D is the x-file format. The author found a freely available x-file exporter from
Maya.

Having no experience with 3d modeling, the author followed a training video for
modeling in Maya to construct a female character. After two weeks, it was realized that
the task was much more difficult than anticipated, and the model was nowhere near
completion. It was decided that a much simpler model be created, sacrificing visual
quality for the sake of time. A low quality model of a female character was finished
(Figure 4), and work began on texturing the model. However at this point, the time
allotted for working on this deliverable was over, and it was necessary to move on to the
next task. It was decided that completion of the models was not crucial at this point, and
that they could be completed over the winter break.

Figure 4. Female character model: untextured front (left), untextured back (middle), and partially

textured front (right).

6.4 Remarks
This deliverable was not completed due to time constraints and the unpredicted difficulty
of the task. The female character must still be completely textured. Then, animation for
all of the moves must also be done. It is expected that once the first character is
completed, other characters can be created easily by simply adjusting the first model.
The plan is to complete the character modeling and animation during the winter break.

 11

7. DELIVERABLE 4: PREDICTION USING HIDDEN MARKOV
MODELS

7.1 Motivation
At the start of this deliverable, more AI research was performed, in particular on Hidden
Markov Models (HMMs) and Dynamic Bayesian Networks (DBNs) [1,10,14].

Using high order n-grams can lead to overfitting, where a prediction cannot be made due
to the basis of the prediction being too specific. For example in a trigram model, the
basis for prediction is the sequence of the two previous states. If the model comes across
a particular sequence that was never before seen, the model would not be able to make a
prediction at all. To avoid overfitting, one could use lower order n-grams. It is clear that
by using a unigram, where the prediction is simply the state that occurred the most
number of times, a non-empty model will always be able to generate a prediction.
However, by lowering the value of n, the model loses precision.

It was presented in [1] that the robustness of n-grams could be improved by combining
multiple n-grams into a single HMM. This solves the overfitting problem by starting at
the highest possible n-gram, then falling back to lower ones if a prediction cannot be
made. In the worse case a unigram will be used. HMMs were a prime candidate for the
AI system of Alpha Fighter. It was important to gain a solid understanding of them.

7.2 Goal
This purpose of this deliverable was to become familiar with HMMs by developing a
prediction program similar to the first deliverable. This program would differ in two
points. First, it would use a HMM as opposed to n-grams, although the HMM is actually
made up of multiple n-grams. Second, the program would be put into the context of
Alpha Fighter. Therefore, instead of predicting words, the program would predict the
next move by the player.

7.3 Implementation and Results
The HMM used is based off of one in [1], and is partially shown in Figure 5. The valid
moves are the characters o, p, l, and ;. These correspond to high-weak, high-strong, low-
weak, and low-strong attacks respectively. For the sake of readability, Figure 5 only
shows the transitions from the op state; that is, what can happen after a player has pressed
o followed by p. The full HMM has equivalent transitions for each possible, non-lambda
state. As shown, from the op state, the player can go into the po, pl, or p; states. The
three λ states in between are in effect how the n-grams are encapsulated inside this HMM.
Each transition is denoted by an output followed by a colon, followed by the probability
of taking that transition. The symbol ∈ is the null symbol and outputs nothing. We can
see that from the λ1 state, all the probabilities on the outgoing transitions are
unconditional probabilities. This corresponds to the unigram model. Likewise, the λ2

 12

state corresponds to the bigram model (conditioned on one previous state) and λ3 the
trigram model (conditioned on two previous states).

The three lambda values are the weights that each of their respective n-gram model is
given, and they should sum to one. By making λ3 the largest, say 0.6, λ2 the second
largest, say 0.3, and λ1 the smallest, the remaining 0.1, the HMM will favor higher order
n-grams. The beauty of this model lies in how it deals with overfitting. Each of the three
n-grams will make its own prediction and in doing so determines a probability, or the
likelihood of that prediction. In other words, each n-gram will find the statistically most
probable next state given its constraints of previous states. The probabilities of these next
states are multiplied by the corresponding lambda weights. So if the trigram is suffering
from overfitting, it will report an unknown next state with a probability of zero. This will
in effect make the HMM fall back to the bigram’s result. In the event that the bigram
also happens to suffer from overfitting, the unigram’s result will be used. The unigram,
since its result is independent of prior states, will always return a prediction except when
the model is empty.

This program was done as another Java applet as shown in Figure 6. The model display
output on the left is similar to that of the n-gram word prediction program. The only
exception is that the nodes at each level now has a count, as opposed to only the leaves in
the n-gram program. The first level corresponds to the unigram model, and these counts
are used in the unigram to calculate the probability of each state and determining the

op

λ1

λ2

λ3

po

pl

p;

∈: λ1

∈: λ2

∈: λ3

o:P(o)

;:P(;)

l:P(l)

o:P(o|p)

l:P(l|p)
;:P(;|p)

l:P(l|op)

;:P(;|op)

o:P(o|op)

Figure 5. Partially shown HMM used for HMM move predictor.

 13

highest such probability. The second level is likewise used for the bigram and the third
for the trigram. There is a small input text field on the bottom right for the player to input
moves. As noted before, the moves are limited to the o, p, l, and ; keys, which
corresponds to the four different attack types. The history section shows the last two
moves performed with an appropriate picture. These pictures were taken from the
fighting game Tekken 4 at the ign.com website [16]. Under prediction, there is a similar
visual display of what the HMM’s prediction of the next move will be.

Figure 6. HMM move prediction applet.

As shown in the text field of Figure 6, the player has done the sequence of moves, oplp.
If a simple trigram were used, the program would not be able to predict the next move, as
it has never before seen the move l followed by p before. Since the trigram fails in this
case, the HMM falls back to the bigram case; that is, making a prediction based only on

 14

the last move, p. It finds that the most probable next move is l, a low-weak attack as
depicted in the prediction area.

7.4 Remarks
This program showed promising results as a start for Alpha Fighter’s AI system. This
will likely be part of the low level learner (LLL). The LLL is responsible for learning the
patterns of the player and using that knowledge to make predictions of the player’s next
move. It is important to realize that the lambda values in this HMM applet were static.
In such a case, the player may eventually catch on to the learning mechanism of the AI
and use that knowledge against the NPC. As a simple example, if the player realizes that
it takes four moves for the NPC to adjust to the player’s pattern, the player simply change
his pattern every four moves. To avoid this, the AI system must have a way to adjust the
LLL, a high level learner (HLL). In the case of the HMM, the HLL could simply adjust
the lambda weights, so that the prediction would fluctuate between various n-grams.

8. SUMMARY OF WORK COMPLETED
At the end of this semester, most of the groundwork for Alpha Fighter has been
established. The concept of the game has been documented, and development of
character models has begun. Most importantly, a good understanding of various AI
techniques has been learned that could be incorporated into the game’s AI system. At
this time, it seems the AI system will be based on a HMM, or possibly the more general
model of a DBN. As noted in [14], the relationship between a HMM and a DBN is
analogous to the relationship between a full joint probability table and a Bayesian
Network. In both cases, the latter model provides a more concise and efficient
representation. However more work is required upfront to create the model. In particular,
the dependency relations between nodes must be identified.

9. FUTURE WORK
Next semester in CS 299, full production of Alpha Fighter will begin. Most of the time
will be allotted to implementation of the game. The game will be built upon an existing
game framework written by the author. Completion of character modeling and animation
is expected before the start of next semester.

Key parts of the implementation will include the following.

o AI system (LLL) – The NPC must be able to recognize the player’s patterns.
o AI system (HLL) – The NPC must adapt and formulate a new strategy if the

current strategy is not working.
o AI system (planner) – The NPC must formulate offense and defense based on its

knowledge.
o Character animation (key framed) – The completed character models will need to

be properly imported and animated using the DirectX API.

 15

o Character animation (IK) – Some research was done on inverse kinematics [2,4].
Some animations such as getting hit may use the technique detailed in [4].

o Controls – A key component of a fighting game is a responsive and well-timed
control. For example, certain moves are prohibited during the execution of other
moves.

o Physics – Accurate collision detection will be necessary to determine what parts
of the body are colliding between the two fighters.

10. REFERENCES
[1] Charniak, E. (1996). Statistical language learning. Cambridge, MA: MIT Press.

[2] Elias, H. (2004). Inverse kinematics – improved methods. Retreived December 6,
2004, from http://freespace.virgin.net/hugo.elias/models/m_ik2.htm

[3] Evans, R. (2002). Varieties of learning. In S. Rabin (Ed.), AI game programming
wisdom (pp. 567-578). Hingham, MA: Charles River Media.

[4] Jakobsen, T. (2003, January). Advanced character physics. Retreived December 6,
2004, from http://www.gamasutra.com/resource_guide/20030121/jacobson_01.shtml

[5] Kaukoranta, T., Smed, J., & Hakonen, H. (2004). Understanding pattern recognition
methods. In S. Rabin (Ed.), AI game programming wisdom 2 (pp. 579-589).
Hingham, MA: Charles River Media.

[6] Laramée, F. D. (2002). Using n-gram statistical models to predict player behavior.
In S. Rabin (Ed.), AI game programming wisdom (pp. 596-601). Hingham, MA:
Charles River Media.

[7] Manslow, J. (2002). Learning and adaptation. In S. Rabin (Ed.), AI game
programming wisdom (pp. 557-566). Hingham, MA: Charles River Media.

[8] Manslow, J. (2004). Using reinforcement learning to solve AI control problems. In
S. Rabin (Ed.), AI game programming wisdom 2 (pp. 591-601). Hingham, MA:
Charles River Media.

[9] Mommersteeg, F. (2002). Pattern recognition with sequential prediction. In S.
Rabin (Ed.), AI game programming wisdom (pp. 586-595). Hingham, MA: Charles
River Media.

[10] Tozour, P. (2002). Introduction to Bayesian networks and reasoning under
uncertainty. In S. Rabin (Ed.), AI game programming wisdom (pp. 345-357).
Hingham, MA: Charles River Media.

[11] Tozour, P. (2002). The evolution of game AI. In S. Rabin (Ed.), AI game
programming wisdom (pp. 3-15). Hingham, MA: Charles River Media.

[12] Rabin, S. (2004). Common game AI techniques. In S. Rabin (Ed.), AI game
programming wisdom 2 (pp. 3-14). Hingham, MA: Charles River Media.

 16

[13] Rabin, S. (2004). Promising game AI techniques. In S. Rabin (Ed.), AI game
programming wisdom 2 (pp. 15-27). Hingham, MA: Charles River Media.

[14] Russell, S, & Norvig, P. (2003). Artificial intelligence: a modern approach (2nd ed.).
Upper Saddle River, NJ: Prentice Hall.

[15] Sloper, T. (2001). Lesson #2: sample outline for a game design. Retreived
December 6, 2004, from http://www.sloperama.com/advice/specs.htm

[16] http://media.ps2.ign.com/media/016/016600/imgs_1.html?fromint=1

