

Distributed Gaming using J2ME and XML

CS 297 Project Report

Rekha Vaddepalli

 (rekha_vad@yahoo.com)

 Advisor: Dr. Chris Pollett

1. INTRODUCTION ..4

2. TECHNOLOGIES INVOLVED ...4
2.1 J2ME..4

2.1.1 MIDlets and MIDlet Suites ..5
2.1.2 MIDlet execution environment...5

2.2 EXTENSIBLE MARKUP LANGUAGE (XML)...6
2.3 SERVLETS ..6
2.4 ORACLE DATABASE..7

3. DELIVERABLE ONE: USING J2ME’S GRAPHICAL USER INTERFACE AND RECORD
MANAGEMENT SYSTEM...8

3.1 DESCRIPTION OF THE DELIVERABLE ONE ...8
3.2 .. J2ME'S GRAPHICAL USER INTERFACE
...8
3.3 RECORD MANAGEMENT SYSTEM..8

3.3.1 Record Store: ...9
3.4 DETAILS OF THE DELIVERABLE...9

3.4.1 Using Record Store ..9
3.4.2 Record Enumerations: ...9

4. DELIVERABLE TWO: TRANSMITTING S RECORD WIRELESSLY FROM ONE
DEVICE TO ANOTHER...11

4.1 DESCRIPTION OF THE DELIVERABLE TWO ..11
4.2 INSTALLING VM ONTO POCKET PC..12
4.3 DETAILS OF THE DELIVERABLE...12

5. DELIVERABLE THREE: CONNECTING POCKET PC TO THE HTTP SERVER14
5.1 DESCRIPTION OF THE DELIVERABLE THREE ...14

6. DELIVERABLE FOUR: CONNECTING HTTP SERVER TO THE ORACLE DATABASE15
6.1 DESCRIPTION OF THE DELIVERABLE FOUR ...15
6.2 INTRODUCTION TO ORACLE XML DATABASE..15
6.3 CREATING ORACLE XML DATABASE ..15
6.4 USING SERVLETS AND JDBC..17

7. CONCLUSION...18

8. REFERENCES ...19

 2

 Table of tables

Table 1: Adding a record to the Record Store ..9
Table 2: Using RecordEnumeration...10
Table 3: Sending a datagram ..12
Table 4: Receiving a datagram ...13
Table 5: Defining the URL of the servlet ...14
Table 6: Obtaining HttpConnection...14
Table 7: Setting Connection parameters ...14
Table 8: Function getDocument()...15
Table 9: XML Schema...16
Table 10: Register Schema ..16
Table 11: Create table ...16
Table 12: Reading Http request..17
Table 13: Registering the JDBC driver ...17
Table 14: Connecting to database, statement creation and execution17
Table 15: Forming response and sending ..18

 3

1. Introduction

The use of small computing devices has been increasing in the recent years as the

people have become more time conscious and want to utilize the time that they are

mobile. So, various technologies that are suitable for small devices have emerged.

Java 2 Micro Edition (J2ME) technology is one of them.

In my CS297 course, I have completed various deliverables that will help me

understand J2ME concepts and would further help me with my CS298 in which I am

planning to implement a digital cash system for the mobile devices. Using the digital

cash system, the user of the mobile device will be able to transfer the digital cash to

the user of the other device anonymously.

The second section covers the technologies that are used in this project.

The third, fourth, fifth and sixth sections cover the descriptions of the first, second,

third, and fourth deliverables respectively. The seventh section concludes the report.

The eighth section gives the references for the report and the deliverables.

2. Technologies involved

2.1 J2ME

J2ME is the reduced version of Java API that is designed to operate within the limited

resources of the mobile devices. It consists of the configurations and the profiles. The

Java Community Process Program defined configuration as the Java run-time

environment and core classes that operate on each device. The Java Virtual Machine

for a particular small computing device is defined by the configuration. There are two

configurations – CLDC (Connected Limited Device Configuration) and CDC

(Connected Device Configuration). CLDC devices are low-end mobile devices that

include pagers, cell phones, digital assistants. They usually have a 16-bit or 32-bit

architecture, have 160KB to 512KB of available memory, and are battery powered

and use KJava Virtual Machine (KVM). CDC devices are high-end devices that

 4

include digital set-top boxes, home appliances etc. They usually have a 32-bit

architecture, 2MB of available memory, and use complete functional JVM.

A profile consists of Java classes that enable implementation of features for either a

particular small computing device or for a class of small computing devices. The

different profiles available right now for CDC configuration are Foundation Profile,

Game Profile, Personal Profile, Personal Basis Profile, and RMI Profile. The CLDC

profiles available are Mobile Information Device Profile, PDA profile, and

Information Device Profile. Each profile has a different functionality.

2.1.1 MIDlets and MIDlet Suites

Java applications that run on MIDP devices are known as MIDlets. A MIDlet consists

of atleast one Java class that must be derived from the MIDP-defined abstract class

javax.microedition.midlet.MIDlet. The MIDlets may be grouped into a MIDlet suite.

The MIDlet classes, other required class files or images must be built into a single

JAR file. The JAR's manifest file must be written. This file contains the packaging

information that tells the device what is in the JAR. Similar information is also

provided in another file called Java application descriptor (JAD). If any of the

attributes appears in both of the manifest and JAD file, the value in the JAD file takes

precedence.

2.1.2 MIDlet execution environment

A MIDlet must have a public default constructor that may be used to perform any

initializations.

 This is what a skeleton MIDlet looks like:

public class MyMIDlet extends MIDlet
{
 MyMIDlet()
 {
 }

 protected void startApp() throws MIDletStateChangeException
 {

 5

 }

 protected void pauseApp()
 {
 }

 protected void destroyApp(boolean unconditonal)
 throws MIDletStateChangeException
 {
 }
}

The technologies that were used in addition to J2ME are XML, Java Servlets, and

Oracle Database.

2.2 EXtensible Markup Language (XML)

The World Wide Web Consortium created XML as a way to disseminate complex,

structured data and documents over the Web. All XML documents must be well

formed. But they need not be valid documents. The two methods for defining a valid

document are DTD (Document Type Definition) and schemas. A DTD or schema

specifies how a document's elements can work together to create a specific structure.

DTDs may be useful to create and manage large sets of documents, to define clearly

what markup may be used in certain documents and to provide a common frame of

reference for documents that many users can share. XML Schema is one of many

schema specifications. Unlike a DTD, schemas are simply XML documents that use

XML’s standard markup syntax to define the structure for other documents.

2.3 Servlets

A servlet is a server-side software component, written in Java, that dynamically

extends the functionality of a server. Servlets provide a framework for implementing

the client-server applications. While working with mobile devices, it becomes all the

more important to shift the load from the small device to the server and this can be

accomplished by the usage of servlets.

 6

2.4 Oracle Database

This project uses Oracle Database by the server for storing the information needed for

processing the client's requests. In this project, most of the work is delegated to the

server by the client devices. So, the server is required to store lot of information in the

database. Specifically, Oracle XML Database, which is the database that combines the

benefits of both XML and Oracle technologies, is used.

 7

3. Deliverable One: Using J2ME’s Graphical User Interface
and Record Management System

3.1 Description of the Deliverable One

The Deliverable One introduced me to J2ME's GUI and RMS (Record Management

System) concepts. In this deliverable, user will be presented with a menu with the

options--"Enter Info" and "List". Using the Enter Info option, the user can enter the

business card information like First Name, Last Name, Phone Number, and Email ID

in the form that gets displayed. The user can then submit the information using the

submit button on the form. Using the "List" option, he can get the list of all the

business cards that have been stored.

3.2 J2ME's Graphical User Interface

There are three kinds of user interfaces that an application make use of. They are

command, form and canvas based interfaces. A command-based user interface

consists of instances of the Command class. A form-based user interface consists of

an instance of the Form class that contains instances derived from the Item class such

as text boxes, radio buttons, check boxes, lists etc A canvas-based user interface

consists of instances of the Canvas class using which images can be drawn by the

user. The device's screen is referred to as the display and the reference to an instance

of the MIDlet's Display class can be obtained to interact with it.

3.3 Record Management System

Record Management System (RMS) is like a combination of the file system and the

database management system that enables the user to store the information or data in

columns and rows like in a table of a database. SQL cannot be used to interact with

the data as RMS is not a relational database. So, for the functions like sorting,

searching and manipulating information stored, RMS API and Enumeration API have

to be used.

 8

3.3.1 Record Store:

A record store is a collection of records organized as rows (records) and

columns(fields). Multiple record stores can be created by a MIDlet in a MIDlet suite

as long as the name of the record store is unique. Duplicate names for the record

stores can be used in other MIDlet suites.

3.4 Details of the deliverable

3.4.1 Using Record Store

The following code shows the way to add a record to the record store

//opening the Record Store
recordstore = RecordStore.openRecordStore("myRecordStore",true);
byte[] outputRecord;
firstname = “Rekha”;
lastname = “Vaddepalli”;

ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
DataOutputStream outputDataStream = new DataOutputStream(outputStream);

//writing the values to the DataOutputStream
outputDataStream.writeUTF(firstname);
outputDataStream.writeUTF(lastname);
outputDataStream.flush();

//Converting the DataOutputStream to byte array
outputRecord = outputStream.toByteArray();

//adding the record to the Record Store
 recordstore.addRecord(outputRecord,0,outputRecord.length);

//closing the record store
recordstore.closeRecordStore();
Table 1: Adding a record to the Record Store

3.4.2 Record Enumerations:

RecordStore API includes a method called enumerateRecords() to search efficiently

through all the records in the record store to get the identifier for any record.

The following call gets a static snapshot of all the entries in the record store.

RecordEnumeration enum = recordStore.enumerateRecords(null,null,false)

 9

The following code shows how to get the records using RecordEnumeration

//Traverse forwards
while(enum.hasNextElement())
{

byte[] record = enum.nextRecord();
//Do something with this record

}

//Traverse backwards
while(enum.hasPreviousElement())
{

byte[] record= enum.previousRecord ();
//Do something with this record

}
Table 2: Using RecordEnumeration

RecordEnumeration has a reset() method which allows to restart the iteration from the

beginning.

 10

4. Deliverable Two: Transmitting s record wirelessly from one
device to another

4.1 Description of the Deliverable Two

The purpose of the Deliverable Two is to establish a connection between two wireless

devices and transfer information wirelessly. This deliverable consists of three classes-

TransferRecord.java, RegisterServlet.java, and ListingServlet.java

TransferRecord.java is the application to be loaded onto the wireless device. The

welcome screen of the application has a menu with the options- Register, Add

Record, Transfer Record, Receive Record, Delete Record, List Records, and Quit.

Using the “Register” option, the user can register his device’s IP address at the central

server. Using “Add Record” option, the user is prompted with the input screen where

he can enter the Name and Phone Number and add the record into the local record

store. This is done using the J2ME’s RMS functionality.

The “Receive Record” option facilitates the user who wishes to receive a record from

the other user by starting the server and receiving the record.

Using “Transfer Record” option, the user can transfer a record to the other receiving

device. When this option is selected, the Record Search Screen is displayed using

which the user can select the record that he wishes to transfer by specifying the Name

value of the record. Then he has to select List Destinations option for the display of

all the destinations registered at the central server. From the list of the destinations, he

can select a destination for the record transfer. Then it connects with the receiving

device and transfers the record. When the transfer is completed, the Success Screen is

displayed at the receiver’s end.

Using “Delete Record” option, the user can delete a record. Using “List Records”

option, the user can list all the records in the local record store.

 11

The RegisterServlet.java connects to the Oracle database and puts the client’s IP

address into it. The ListingServlet.java connects to the Oracle database and queries it

and returns a list of the IP addresses that are registered with the server. The

connection between the two wireless devices in this deliverable is achieved using

DatagramConnection.

4.2 Installing VM onto Pocket PC

I have downloaded the IBM's WebSphere Studio Device Developer (WSDD) with

Websphere Micro Environment with which IBM's J9 VM was installed.

To install the VM onto the Pocket PC, initially establish an ActiveSync connection

between the development machine and the Pocket PC and copy the J9 runtime files

onto Pocket PC. Then, create a device configuration, build, and launch configurations

for the Pocket PC as given in the WSDD tutorial.

4.3 Details of the deliverable

Usage of the J2ME's GUI and RMS is done in the same way as in the Deliverable

One. The way in which the datagram connection is set up between the two devices is

given below. The coding details for the connection between the device and server is

shown in the section for the Deliverable Three.

The following code shows how to send a datagram

DatagramConnection sender =
(DatagramConnection)Connector.open(“datagram://target:32767”);

Datagram dgram = sender.newDatagram(64);

Dgram.writeUTF(“hello”);

Sender.send(dgram);
Table 3: Sending a datagram

 12

The following code shows how to receive a datagram

DatagramConnection receiver
=(DatagramConnection)Connector.open(“datagram://:32767”);

byte[] buffer new byte[256];

Datagram dgram = receiver.newDatagram(buffer,buffer.length);

for(;;)
{
dgram.setLength(buffer.length);
receiver.receive(dgram);
int length = dgram.getLength();

 //printing out the contents of the datagram

for(int i=0; i<length;i++)
{
 System.out.println(buffer[I]+ “ “);
}

 }
Table 4: Receiving a datagram

 13

5. Deliverable Three: Connecting Pocket PC to the HTTP
server

5.1 Description of the Deliverable Three

Deliverable Three shows setting up of a connection between Pocket PC and HTTP

Server. The user of the Pocket PC can invoke the application on the Pocket PC by

tapping the application's name on the Start menu. Then a form that takes in the details

of the baby like name, parents' names, doctor's name, birth date etc is displayed.

When the user presses the submit button, the details are put in the XML format, the

information gets stored in the local device and the Pocket PC connects to the Tomcat

server. This deliverable is extended with the Deliverable Four using which the user

can upload the baby details to the Oracle database.

The following code shows how to define the URL of the servlet

Private static String url =
 "http://anouki:8088/examples/servlet/XMLOracleservlet";
Table 5: Defining the URL of the servlet

HTTP Connection can be obtained and dealt with by the following code

HttpConnection conn = (HttpConnection)Connector.open(url);
Int rc = conn.getResponseCode();
if(rc == HttpConnection.HTTP_OK)
{
//Do something
}
else
{
//Display that different response code is received
}
Table 6: Obtaining HttpConnection

The connection is made on the new thread to make the GUI responsive.

The following is the code to set the connection parameters

 conn.setRequestMethod(HttpConnection.POST);
 conn.setRequestProperty("User-Agent",
 "Profile/MIDP-1.0 Configuration/CLDC-1.0") ;
 conn.setRequestProperty("Content-Language", "en-US");
 conn.setRequestProperty("Accept", "application/octet-stream");
 conn.setRequestProperty("Connection", "close");
 conn.setRequestProperty("Content-Length",
 Integer.toString(data1.length));

 14
Table 7: Setting Connection parameters

6. Deliverable Four: Connecting HTTP Server to the Oracle
Database

6.1 Description of the Deliverable Four

The Deliverable Four is an extension of the Deliverable Three. In this deliverable, the

connection between the HTTP Server and the Oracle Database is set up. The server

gets the data from the client and puts in the Oracle XML database. So this will include

setting up of the database and getting the connection from the server.

6.2 Introduction to Oracle XML Database

Oracle XML Database combines the advantages of both the Oracle technology and

the XML technology. It contains a number of tools for processing XML into and out of the

database: New datatypes like XMLType (for XML), and URI-Ref (for logical pointers) were

added to the kernel for direct XML storage.

6.3 Creating Oracle XML Database

To create Oracle XML Database, initially connect to the database as sysdba, Then, create

directory XMLDIR as 'C:\CS297\ActualDel2\HTTPDB', grant read on directory

XMLDIR to public with grant option, and connect to the database as scott / tiger.

To store the XML document in the database, it must first be converted to XMLType instance.

The function to create this is given below

Create or replace function getDocument(filename varchar2) return clob
 Authid current_user is
 xbfile bfile;
 xclob clob;
 begin
 xbfile := bfilename('XMLDIR2',filename);
 dbms_lob.open(xbfile);

 dbms_lob.createtemporary(xclob,TRUE,dbms_lob.session);
 dbms_lob.loadfromfile(xclob,xbfile, dbms_lob.getlength(xbfile));
 dbms_lob.close(xbfile);
 return xclob;
 end;
Table 8: Function getDocument()

 15

An XML schema for the data should be written and put in the directory created. The

XML schema used in this deliverable is given below

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="baby">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="BabyName" type="xs:string"/>
 <xs:element name="MomName" type="xs:string"/>
 <xs:element name="DadName" type="xs:string"/>
 <xs:element name="DocName" type="xs:string"/>
 <xs:element name="DueDate" type="xs:date"/>
 <xs:element name="HospitalName" type="xs:string"/>
 <xs:element name="BirthDate" type="xs:date"/>
 <xs:element name="BirthTime" type="xs:time"/>
 <xs:element name="Weight" type="xs:integer"/>
 <xs:element name="Height" type="xs:integer"/>
 <xs:element name="ColorEyes" type="xs:string"/>
 <xs:element name="ColorHair" type="xs:string"/>
 <xs:element name="BirthStone" type="xs:string"/>
 <xs:element name="Flower" type="xs:string"/>
 <xs:element name="NickNames" type="xs:string"/>
 <xs:element name="PediatricianName" type="xs:string"/>
 <xs:element name="FirstBirthDayVenue" type="xs:string"/>
 <xs:element name="FirstBirthdayCake" type="xs:string"/>
 <xs:element name="FirstBirthdayOutfit" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>
Table 9: XML Schema

The code to register the schema with the database is given below

 Begin
 dbms_xmlschema.registerSchema('baby.xsd',
 getDocument('baby.xsd'),
 TRUE, TRUE, FALSE, FALSE);
 end;
Table 10: Register Schema

Then, create the user table with the XML schema written. The code to do this is given
below.

CREATE TABLE BABY_BOOK_ENTRIES of XMLType
 XMLSCHEMA "baby.xsd"
 ELEMENT "baby";

Table 11: Create table

 16

6.4 Using Servlets and JDBC

This deliverable consists of XMLOracleServlet.java which connects the server to the

Oracle XML database through JDBC and puts the data sent by the client into it. This

servlet then returns the response code to the client so that the client can display the

result accordingly.

The XMLOracleServlet.java has a doPost() method that carries out all the work of the

servlet.

The following code shows how to read the HttpRequest

ServletInputStream in = request.getInputStream();
DataInputStream din = new DataInputStream(in);

String text = din.readUTF();
Din.close();
Table 12: Reading Http request

The following code shows how to register the JDBC driver

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
Table 13: Registering the JDBC driver

The following code shows connecting to the Oracle database, forming the statement

and executing it

String username="scott", password="tiger",
StringBuffer sqlXml;

DbURL="jdbc:oracle:thin:@anouki:1521:ORA9IDB";

Connection
connection=DriverManager.getConnection(dbURL,username,password);

Statement statement=connection.createStatement();

SqlXml.append("insert into BABY_BOOK_ENTRIES values (xmltype('");
sqlXml.append("<baby xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-
instance\" xsi:noNamespaceSchemaLocation= \"baby.xsd\"> ");
SqlXml.append(text);
SqlXml.append("</baby>");
 SqlXml.append("'))");

Statement.executeUpdate(sqlXml.toString());
 Statement.close();
Connection.close();
Table 14: Connecting to database, statement creation and execution

 17

The following code shows how to form the response and send it back to the Pocket

PC.

Response.setStatus(response.SC_OK);
ServletOutputStream out = response.getOutputStream();
Out.close();
Table 15: Forming response and sending

7. Conclusion

Through all the deliverables done so far, I have come to know that though J2ME is a

subset of J2SE, one must be careful in designing a J2ME application. The reason is

that a small computing device has a radically different hardware configuration than

traditional computing devices. The differences lie in the inconsistency of a network

connection and diminishing longevity of the power.

Using Oracle XML, one can have the advantages of both relational database and

XML. Also, it has a number of tools to use when processing the XML data into and

out of the database. The Deliverable Two was to transfer the records wirelessly

between two devices, the first option to do this was to do using infrared beaming. But,

this proved to be difficult as MIDP has limited functionality and does not support

infrared beaming directly. So, we came up with this scheme where a server sits in

between the clients and provides each client with the list of IP addresses from which

he can select a peer and establish a socket connection.

Digital Cash systems are gaining importance in the recent world. So, implementing

cryptographic algorithm for ensuring the user security and anonymity is an interesting

and a challenging task.

 18

 19

8. References

[SM0203] Sun Microsystems Inc.(February 1, 2003). Future Java Technology for the

Wireless Services Industry. Retrieved May 21, 2003.

[SR02] Srikanth Raju (2002). XML and Java language programming for wireless

devices: a tutorial. Retrieved May 21, 2003.

[SM0503] Sun Microsystems Inc. Programming strategies for small devices.

Retrieved May 21, 2003.

[SSKKVNT] Shanmugasundaram, Shekita, Kiernan, Krishnamurthy, Viglas,

Naughton, and Tatarinov. A General Technique for Querying XML Documents using

a Relational Database System.

[SM02] Jonathan Knudsen (March 7, 2002). Parsing XML in J2ME, XML in a MIDP

Environment. Retrieved May 21, 2003.

[TVBSSZ02] Tatarinov, I., Viglas, D.S., Beyer, K., Shanmugasundaram, J., Shekita,

E., Zhang, C. (June, 2002). Storing and Querying Ordered XML using a Relational

Database System. Proceedings of the 2002 ACM SIGMOD international conference

on Management of data, 204-215.

[K02] Kim Topley (2002). J2ME in a Nutshell: A Desktop Quick Reference.

(1st ed.). O’reilly Publications.

[J03] James Keogh (2003). J2ME: The Complete Reference.(1st Ed). Tata McGraw-

Hill.

[P02] Paul Tremblett (2002). Instant Wireless Java with J2ME.(1st Ed). McGraw-

Hill.

[VM02] Victor Votsch, and Mark Walter. (March 02).

http://otn.oracle.com/tech/xml/xmldb/pdf/xmldb_buswp.pdf. Retrieved Dec 01, 2003.

http://wireless.java.sun.com/midp/articles/j2mefuture/%20
http://wireless.java.sun.com/midp/articles/j2mefuture/%20
http://www.sun.com/developers/%20evangcentral/totallytech/j2me.html
http://www.sun.com/developers/%20evangcentral/totallytech/j2me.html
http://wireless.java.sun.com/midp/chapters/j2megiguere/chap3.pdf%20
http://wireless.java.sun.com/midp/articles/parsingxml/
http://wireless.java.sun.com/midp/articles/parsingxml/
http://otn.oracle.com/tech/xml/xmldb/pdf/xmldb_buswp.pdf

	Table of tables
	1. Introduction
	2. Technologies involved
	2.1 J2ME
	2.1.1 MIDlets and MIDlet Suites
	2.1.2 MIDlet execution environment

	2.2 EXtensible Markup Language (XML)
	2.3 Servlets
	2.4 Oracle Database

	3. Deliverable One: Using J2ME’s Graphical User
	3.1 Description of the Deliverable One
	J2ME's Graphical User Interface
	3.3 Record Management System
	3.3.1 Record Store:

	3.4 Details of the deliverable
	3.4.1 Using Record Store
	3.4.2 Record Enumerations:

	4. Deliverable Two: Transmitting s record wirelessly from one device to another
	4.1 Description of the Deliverable Two
	4.2 Installing VM onto Pocket PC
	4.3 Details of the deliverable

	5. Deliverable Three: Connecting Pocket PC to the HTTP server
	5.1 Description of the Deliverable Three

	6. Deliverable Four: Connecting HTTP Server to the Oracle Database
	6.1 Description of the Deliverable Four
	6.2 Introduction to Oracle XML Database
	6.3 Creating Oracle XML Database
	6.4 Using Servlets and JDBC

	7. Conclusion
	8. References

