
Paperful to Paperless Office Forms Integration Framework

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the Requirement for the Degree

Master of Science

By

Madhuri Potu

May 2004

© May 2004

Madhuri Potu

madhuri5006@yahoo.com

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Christopher Pollett

Dr. Agustin Araya

Dr. Stamp Mark

APPROVED FOR THE UNIVERSITY

 3

Abstract

 Forms are one of the most important transactions on the web. They enable the

users to conduct transactions in a simple and efficient manner. It is the most efficient way

of gathering and processing the information from the user. There are many examples of

uses of Forms on the web: surveys, online trading, purchasing. Most of the forms are

written in HTML which is or was our solution to web applications. Advancements in

technology have replaced HTML by a more reliable and independent technology called

XForms. They are considered to be the future of web applications.

 This project develops electronic forms in a framework; it lets the user design

his/her own forms, edit them, merge any two forms and can be integrated into

applications that store the data. In addition it can even maintain a log of revision data,

i.e., a history of the revisions made to the forms – the date it was created or modified and

a description of the modification. The framework has been developed using Xforms,

XSLT, Javascript, JSPs, and the forms are stored in XML Format in an Oracle database.

The need of usability testing has been addressed by following Usability Patterns like

System feedback, Data Validation, History Logging and User Profiles.

 4

TABLE OF CONTENTS

1. INTRODUCTION ……………………………………………….. 5

2. BACKGROUND AND RELATED WORK …………………….. 8

2.1 XML …………………………………………………….. 8
 2.2 XSLT ……………………………………………………. 9
 2.3 XForms …………………………………………………. 9

2.4 JSPs and JavaScript……………………………………… 15
2.5 Oracle……………………………………………………. 16
2.6 DOM and SAX Parser…………………………………… 19

3. DESIGN AND IMPLEMENTATION…………………………… 22
 3.1 Purpose of the Framework…………………….………… 22

3.2 Design…………………………………………………… 23
3.2.1 Usability Patterns………………………………….. 24
3.2.2 Application Security……………………………….. 25

3.3 Implementation………………………………………….. 29
3.3.1 Version Control System……………………………. 30
3.3.2 Create New Forms…………………………………. 34
3.3.3 Edit Forms………………………………………….. 37
3.3.4 Merge Forms……………………………………….. 38
3.3.5 Design Forms………………………………………. 39

4. USABILITY TESTING AND RESULTS ……………………… 40

4.1 Usability testing ………………………………………… 42
4.2 Results …………………………………………………… 43

5. CONCLUSION AND FUTURE WORK ………………………… 47

6. REFERENCES …………………………………………………… 51

 5

List of Figures

Figure 1: XForms Model …………………………………………………. 10
Figure 2: XForms Example ………………………………………………. 11
Figure 3: XForms control for comboboxes ……………………………….. 12
Figure 4: Process of creating form ………………………………………. 13
Figure 5: Layout of XForm ………………………………………………14
Figure 6: Example JavaScript ……………………………………………. 15
Figure 7: Oracle XML DB ………………………………………………. 16
Figure 8: Creating XML Type Table ……………………………………. 18
Figure 9: Inserting XML type Document………………………………… 18
Figure 10: DOM Statements …………………………………………….. 20
Figure 11: Node Interface Model ……………………………………….. 21
Figure 12: Checkpoint Implementation …………………………………. 26
Figure 13: Overview of Framework ……………………………………… 27
Figure 14: Display of forms and their versions……………………………. 30
Figure 15: Snapshot of Create Forms……………………………………… 33
Figure 16: Steps in creating form ………………………………………….34
Figure 17: Snapshot of Edit Forms ………………………………………...35
Figure 18: Snapshot of Merging Forms …………………………………….37
Figure 19: Snapshot of positioning Elements ……………………………. 38
Figure 20: Framework …………….. ………………………………………39
Figure 21: Usability Tests and Results……………………………………..43

 6

Chapter 1

Introduction

 Transactions over the Internet such as online banking, filling out surveys, and

email have become a part of our daily routine. Using Forms is one of the most efficient

ways of collecting and processing information over the Internet. HTML is the general

format for creating forms. It has predefined tags that let you describe data only once. On

the other hand, XML (Extensible markup Language), an advancement in technology,

provides more flexible and structured information, lets users customize their applications

thereby helping to improve the functionality on the web. XML is not a replacement to

HTML it is more of an extension to HTML. XML is best used in describing the data with

user defined tags while HTML is more suited for formatting and displaying the XML

data.

 The next stage in the development of HTML forms is XForms. The biggest

advantage of XForms is that the data and logic are separated from the presentation. They

use XML to describe the data and HTML to display the data. This advantage makes them

work on any platform; since the data model can be separated, it can be made to work with

any interface, such as handheld devices, phones etc. XForms help us to overcome the

limitations of HTML forms by using XML. Various advantages of XForms over HTML

forms are described in the following chapter.

 7

The framework developed in this project lets users create, edit and customize

forms. The forms contain a set of controls like textfields, drop down menus, and

checkboxes, that can be used to enter information. Generally, for web transactions once

the information is submitted it is then transmitted over the Internet to the appropriate

place. It is then processed and may also be stored in a database so that redundancy does

not occur. We can establish relationships between data using either Relational Databases

or XML documents. In this project we use an Oracle database to store the information

about the elements in the XML Document; the forms are stored as XMLType Tables

[Oracle XML DB, Chapter 2]. This way of storing the data that lets you insert XML type

documents into the database without removing the relationships between the data is

called Structured Method. Both relational databases and XML documents can be

combined in such a method. The Document Object Model [DOM] [11] is used for

accessing the XML documents that is to add new elements, to delete or modify elements.

DOM can access the document once it’s been parsed by a parser [ex: SAX Parser]. DOM

is platform independent and can be used with any programming language.

 A Version Control System has been implemented to maintain the revision history

of the Forms as well as that of a user. The system contains all the information regarding

the date and time of the creation of the form, what modifications were made to the form,

and what revisions a form has undergone. When two forms are merged to create a new

form, the information about the ancestors is stored in addition to the changes made to

them. Usability patterns were implemented to improve the quality of the application.

History logging (Version Control System maintains all the history), data validation are

 8

some of the patterns implemented in the project. A log of the information regarding the

last page visited by the user during his/her last login is made, therefore helping the user

remember what he/she was working on.

 This report is organized as follows. Chapter 2 describes the background and

related work on XML, XForms, JSPs, JavaScript and Oracle XML DB. Chapter 3 gives a

description of the design and implementation of the office Forms Integration Framework.

In the design we look at Pattern programming, Application Security and Usability

patterns that were implemented to increase the usability of the user. Chapter 4 describes

the usability testing done and their results. Chapter 5 discusses the conclusion and future

enhancements.

 9

Chapter 2

Background and Related Work

 This section discusses the technologies used in this project i.e., XML, XSLT,

XForms, Jsps, Javascript, Oracle, DOM and SAX parser.

2.1 XML

 XML (Extensible Markup Language) is similar to HTML. However, XML does

not have predefined tags like HTML; we can define and customize our own tags. XML is

used to describe the data and is independent of presentation. This is the most important

difference between XML and HTML. XML--- describes data, HTML – displays that data.

XML describes data in such a manner that anyone can work on it and a person later on

referring to it also can understand it easily. The example below describes the growing

importance of XML: [12] [www.congressonlineproject.org/glossary.htm]

“The House of Representative has recently issued a list of XML tags to be used in

web forms on Member/Non Member websites that send email to congressional offices.

The purpose of the forms is to enable Correspondence Management System (CMS) to

easily identify and process type of information – such as name, city, zipcode, etc. which

will help make the software efficient and more effective.” From this example we can

strongly support the statement that XML will be integral to the future of the web as

 10

HTML has been to the foundation of the web. XML will become the most common tool

for all data manipulation and data transmission.

2.2 XSLT

XSLT (eXtensible Stylesheet Language Transformations). The main purpose of

XSLT is to transform XML documents to another form i.e., HTML or another XML

document. In this project an XSLT stylesheet was used to transform the XForm

documents and also to apply the presentation to the document. For example whenever an

“input type” element occurred in the form, the stylesheet applied the following style.

h1 {color:”blue”;font-family: \"Arial\"font-size:”12”px; }; -- This is extracted from the
style information stored in the XForm using the following tag

<style type=\"text/css\" MEDIA=\"screen, print\"><xsl:value-of select=
\"html/layout/fontsize\" />

As you can see in the above example the font size and color are not predefined.

The user gives them. So the user can decide color and size of the font. It also decides the

order in which the elements should be displayed. XSLT uses XPath in the transformation

process. For example, consider “<xsl:value-of select= form1/layout/inputbox"/>”. In

this expression XPath finds matches in the source code to the path described above so

that XSLT can transform that matching part of the document into the new document.

 11

2.3 XForms

XForms are the next generation of web Forms. XForms separate the data from the

presentation. This makes the XForms platform independent. E.g: can be used on desktop,

PDAs, paper etc. XForms try to overcome the limitations of HTML Forms. For Example:

The data in XForms is described using XML -- this integration with XML was not

possible with HTML -- even for validation. XForms also send the data using XML i.e.,

data transmission over the internet. All the forms created in this project are written in

XForms using XML to describe the data.

The following is an illustration of XForms model:

Figure 1: XForms Model

Source: http://www.w3.org/MarkUp/Forms/

 12

http://www.w3.org/MarkUp/Forms/

XForms consists of three parts: User Interface, XForms Model, and Instance Data.

The XForms model can work with any type of User interface – XForms User Interface,

XHTML. The XForms Model describes the data in the form. The presentation is

separated from the data and described in a separate section. The XForms User Interface

has a set of controls that can be used in any type of device or platform. There are binding

attributes to bind these controls with the XForms Model, e.g: ‘reference’ attribute. The

Instance Data is the data submitted to or collected by the forms; this data can be sent or

received using the XForms Submit Protocol and can be directly submitted by the XML

processor.

An example XForm is described below:

<head>
<xforms:model>
<xforms:instance>

</name>
</xforms:instance>
</xforms:model>
</head>
<body>

<xforms:input ref="name">
<xforms:label>First Name:</xforms:label>
</xforms:input>

</body>

 Figure 2: XForms Example

The ‘xforms:model’ element is used to represent the information needed in a form

(in the above example: name). All this information is contained within the head tag. The

content part is separated from the presentation making it easier for the forms to get only

 13

the data that is needed. XForms contain a set of controls that are described in the body

section, these controls are bound to the ‘xforms:model’ element via the ‘ref’ attribute.

In the above example we described a form control called “xforms:input”, this

control describes an input box and the ‘xforms:label’ associated with it is the label of the

input box. Since we will only be representing text boxes, combo boxes and submit

buttons in this project, we will deal only with those controls. The ‘xforms:selectone’,

‘xforms:choices’, ‘xforms:item’ are the controls used to represent combo boxes and the

‘xform:submit’ is the control used for the Submit button.

Here is an example showing the form control for combo boxes (choice for gender

male or female):

<xform:selectOne xform="entryform" ref="gender">
<xform:caption>Sex</xform:caption>

<xform:choices>
<xform:item value="male">
<xform:caption>Male</xform:caption>
</xform:item>
<xform:item value="female">
<xform:caption>Female</xform:caption>
</xform:item>

</xform:choices>
</xform:selectOne>

Figure 3: xforms control for comboboxes

The ‘xforms:selectone’ does not just represent combo boxes, it can either be

check boxes, radio buttons or combo boxes, depending on the person choosing it.

‘xforms:selectone’ only describes that we can choose any one among the given choices

 14

(combo boxes or check boxes or radio buttons), giving the user the freedom to select any

type of representation. An XForms Processor is used to validate the data and send it

directly to the application. It is a built in processor enabled in browsers.

With the data separated from the presentation, XForms can be managed

efficiently, making them device or platform independent. In the future all browsers will

be enabled with the XForms plugin making the users not feel the difference (between

XForms and HTML forms) except they will find more efficient web forms. This

information is used to develop a program that can create XForms. Once the XForm is

developed an XSLT stylesheet is used to transform the xform document. The XSLT

stylesheet used in this project “formstylesheet.xsl”, can be used to transform any type of

XForm document that contain textfields, radio buttons, checkboxes, etc.

The basic idea of generating XForm Document and then transforming it using XSLT can

be shown in the diagram given below:

XForm
Documents –
copyform.xml,
grade.xml – many
instances of our
kind of forms

XSLT –
formstylesheet.xsl
– that can be used
to transform any of
these instances

Framework is
used to create an
XForm
Document.

Framework
displays the
form

Figure 4: Process of creating form

 15

 In the framework we create an XForm document with the tags and layout as

shown in the diagram given below. The layout information and data is stored in the

XForm document. Once the document is created “FormStyleSheet.xsl” is used so that it

can be displayed in the framework. All the information regarding the layout such as the

size, height and width of the “input tag” is stored in the “layout” tag. It basically

describes the style of the form. “FormDocument” is the tag where the information about

the xform like textfields, check boxes is stored. It contains model, instance and a control

group to describe the form controls

<layout>
 <fontsize>
 h1 {color: blue ; font-family: "Arial", serif;
 font-style:italic, oblique; font-size:15px; }
 </fontsize>
</layout>
<formdocument>
 <model>
 <instance>
 <title/>

 </instance>
 </model>
 <controlgroup>
 <input ref="FirstName">
 <caption>First Name</caption>
 </input>

 </controlgroup>
</formdocument>

Figure 5: Layout of the Xform

 16

2.4 JSPs and JavaScript

JSP --- Java Server Pages is used for developing dynamic Web pages. JSP creates

HTML and XML pages that combine fixed page templates with dynamic content. In this

project we used JSP to generate web pages by combining XML and Java. JSP is a server-

side programming language whereas JavaScript is a client-side programming language.

JavaScript is a scripting language that allows one to add dynamic content to HTML

pages for enhancing Web pages. For example: to display forms and textfields. It is totally

different from Java even though it shares some features. JavaScript has small functions

enclosed in scripts so that the user can use it in the right way. In this project we used

JavaScript functions to control the mouse movements and record the mouse positions to

support the design and organization of forms. An example script is given below:

<script>
function mousemove(e)
{
 if (doDrag)
 {
 if (!e) {e = window.event}
 var oSource = window.event.srcElement
 if(oSource.name=="textfield")
 o=document.getElementById("Object1")

 }
}
</script>

 Figure 6: Example JavaScript

 17

2.5 Oracle XML Database

The Oracle XML Database provides standards and methods for navigating,

storing and retrieving XML. Oracle helps us store, update, delete, query XML data and

the same XML data can also use SQL (Structured Query Language) i.e. “it encompasses

both Structured Query Language and XML data model in a highly interoperable manner

that provides native XML support”. [Oracle 9i] In brief this lets us use both relational

databases and XML documents at the same time.

Oracle Database processes SQL, text, and XML in the same engine, allowing for a high
level of data integration and lightning-fast queries.

SQL, text, and XML
processing engine
1. SQL/XML, Xquery,
Xpath Queries
2. XML/DOM parsing
3. XSLT data
transformation

Repository
Structured,
shredded, and
unstructured
storage

Application

 Figure 7: Oracle XML DB
Source: Oracle 9i

 18

The following are the three methods used in storing XML data in relational

databases:

Shredded, UnStructured, and Structured [5]

Shredded: The Shredded method does not store the relationships in the XML Data i.e., it

does not store the entire XML document, it uses relational columns to store the data,

removing the XML type i.e. it uses XML Type Column to store the XML Data. The

format of the XML data is lost in this method. Consider the example where information

needs to be transferred to different types of databases. It is shredded so that we can send

the data wherever we want in an efficient manner.

Unstructured: This method stores the data using a CLOB (Character Large Object) to

store the XML document. It retrieves the relationships of the XML data, i.e., the structure

of the XML document is preserved. The only problem with this is the relational database

queries cannot be applied on this type of data. A best example for this type of method

would be a place where all the originals need to be in XML, i.e., it lets us create a

relational record for the original and the original can also be stored with the record.

Structured: The last method lets the user preserve the structure of the XML document as

well as apply relational databases on the data. In our project we use this method to store

the XML data. We store the document using XML Type Table. The main advantage of

preserving the relationships between XML data is being able to create an XML

Document by manipulating the XML data with relational data.

 19

Storing Data in XML Type Table:

Creating XMLType Table:

Create table xforms(form xmltype, formn varchar2(50), version number, id number, root1
varchar2(50), descendants number, root2 varchar2(50), sdate varchar2(30));

 Figure 8: Create XML Type Table

Inserting Values in XMLType Table:

INSERT INTO xforms
VALUES(xmltype(getDocument('’personalinfo.xml')),'personalinfo.xml','1','2327','none','
0','none','date()')

 Figure 9: Inserting XML Type Document

The following are the tables created in this project using Oracle Database to store the

information regarding the forms and the users.

XForms: form, formn, version, id, root1, descendants, root2, sdate. This table is used to

store XMLType Document. The getDocument() function shown in the above figure is

used to convert the XML Document into XMLType Instance. This table contains all the

information regarding the form – when it was created, what version is it and is it a branch

from an existing form, describes the form etc.

 20

Usertable: name, username, password, id, url – This table stores all the information

regarding the user. What is the name of the user, id, password and username to logon,

what is the page he last logged on, and security information.

Elepos: name, left, top, id, version, fname. -- This table is used to record all the positions

of the elements into the database. These positions are used to design the form.

2.6 DOM Model and the SAX Parser

SAX Parser: A “Simple API for XML” [6] that helps in processing XML documents. The

SAX Parser reads through the entire file to extract the required tags ex: input, selectOne,

textarea. The main advantage of SAX Parser is it is very simple to use. The SAX Parser

is an “event-driven” interface in which when an “event” like recognizing the XML tags

or processing an XML document occurs, the parser uses the appropriate methods given to

it by the user.

org.xml.sax.InputSource
org.xml.sax.SAXException
org.xml.sax.SAXParseException
org.xml.sax.*

 21

DOM – Document Object Model

DOM is a platform-independent interface independent of language that is used for

accessing XML documents and HTML documents. With the help of the DOM we can

access XML documents i.e., we can add new elements, delete elements or modify the

structure of the XML document. The main objective of XML DOM is to create a standard

programming interface for different applications.

 In the code below first the XML Document is passed through the Parser, once the

document is loaded the DOM is used to extract the information from it, to navigate

around the structure, to add or delete or modify elements.

InputSource input = Resolver.createInputSource (new File (formname));
XmlDocument doc = XmlDocument.createXmlDocument (input, false);
doc.getDocumentElement ().normalize ();

 Figure 10: DOM Statements

As shown in the above code, the DocumentElement is the root of the XML Document. It

organizes the XML document in a tree view. First the root element is present then the

child nodes are added. In the example code given below, getChildNodes() method is used

to retrieve the child nodes associated with the root element. Also a “Node Interface

Model” is used to access the nodes in the Document. Example: NodeList gives the

number of elements by the given tag, getAttributes() extracts the text associated with that

particular node. Even the “Element model” can be used to access the nodes, in this

project we used Element model as we can see in the below example

 22

NodeList listOftextf = doc.getElementsByTagName("xform:input");
int totallist = listOftextf.getLength();
Element node3 = (Element) node2.item(j).getChildNodes();
String c2 = node3.getAttributes().toString();

 Figure 11: Elements

All the above examples explain methods for retrieving XML Document from Oracle

XML Database. In the next example we can see methods to add or modify elements of

the XML Document. “createElement(“xform:input”) creates an xform:input tag in the

XML document. The xform:input tag is used to represent textfields in XForms.

“setAttribute()” sets the values of the textfield. “createtextNode() creates the text attribute

associated with the tag.

Element child = (Element)doc1.createElement("xform:input");
 root.appendChild(child);
 child.setAttribute("value", tname[i]);
 Text child1 = (Text)doc1.createTextNode(tname[i]);
 child.appendChild(child1);

 Figure 11: Creating xform type elements

 23

Chapter 3

Design and Implementation

3.1 Purpose

 The main purpose of this project is to implement a framework that can create,

design, edit and merge forms. It should be compatible for integration into other

applications. The framework should be able to maintain the revision history i.e.,

whenever a form is edited, a new version of the form is created and stored in the

database. The forms are created using XForms and Oracle database is used to store them.

The data in the XForms uses XML to describe the data and XSLT (stylesheet) to display

the form. An example of how the framework works is given below. A detailed

description of how to create, design, edit and merge forms is described in the following

section.

Example:

As you can see in the below figure the framework consists of five parts. Create, design,

edit, merge and the Revision Control System.

 24

create forms edit forms version control system merge forms

 The above figure shows how the framework looks when you click on each

application. In “create forms”; the user can create a form with textfields, labels, and

checkboxes. “Edit Forms” screen contains a list of all the forms in the database. The

latest version of the form is provided. In the version control system all the forms and their

revisions are displayed. Even the date and time of creation is displayed. The last screen

lets users merge two different forms. A description of the process is provided in the

Implementation Section.

3.2 Design

This section of the report discusses the different types of object-oriented concepts

used in this project. Usability and security are some of the important concepts when

developing applications such as this project. The quality of the project has to be

maintained, for this purpose usability patterns have been implemented in this project.

Application Security is another important concept, there are many patterns that can be

implemented in it. These patterns will be discussed in the following sections.

 25

3.2.1 Usability patterns

The quality of a framework depends entirely on the usability of the framework. It

should be user friendly and simple to understand. A collection of Usability patterns has

been discussed in www.designforquality.com. The following are some of the Usability

patterns that has been implemented in this project to improve the quality of usability

property:

History Logging: It would be very helpful to log all the actions of the user such as the file

last used, or version of the file created. This pattern is implemented in this project in the

Version Control System (VCS). The VCS records all the information regarding the forms

pertaining to a particular user. It creates a history log listing all the forms created, the date

and time they were created, the version of the form, the date it was last modified, and

description of the changes made to the form. This type of pattern was implemented in the

project because it would be very helpful to keep track of actions of the user so that the

user can get back to the log and check to see what went wrong if an error occurs.

System Feedback: If a user makes a request that is not working, then the system should be

able to send alerts stating the problems. For example when we try to download a

document the system alerts the user by sending “Do you want to open or save the

document?” These system feedbacks help the user in being well informed about the

system state. In our framework when the user tries to enter wrong data the system pops

 26

http://www.designforquality.com/

up an alert stating “wrong information”. This pattern prevents the user from performing

actions that might lead to errors.

User Modes: Each user has their preferences. They should be able to design according

their own preferences. In this project the user can design their own form that is the user is

able to drag the elements in the form according to his/her preferences. This lets the user

personalize forms according to his/her needs.

Workflow Model: The last of the usability patterns implemented in this project. In this

model the user has to follow specific steps in order to complete the project. Example:

Content Management System. In this project the user has to be first registered to logon.

This is the first step in the process. Once the user is logged on they need to create a form,

then they can later edit it or merge it. Once the form is done it can be rearranged/designed

according to the user’s needs.

3.2.2 Application Security

A list of patterns has been described by Joseph Yoder [8] in “Architectural

patterns for enabling application Security” to implement the application security. The

following are the patterns that have been implemented in this project:

 27

Single Access Point:

If we have more than one access points to enter the application it would be difficult to

keep the application secure. In this project we have different applications that need to be

accessed by a single user. Having different logins for each would not be secure enough.

Having one secure single access point solves this problem. We have four different

operations that need to be done create forms, edit, merge and design. Everything is

combined and setup in such a way that the user can access all the applications by

providing username and password at a single access point. All the user information that

needs to be used in the entire application is collected at that single access point. Single

administrator account was created so that all the information can be accessed and

checked by the administrator. All the information about all the users can be viewed in this

account.

Check Point

Single Access Point helps in providing a single gateway for the entire application;

the entire user information that is needed is collected at this single access point. But this

is not enough, as it cannot protect the system from hackers. We can prevent the hackers

by implementing security measures like disabling the account if a wrong password is

entered. But, if a real user forgets his/her password it would be very difficult for him/her

to enter the application. For this purpose Check Points are used so that a user can enter

 28

wrong password only a certain number of times. The flow diagram given below describes

how checkpoint is implemented in this project.

 No

 Ok Yes

 problem

 ok

Login

Password
Check

Clear failures

Increase the fail count

Other
checks

Load session
data

Disable acct

Failure
count>3

 Figure 12: CheckPoint implementation

 29

Sessions

A session object can be created at the time of login so that the information that

needs to be used in all the applications can be stored in a session object. In this project

once the user has logged on, the user information is stored in a single session object so

that it can be shared and accessed by all the applications.

 30

3.3 Implementation

Office Forms Integration Framework:

 The main objective of this project is to create a framework that lets any user

create, design and edit forms. It should also identify forms associated with a person in the

database.

Below is an overview of how the framework works:

Merge forms

Design forms

Display using
Framework

Version Control System –
history logging

Create
form

Edit forms

 Figure 13: Overview of Office Forms Integration Framework

 31

3.3.1 Version Control System:

Need for Version Control System:

 As technology advances, the process of storing information on paper is being

eliminated. This creates a need for backing up information and data on applications.

Storage Tapes are used to backup all the information. But this is not a very effective way

of storing all the revisions; these devices overwrite the existing file thus not letting the

user go back to a particular version of the file. An alternative to these approaches would

be to implement version control systems that would never delete the file or replace a file;

a new version is created whenever a change is made.

Version control system (VCS) needs to keep track of what’s going on in the entire

application and organize the different versions of the forms existing in the system. Since

the forms can be edited any number of times we need to keep track of all the changes

being made. The VCS was developed to maintain the revision history and style of the

form. All the actions of the user are logged. It even keeps track of the last page accessed

by the user. Each time the user enters a page the VCS is updated with the latest userdata

so that it will help the user keep track of what he/she was doing their last login. The VCS

is organized in the form of a tree, i.e., the root would be the original form, the child nodes

being the revisions made to the form and also branches emerging from the child nodes.

This VCS is implemented for individual users. So the problem of two users using the

same file does not occur. For this reason-locking feature has not been implemented.

 32

The Version Control System should have the following features:

(a) Ability to create new branches of existing forms as well as to create new forms.

(b) Ability to merge existing branches and to unify form data from two branches.

(c) Ability to examine change histories along a given form branch.

Whenever a new form is created all the information regarding the file is stored

and it is given a version number according to the order in which it was created. Once the

user edits it, the VCS saves a new version of the form, the date and time the change was

made and description of the changes made. The numbering starts at 1.1 the first time a

change is made. The 1 before the dot represents the original version of the form. The

revisions can be specified in two different ways: display based on the version or the date

and time it was created.

Another ability of the application is to create new forms from the existing branch

or merging them. Branches can be created from a new form or from a version of an

existing form. In the case of merging the system checks for the recent version of the

forms and then merges them. In the framework there are five buttons for different

purposes: create new forms, edit forms, design forms, merge forms and the last function

shows the information stored in the VCS. In here the name of form, version, date and

time it was created are displayed. The forms displayed can also be sorted according to the

form name by clicking on the “Form Name” button. The VCS checks all the versions of

 33

the forms and decides which version to let the user use. In the case of editing forms only

the latest version of the form is provided, changes are made to the latest version. The user

can go back and look at the VCS to look at all the versions. There is also an option for the

user to enter the version of the form they want to look at.

Version Control System:

Formname version user date and time created

 grade.xml 1 madhuri Wed Apr 28 01:14:49 2004

|___ grade.xml 1 .1 madhuri Wed Apr 28 01:15:05 2004

 copyform.xml 2 madhuri Mon Apr 26 23:21:30 2004

|___ copyform.xml 2.1 madhuri Wed Apr 28 01:15:05 2004

copypaper.xml 3 madhuri Wed Apr 28 01:35:35 2004

 form20.xml 4 madhuri Wed Apr 28 01:57:03 2004

 Figure 14: Display of forms and their versions

Existing Version Control Systems:

 Different techniques are used in implementing Version Control Systems. Let us

take a look at two different Version Control Systems and compare them to our Version

Control System.

 34

(i) Revision Control System (RCS) [9]

(ii) Concurrent Versions System (CVS) [10]

RCS was developed by Walter Tichy at Purdue University; widely used by Unix

Systems. RCS lets people create different versions of the text, i.e., if an error occurs the

user can check at a previous version of the text. If a user is working on a text and another

user wants to work on the same file, RCS does not let the user open the file until the first

user is done. On the other hand CVS is also used to maintain a history of all the changes

made to a set of file. But CVS lets two users open the same file at the same time. It lets

both users make changes and once they are done merge both changes into the document.

But if the changes are made to the same line of text then none of the changes are saved.

The user has to manually make the changes. The Version Control System developed by

this application also keeps track of all the changes made to the forms and also follows a

tree view to store the versions. As this system is used one user at a time no locking

mechanisms are implemented on this system. CVS is more complex than RCS and needs

more disk space. But it is very useful for applications that are at different places and are

connected by the Internet. Even the Version Control System developed by this project

can be used by applications that are distributed at different sites.

 35

 Let us a take a look at all the actions performed in the Framework:

3.3.2 Create New Forms

Once you login into the system, the first thing to do is to create new forms. The user can

create textfields, checkboxes, comboboxes, labels, textarea. We can drag the icons into

the box provided. Once the user drags the required number of textfield, checkboxes the

information about them is filled out on the right side. These elements are dragged and

counted by the following functions. “document.onmousemove = mousemove” enters the

“mousemove” function whenever the mouse moves. Once the user clicks on the icon it

enters the “Mousedown” function.

In “Mousedown” function the actual element is cloned to create another element

(textfield or checkbox etc) and inserted in the document. Also the number of elements

added is counted. Each time the mouse enters the “mousemove” function the left and top

positions are being calculated to keep track of the location of the element. Once the

element is placed in the desired location it enters the “mouseup” function. In here the

final positions are calculated. This is how the elements are dragged and calculated; a

summarized version of the three functions is described below:

function mousedown(e)
{
 doDrag=true

 var oCloneNode = o.cloneNode(true) cloning original element and inserting cloned element
 document.body.insertBefore(oCloneNode) in the document
 document.form2.count1.value=countt;
 document.form2.count2.value=countc;
 document.form2.count3.value=countta;
 document.form2.submit()
}

function mouseup(e)

 36

{
 doDrag=false
 oLeft = e.clientX-mouseLeft
 oTop = e.clientY-mouseTop

}
function mousemove(e)
{

 if (doDrag)
 {
 oLeft = e.clientX-mouseLeft
 oTop = e.clientY-mouseTop sets the positions of the elements
 setPosition(o,oLeft,oTop)
 return false
 }
}

It can be shown in the snapshot provided below:

This is where all the
names of the tags are
entered.

These icons for
textfields, checkboxes
--- are dragged into the
box provided below

Figure 15: Snapshot of Create Forms

Once the information is entered it is passed to another form so that an XForm

document can be created. In here we use the DOM and the SAX Parser to create an

Xform document. A brief description how the form is created is given below. The

information regarding the number of elements to be created and the names of the

elements is collected and created into XForm. As you can see below root of the element

 37

is created first and then the other elements are attached to the root. The example provided

below shows about creating “xform:input” tag. All the other elements are created in the

same manner and attached to the root.

XmlDocument doc1 = new XmlDocument ();
Element root = (Element) doc1.createElement ("html");
Element child = (Element)doc1.createElement("xform:input");

 root.appendChild(child);

The layout of the form has to be consistent with the format specified. The ‘layout tag’ has

the style information and the ‘formdocument’ contains the Xform document. The

following are the steps followed in this part:

3.Frame_e.jsp 2.Frame_c.jsp 1.Dforms.jsp

4.FinForm.jsp
Figure 16: Steps in creating Form

In the first step two frames are displayed, one empty and one with a number of icons

representing textfields, checkboxes, etc. to be dragged into the box provided.

In the second step once the icons are dragged the total number of each type of element is

taken into account and also the information entered for each element is passed to

Frame_e.jsp (3rd step).

In the last and final step FinForm.jsp the XForms document is created.

 38

3.3.3 Edit Forms:

Editing forms is the most important part of the Framework. Once the user creates a form

he should be able to make modifications to it. At the same time the version control

system discussed in the following sections starts saving the information regarding the

user, actions performed and many more. Editing Forms has five operations associated

with it.

i. Delete Items

ii. Add new element

iii. Rearrange Elements

iv. Reset to original form and

v. Finished Editing, Save Form.

To add new
textfields etc.

Delete, Reset
and Save

 Figure 17: Snapshot of Edit Forms

 39

“Delete Items” As you can see each element has a check box associated with it. The user

can check it and click on the “Delete Items” to delete the items. If a user accidentally

deletes an element it can be “Reset” to the original form by clicking on the “Reset”

button. A list of icons – textfields, checkboxes etc is provided (just like – create forms) to

add new elements to the form. Click and drag the icons to the box provided so that they

can be added to the Form.

Once all the actions that need to be performed are done, click on the “Finished Editing,

save Form” to save the form. Once this button is clicked a new version of the form under

the same form name is created and inserted into the database do that the VCS can keep

track of all the actions of the user.

3.3.4 Merge Forms

Sometimes a user is required to create a form that has information already created is

contained in two different forms. In such a case the user can merge these forms to get the

required form. This helps in reducing redundancy. If they were paper forms the user has

to recreate the form, but “merge forms” application just merges them and creates the

required form in an instant. We can also add more elements/ rearrange them in the newly

created merged form

 40

 form1 form2 merged form

 Figure 18: Snapshot of Merge Forms

3.3.5 Design Forms

In this method the user can move the elements around to define the positions of the

elements. The left and the top position of each element are stored in the layout of the

Xform document. Once the elements are positioned it is then used by the XSLT

stylesheet to transform the Xform document and display it.

 41

Designed by the
user, user can drag
these elements and
position them

Figure: 19 Snapshot of Positioning elements

Version Control System:

In brief, VCS logs the information about the user and actions performed by the user from

the minute the user registers with the system. When a new form is created, the name of

the form as well as the form itself is stored in the database to keep track of the

information that has been changed. The version number is also stored to identify different

versions of the form. If a user edits the form, the VCS notes which elements are added,

modified or deleted so that they can be used for future reference. When the user is in the

Merge operation, the data collected by the VCS helps the user by not letting them merge

the forms that were already merged. All the positions of the elements are also updated

immediately after a change is made. Only the latest positions of the elements are stored in

the database.

 42

All the steps followed in the Framework:

mainpage.xhtml blank.xhtml

Login.xhtml createform.jsp

Loggeduser.xhtml Newuser.xhtml

Frame_f.jsp lastlogged.jsp

display.jsp editform.jsp createform.jsp vcs.jsp homepage.jsp

userdata.jsp

dragelem.jsp enterinfo.xhtml

countinfo.jsp

Finalform.jsp

editedform.jsp design.jsp

homepage.jsp

 positionform.jsp

 Figure 20: Framework

 43

Chapter 4

Usability Testing

 Usability testing is a means of finding the usability of a product. Making a

product usable can mean many things such as making it easy to use, error free, simple to

navigate etc. The main purpose of Usability Testing is to see if the user is satisfied with

the product and that all the needs of the user are met. Many important concepts for

designing simple web sites have been discussed in Jakob Nielson’s “Designing Web

usability: The Practice of Simplicity”. To test the usability of the Framework developed

in this project five different test subjects were selected. These five users were selected

from a diverse group of individuals with varying degrees of computer experience. All of

them had used forms in their daily life. Prior to the test these users were given a brief

tutorial on the purpose and usage of the framework. The following were the main criteria

in observing the users:

1. Were the users able to figure out how to use the framework on their own?

2. What were the common mistakes made?

3. How long does each user take to learn about the framework?

4. Is the user satisfied with the product?

5. What were the recommendations made to improve it?

 44

Each user was tested on a specific set of tasks, these included:

• A paper-based form was given and they were asked to create a similar form using

the program.

• They were asked to merge two forms to create a new form

• An existing form was to be edited to create a new version

• General navigation around the various applications

Results:

The following are the results of the Usability Testing:

1. One of the users suggested providing instructions before each section on how the

section works and how to use it. The first time the user logged into the framework

without any instructions he was overwhelmed and did not know how to proceed.

The user found easier to navigate after the instructions were given.

2. At first the form fields only included textboxes, comboboxes and checkboxes.

Based on user feedback labels were later added, as the users felt it would be more

useful to have comments in the forms.

3. Font size and font color of the forms were predefined in the Program. The users

felt that they would like to have more control in designing the forms. The latest

version of the program now allows users to customize the font colors, sizes etc.

 45

4. In the ‘edit forms’ section adding new fields to the forms was implemented.

While testing this section one of the users inadvertently added a checkbox and

wanted to remove it, but there was no way to delete fields. I have now changed

the ‘edit forms’ so that the user can delete any fields from the form. The form can

also be reset to the original version.

5. The Version Control System displays all the forms created in the database and the

date they were created. One of the users suggested it would be nice if it also

showed a description of the changes made when a new version of the form is

created. A description field was added to the VCS system for this purpose.

 46

 Create
new
Forms

Design
Forms

Edit Forms Merge
Forms

VCS Time
Taken

User
1

Was
totally
confused
didn’t
know
where to
start

Had no
problems

Tried to
remove the
field after
adding a
textfield

Tried to
select
more
than 2
forms

Liked the
idea that
she can
see all the
versions
and date
they were
created

45
minutes

User
2

Started
without
any
problems.
Tried to
move
already
added
field

Didn’t
know how
to move
around,
needed
instructions

No
problems

No
problems

No
problems

60
minutes

User
3

Had no
problems

Liked the
idea of
moving
around the
fields and
positioning
them

No
problems

No
problems

Suggested
to add a
description
field so
that the
user would
know what
changes
were made

30
minutes

User
4

Didn’t
know
where to
start, had
problem
dragging
the fields

No
problem

Needed
more
instructions

No
problem

No
problem

40
minutes

User
5

Suggested
to provide
instruction
before
each
section

No
problems

No
problem

No
problem

No
problem

50
minutes

 Figure 21: Usability Testing Results

Average time taken by the users --- 45 minutes

 47

Most of the test subjects found the Framework to be very useful. They liked the idea

of being able to not only design and create their own forms but also go back and edit

them later. Each time the user made changes a new version was created and the changes

made to the previous version were stored. The Version Control System has an ancestral

view in which all the forms that were created in the database are show. Users were pretty

impressed with the Framework; they felt that it would be a good tool in implementing

forms if the data was also stored in the database.

 48

Chapter 5

Conclusion

 As we can see from the above discussions “Forms” are the most efficient way of

gathering and processing information. They enable the transactions on the web to

communicate with the user in a simple and efficient manner. XML has become the ideal

language for “Automated Processes” and “Integration” because it can be transformed into

any format depending on the need of the user. Different users can receive the same XML

file and use it according to their specific needs. XForms are the future of HTML forms;

they use XML to describe the data and HTML to display the forms. This separates the

data from the presentation; making them usable on any platform. In this project we

created forms using XForms with the style information described in them. Once the

XForms are created XSLT stylesheets were used to transform the XForms and display

them.

 Merging XML data with Relational Data is also becoming essential because the

databases can, not only store XML data but can also solve the difficulty in working with

XML. Relationships between data can be represented by both XML and Relational

databases; combining both would provide more efficient methods. In this project we used

Oracle XML DB to store, retrieve, query and merge XML Documents. Structured

Method was used to store data as it can help to retain the hierarchy of the XML

Document. This helps to use relational queries of merging and manipulating the XML

Documents.

 49

 Version Control System was implemented to keep track of all the actions of the

users and organize the different versions of the forms. VCS uses ancestral tree view to

organize the different version of the forms. It was developed to maintain the revision

history and style of the forms. The following are the features of the VCS

(a) Ability to create new branches of existing forms as well as to create new forms.

(b) Ability to merge existing branches and to unify form data from two branches.

(c) Ability to examine change histories along a given form branch.

Two object oriented concepts were used in the design of the Framework:

Usability patterns and Application Security. The quality of a framework depends

entirely on its usability. It should be user friendly and should not be too complicated

for the user. It should also be secure enough to prevent hackers. Various Security

issues have been implemented, such as allowing the user only three consecutive

attempts to login into the system, creating sessions so that user information is

collected only once and transmitted whenever needed.

 This Framework lets the user create XForms, edit and merge forms

without knowing the underlying technology. In general if a user needs a particular

type of form, someone else has to design the form before they can use it. But in this

system every user can design and customize their forms. The revision history of the

forms is also created so that if an error occurs at some point in the creation they can

go back to the previous version. As everything is being stored in the database it

 50

reduces disk space making it more efficient. We use XML to describe the data, XSLT

to transcribe it and Oracle to store it. Because of this advantage XML lets us work on

any platform. By using Oracle XML DB to store the data we were able to preserve

the hierarchical information of the XML document. This also enabled us to query,

modify and manipulate the XML Data. All this technology has helped us to generate

a user friendly framework that lets users create, edit, merge, design forms maintain

revision history. Sequences of test forms have been created to test if the Version

Control System is functioning properly. Furthermore, simple usability testing has

been carried out.

 51

Future Enhancements

 In this project we are able to store the forms created in a database. The data

entered into the forms is not being stored in the Database. Storing the data would make

the Framework a toolkit for XForms. A future improvement to the framework could be

that when a form that has already been created is opened, the information pertaining to it

can be retrieved so that the user need not re-enter it.

 The Framework can be made to be more accessible for any type of user.

Accessibility issues such as providing alt tags could be implemented.

 52

References

1. Harold R.E.,& Means S.W. XML in a Nutshell (2nd ed.). O'Reilly. 2003.

2. Sperberg-McQueen C.M., & Thompson Henry. XML Schema. W3C.

http://www.w3.org/XML/Schema. 2003.

3. Thierry Michel. XForms - The Next Generation of Web Forms. W3C.

http://www.w3.org/MarkUp/Forms/. 2003.

4. Oracle9i XML Database Developer's Guide - Oracle XML DB.

5. Shimura T., Yoshikawa M., Uemura M. Storage and Retrieval of XML Documents

using Object-Relational Databases. Proceedings DEXA Conference Florence, Italy, 1999.

pp 206--217.

6. Simple API for XML http://sax.sourceforge.net/

7. Article on patterns. www.designforquality.com

8. Yoder Joseph, Barcalow Jeffrey. Architectural Patterns for Enabling Application

Security 1998

9. Tichy W. Design, Implementation, and Evaluation of a Revision Control System,

Proceedings: 6th International Conference on Software Engineering pp. 58-67. IEEE

Computer Society Press, 1982

10. Concurrent Versions System (CVS) www.cvshome.org

 53

http://sax.sourceforge.net/
http://www.designforquality.com/
http://www.cvshome.org/

11. Tutorials on XHTML, XForms, XML, DOM. www.w3schools.com

12. Example on importance of XML. www.congressonlineproject.org/glossary.htm

13. Suciu D. On Database Theory and XML.SIGMOD Record (8), pp.39--45. 2001.

 14. Su H., Kramer D., Chen L., Claypool K., and Rundensteiner E.A. XEM: Managing

the evolution of XML Documents. Eleventh International Workshop on Research Issues

in Data Engineering (RIDE 2001). Heidelberg, Germany, April 1-2, 2001.

15. Tatarinov I., Viglas D.S., Beyer K., Shanmugasundaram J., Shekita E., Zhang C.

(2002,June). Storing and Querying Ordered XML using a Relational Database System.

Proceedings of the 2002 ACM SIGMOD international conference on Management of

data, pp. 204--215.

16. Database management. www.infoworld.com/techindex/xml.html

 54

http://www.w3schools.com/
http://www.congressonlineproject.org/glossary.htm
http://www.infoworld.com/techindex/xml.html

	Madhuri Potu
	ALL RIGHTS RESERVED
	TABLE OF CONTENTS

	XML …………………………………………………….. 8
	2.2 XSLT ……………………………………………………. 9
	List of Figures
	Figure 16: Steps in creating form …………………………………………. 34
	Shredded, UnStructured, and Structured [5]

