Feasible C

By Yan Yao
Advisor: Dr. Chris Pollett

Introduction
«c 1]

e A translator parses our feasible C code, and
outputs usual C code.

e It only parses polynomial tagged function.
e Functions parsed by this translator are
polynomial in its inputs.

- Assumption: it takes a OS effectively constant
time to perform certain operations such as
creation of local variables, variable assigment.

Tools: Lex and Yacc
]

e Lexer recognizes tokens from the input
strings.
- The patterns lex uses to match the token are
expressions.

- For every expression there is an associated
action which usually returns a token to the parser.

Tools:Lex and Yacc
]

e Yacc recognizes grammars
— It reads token, and recognizes rules.

- Example (a grammar might be used to build a
calculator program):
statement. NAME = expression,

expression: NUMBER PLUS NUMBER | NUMBER MINUS
NUMBER ;

Implementation: Restrictions
.

e Variable Declaration

e Checks the symbol table to find if it is a variable
redefinition.

e If it's a valid declaration, puts the variable into symbol
table.

Implementation: Restrictions
.

e Assignment

e Checks if the expression on the left of the assignment
operator is one of the function input parameter.

e Checks if the expression is a valid variable (if it's
declared).

Implementation: Restrictions

e for loop

- If the expression_3 is decrement the comparison operator
iIn expression_2 has to be >=" or ">’. Otherwise it might be a
infinite loop. We don’t allow this situation.

for (i = 0; i<=10; i)
{ statement}

-~ Needs all three expressions, otherwise it might be a infinite

loop.
for(expression_1;expression_2; expression_3)
{

statement_1;
statement_2;

}

Implementation: Restrictions
.

e while loop

- Requires programmer to add an expression
maxcount(expression). A feasible C while loop

has the form:
while((expression)&&maxcount(argi))

{

statement;

}

Implementation: Restrictions
.

e While loop in e [he preprocessor
input: ouputs:
int loop_control 0 = arg;
while((expression)&&
while((expression)&&maxcount(arg)) (loop_control_0--)>0)
{
statement, {statement;
}
}

arg has to be a function
Input or a constant.

Implementation: Restrictions
.

e Recursive function

— recursion control variable slot.

e If a polynomial function is a recursive function, then
there must be a recursion control variable slot in its input
parameter list.

polynomial void myfunction(int i, int $j)
{

statement

myfunction(i, $j);

}

Implementation: Restrictions
.

e Recursive function e The preprocessor
polynomial void myfunction(int i, int $j) Qutp uts:
{ void myfunction(int i, int $j)
statement {
myfunction(i, $J), if((j--)==0) return ;
} statement

myfunction(i , $j);
}

Implementation: Restrictions
.

e Data Types

Allows primary data types: int, char, double, float, signed, unsigned.
No pointers. (it might cause non-polynomial execution)
Struct/union are allowed, but only has primary types.

Arrays: needs boundary checking. So we have struct:
typedef struct Arrayint
int *arr;
int len;
%
If sees int[] a =new int[expression];
it outputs:

Arrayint a;
a.arr = (int *)malloc(expression *sizeof(int));
a.len = expression;
Maps a[expression] to: a[((i<a.len&& expression >= 0)? expression : 0)]

Also adds: free(a.arr) at the end of the block.

Implementation: Restrictions
.

e Function calls
- Arguments type checking

— Only function has recursion control variable slot
can make function call.

— Only functions in the polynomial function list can
be called.

Implementation: Restrictions
.

e Function prototype

- A polynomial tagged function prototype will be put
into the function list.

- The information of function input parameters
types are also stored in the list.

First Main Result — Complexity
S

Expression compleixty

— The primary expressions are variables and constants of
type int, long, or double. The operation complexity of
primary expressions is defined as constant 1.

— Expressions with unary operators such as ++expression, --
expression, and -expression have the complexity of
complexity of expression plus 1.

- The expressions with multiplicative operators of the form of

e expression 1% expression 2
e expression 1/ expression 2
e expression 1 % expression 2

have the complexity of complexity of (expression 1+1) *
(complexity of expression 2+1).

First Main Result — Define Complexity
S

e Operation complexity
- The complexity of expressions with additive operators of the form of

expression_1 + expression 2
expresiion_1— expression_2

- is defined as complexity of expression 1 + complexity of expression 2.
- The expressions with relational or equality operators of the form of

expression_ 1 < expression_2
expression_ 1> expression 2
expression 1 <= expression_2
expression_1>= expression 2
expression_ 1 == expression_ 2
expression_11= expression 2

- have the complexity of complexity of expression 1 + complexity of
expression 2.

First Main Result — Complexity
S

e Expression complexity
- The complexity of expressions with bitwise/logical AND and OR operators
of the form of

e expression_1 " expression 2
® expression_1 | expression 2
e expression_1 && expression 2
e expression_1 || expression 2

- is defined as complexity of expression 1 + complexity of expression 2.

- For the expressions with operators such as conditional operator and

assignment operators, the complexity is also defined as the sum of the
complexity of every expression.

- If the expression is simply a function call, we handle it the same as the
function calls. As we defined above the complexity of function call in the
complexity of the function.

- If the expression is used to assign a function to a variable, we say the
complexity of this expression is the complexity of the function plus 1.

First Main Result — Complexity
S

e Complexity of Statements
— a variable declaration statement in the form:
char a, b, c;
complexity = number of items in the list;
e For an assignment such as
a = expression;
complexity = 1 + complexity of expression;
e for a return statement
— return expression
- complexity = complexity of the expression;

First Main Result — Complexity
S

e forloop

for (i=0; i <j; i++)

{statement}

— complexity = j * complexity(statement(i)) ;
e for (i=10; i > j; i--) statement
o if....else....

if(expression) statement_1 else statement 2

-~ The complexity of this statement is the larger one of the
complexity of statement_1 and statement_2, plus the
complexity of expression of expression.

First Main Result — Complexity
S

e in a while loop
while (expression1&maxcount(expression2)) statement;
complexity = expression2 * complexity(statement) ;

e for a switch statement,
switch (expression){

case constant1: statement;
break;

case constant?: statement;
break;

case constantn: statement;
break;
}

- complexity = sum of complexity of every case statement + complexity of expression ;

First Main Result — Complexity
S

e statement block:
{

statement_1;
statement_2

statement_n;

}

— complexity of statement block = sum of the complexity of all
the statements in the block.

e function call

-~ The complexity of function call = the complexity of the
polvnomial function

First Main Result — Theorem 1
]

e Theorem 1.

— The runtime of any C expression of the formexpr(arg,, ... arg,) where arg,
are the variables appearing in the expression or the runtime of any C
function of the form

type_of_return_value function_name (arg,, arg,... arg,)
parsed by this preprocessor is bounded by
O((abs(argument,)+abs(argument,)+...+abs(argument,))f(m’)+ f{m’))
f(lm’) = 2m’
If argumenti is an array, then in the above we replace this argument by the sum of the
absolute values of its elements. That is:

abs(argumenti [0])+abs(argumenti [1])+...+abs(argumenti [n-1])

where n is the length of the array.

First Main Result — Theorem 1
]

e Proof by induction
— An expression containing two primary
expressions and one operator might look like:

expr,(arg,, arg,... arg,,) op expry(arg,, arg,...
arg,).

op ‘' ¥ is representative of all the other cases. By
the induction hypothesis, the runtime of expr, is .

O abs(arg,)’ ™ + f(m,))

First Main Result — Theorem 1
.
e The runtime of expr, is o wsae) ™+ s

So by the induction hypothesis we have that
the runtime of

expr,(arg,, ... arg,,) *expr,(arg,,... arg,)
can be bounded by .

O(Y (abs(arg,)" ™ + f(m,) +1) (> (abs(arg,)’ ™ + £(m,) + 1))

First Main Result — Theorem 1
]

e Let = z. Using this, the run-time of
expri(arg1...) * expr2(arg1...) is A:

O((z2" +2" +1)# (22" +2™ +1) = 02" +2" +2)" +2™ +2))

First Main Result — Theorem 1
]

- Let z=z2(we assume the inputs to the expression is greater
or equal two)

A< O(Zz'“l +2m2 + Zz'“l +2m2+! + Zz'”lz 42+ + 2m1'+m'2+2) < 0(322'“1 +2m2+! + 2m1'+m'2+2)

m,+mv +1 ! !
A=O0@z" " 2mmr)

pmy +my +1 2m1'+m'2 +1 2
3z <z z

2(m1'+1)*(m'2+1)

A< O(Zz'"l +my+2 £ om +my+2) < O(Z + 2(ml +1)x(m, +1))

First Main Result — Theorem 1
]

- Let m = (mi + 1) % (m2, +])’f(m") = 2(m1'+1)*(m'2+1)

mmmmm

O(z>" = +2™m™™)

So induction hypothesis holds. Therefore the theorem is
true.

First Main Result — Theorem 1
]

e |n the base case which is a function contains zero
statement in the function body:
type of returnvalue myfunction(argument1, ...argumentn)

{
}

We can see that the runtime of an empty function is

bounded by a constant. Therefore the theorem is
true whenthe function has zero statement.

First Main Result — Theorem 1
]

e In functions which contains more than three statements
- myfunction (argument1, ...argumentn)

{

statement_1;
statement_2;
statement_3;

statement_n;

}
- myfunction is equivalent to
myfunction2(argument1, ...argumentn)

{

variable declarations;
function_1(argument1, ...argumentn,&additional_arguments);
function_2(argument1, ...argumentn, &additional_arguments);

}
Here the first statement contains the local variable declarations statements of myfunction.

They might contain statements such as “char a;’, but as we have specified in our restrictions
they cannot contain declarations and assignments such as “char a=10;’.

First Main Result — Theorem 1
]

The additional_arguments passed to function1 and function2 come
from these local variables of myfunction. Roughly, function1 and
function2 will look like:

function_1(argument1, ...argumentn, &additional _arguments)
{

statement_1;

statement_2;

statement_n-3;
}
function_2(argument1, ...argumentn, &additional _arguments)
{
statement_n-2;
statement_n-1;
statement_n;

}

First Main Result — Theorem 1
]

e By the induction hypothesis, the runtime of
function_1is O (abs(arg,)'"" + f(m,)

e The runtime of function 2 is

O(Y (abs(arg,)+ Y. abs(arg)' ™ + f(m)" ™)™ + f(m,))

i=0

First Main Result — Theorem 1
]

o Letg = St
e the runtime of myfunction A

O(g™" +2" +(g+g™ +2m)*" +2m

First Main Result — Theorem 1

e The value of g is greater or equal 2 on all but

finitely maﬁ‘y mputs (namely, the input 1). So we
have aso = +2m) < o™ v2m)

Let m = (m1 +m2 +1),f(m)= 2(’”l+’”2+

and the runtime of the expression is bounded by

ey +1 [
0(g2 + 2m1 ®1, +1)

So induction hypothesis holds. Therefore the
theorem is true.

Simulating polynomial in the argument time
Turing Machines

e Assumptions:

— The Turing Machine never uses more tape squares than
can be indexed by one int (roughly, 232 squares) and the
total number of steps of the computation can be stored in
one int.

- The output of the computation is the contents of the tape
when the halt state is entered.

— The Turing Machine only has one tape.

— The alphabet of the Turing Machine only has two symbols
0,1 (and of course blank).

Simulating polynomial in the argument
time Turing Machines

e [heorem

- Let P be a Turing Machine which on all inputs x
runs in time bounded by xk for some fixed k and
otherwise restricted as above. Then there is a
function f_P that our preprocessor will validate as
polynomial such that on input and outputs
satisfying the above restrictions f P will output
the same value as P.

Simulating polynomial in the argument
time Turing Machines

e Proof

- Let P be a Turing Machine as above. Its input
given the restrictions above will be a string of 0O's
and 1's. We assume these are passed to our
polynomial function as an array of int's called
input. The output will be returned by reference in
an array called output which we assume can hold
all of the tape squares needed for the
computation. Below is a skeleton of what our
function will look like:

Simulating polynomial in the argument
time Turing Machines

polynomial void f_P(int[] input, int[] output)
{

int len, i, maxtime, state;
int head_pos;

len = input.len;

for (i =len-1; i>=0; i--)

outputfi] = input]i];

maxtime = 2*maxtime + input[i];

}

/*new now use output as the tape we do our simulation on */
maxtime = maxtime * ... *maxtime; //k th power

head_pos =0;
for(i = maxtime; i>0; i--)
{

switch (state)
{
case 0:
if (output[head_pos] == 0)

state = new state;
output[head_pos] = new value;
head_pos = new_head_pos;

}
else if (output[head_pos] == 1)
state = new state;

output[head_pos] = new value;
head_pos = new_head_pos;

