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ABSTRACT 
 

QUANTUM VALUE GATE SIMULATOR 
 

by Xin Chen 
 
 

In this project, a polynomial implementation idea of simulating Špalek’s 

algorithm is explored and implemented. The simulator supports ways of experiments with 

error models applied to the base gates. Experimental results are presented and evaluated. 

Also, the foundational concepts and notations of quantum computation used to 

understanding this work are introduced. The main results from Špalek’s algorithm of 

simulating a value gate with small  depth quantum circuits are reviewed.  
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Chapter 1 Introduction 
 

In recent years interest in quantum computation has been steadily increasing. One 

reason for this is due to Shor' s [S97] discovery of a polynomial time quantum algorithm 

for factoring, which is one of the strongest arguments in favor of the superiority of 

quantum computing models over classical ones. Since this discovery, many efforts have 

been made to find new, efficient quantum algorithms for classical problems and to 

develop quantum complexity theory. The goal of this research will be to develop a 

simulator, which will aid in understanding the robustness of certain quantum algorithms. 

Špalek gives a way of simulating value gates with small depth quantum circuits in 

the exact acceptance model [HS03]. The simulation is an improvement over what can be 

done with classical AND, OR, NOT circuits. Yet, Špalek’s algorithm assumes that we 

can perform certain rotation operation to arbitrary accuracy. So the question is how much 

error is introduced if we choose a more realistic acceptance criterion? Good formal 

estimates of this are somewhat diff icult to directly calculate from the algorithm itself, so 

it would be interesting to do some simulations.  

In this project we developed a program that simulates Špalek’s algorithm, that is, 

simulates a quantum circuit that performs the function of a classical value gate. Then we 

added an error facili ty to the simulator, so that it supports ways of experimenting with 

error models applied to the base gates.  The simulator is implemented in a very efficient 

way; in theory, it can work on any number of bits using reasonable time and space. 

This report is organized as follows. Chapter 2 describes the background of value 

gate. In Chapter 3 we introduce the concepts and notations used in quantum computation 
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that relative to our simulation. We briefly review the main results of Špalek’s algorithm 

in Chapter 4.  

A naïve implementation of Špalek’s algorithm takes exponential space and time, 

and thus is infeasible. We present our implementation idea, which reduce both the space 

and the time complexity from exponential to polynomial, in detail in Chapter 5. Then, in 

Chapter 6, we explain our test case, show the test results, and give some analysis. Finally, 

Chapter 7 concludes the report.  

I would like to mention that this project work is based on an early version of 

[HS03]. That early version of paper assumes infinite precision of the gates. During the 

time of our project was done, Špalek added more ideas to his final published version. The 

main idea he added is to all ow the use of a fixed set of one-qubit gates to construct 

rotation operations. However, this does not have much effect on our simulating.  
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Chapter 2 Background 
 

A value gate is a logical gate that does the following computation: given an input 

with n bits and a threshold value m, if the number of bits that are ‘1’ is equal to m, then 

the value gate outputs ‘1’ , otherwise the output is ‘0’ . A value gate can be constructed by 

a classical AND-OR circuit [Vol00].  

 A threshold gate is a logical gate that performs the following logical function:  

Tm (a1, a2, …, an) = def 
�����

i > m� , 
it can be simulated by the value gate circuits, that is, by circuits where the value gates are 

the only logical gates in the circuit. 

 Threshold gates play an important role in logical circuits. One example for this is 

shown in [Vol00], where an idea for constructing a constant-depth threshold circuits for 

multiplication is ill ustrated. 

 In this project, instead of simulating a value gate in a classical way, we simulate 

the value gate with a quantum circuit using Špalek’s algorithm [HS03]. This quantum 

unit can be further embedded into the classical circuit to construct a threshold gate.  

  

 

i=1 

n 
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Chapter 3 Quantum Computation 
 

Quantum mechanics is a mathematical model to describe the physics of the real 

world. In this section, we will review some important concepts of quantum mechanics, 

for details, see the textbook by Nielson and Chuang of quantum computation [NC00]. 

3.1 Models of Computation 
 

In the classical world, we can use either a Turing machine or a logical circuit to 

represent the concept of a universal computer. Similarly, in quantum world, we can use 

either a quantum Turing machine or a quantum circuit to represent that same concept.   

3.2 Four Postulates of Quantum Mechanics 
 
 There are four postulates of quantum mechanics, which are described below:  

3.2.1 State space 
 

For each isolated physical system, we can use a unit vector in a complex vector 

space with inner product to describe the system. This space is known as the state space of 

the system, the vector is known as the state vector. Quantum mechanics takes place in 

this state space.  

 
A qubit is a two-dimensional state space. We can use  |0�  and |1�  to form an 

orthonormal basis for the state space. Then any state in the state space can be written as: 

|ψ �  = a|0�  + b|1� , 
 
where a and b are complex numbers, and |a|2 + |b|2  = 1. 
 
 
 
 



  5   

 

3.2.2 Evolution 
 

The evolution of a closed quantum system is described by a unitary 

transformation. That is, suppose at time t1, the state of a system is |ψ � , and at time t2 it 

changes to state |ψ´ � . We can use a unitary operator U  to describe this change, note that 

U depends only on the times t1 and t2, 

|ψ´ �  = U|ψ � . 
 

A transformation U is said to be unitary if U†U = I, where U† is the conjugate-

transpose of U. An example of unitary operator is the Hadamard operator, which we 

denote as H: 

  
        H  = 1/ ���  

 
 
3.2.3 Quantum measurement 
 

We can use a collection of measurement operators, denoted as {M m} , to describe 

the quantum measurements. Here m refers to the measurement outcomes that may occur 

in the experiment. If the state of the quantum system is |ψ �  immediately before the 

measurement, then the probabili ty that the measurement results in m is: 

        p(m) = � ψ|Mm
† Mm|ψ � , 

 
and the system state right after the measurement is: 
 
                  M m|ψ �  

     ��� ψ|Mm
† Mm|ψ �  , 

 
the measurement operators must satisfy the completeness equation: 
 

       
�

m Mm
† Mm  = I. 

 
 

1  1 
1 -1  



  6   

 

3.2.4 Composite systems 
 

If a quantum system is composed of several component systems, then its state 

space can be represented by the tensor product of the state space of these sub systems. 

For example, if a system is composed of n component systems, and the state of the i’ th 

system is |ψi � , then the joint state of the total system is |ψ1 �  �  |ψ2 �  �  … �  |ψn� . 

3.3 Quantum Circuit 
 
3.3.1 Single qubit operations 
 

A single qubit is a vector |ψ �  = a|0�  + b|1� , where a and b are complex numbers 

and must satisfy |a|2 + |b|2  = 1. Each operation (described by a 2x2 matrix) must be 

unitary to ensure the property that the probabilit ies must sum to one. We li st two of the 

most important ones that are used in this project: the Hadamard gate (denoted H), and the 

Identity gate (denoted I) : 

 

 

 

 
 
 
 
3.3.2 Quantum circuits 
 �

Controlled U operation 
 

A controlled-U operation is a two qubits operation, as shown in Figure 3.1. In a 

controlled-U operation, there is a control qubit (the top line) and a target qubit (the 

1  1 
1 -1          H  = 1/ ���  

1  0 
0  1          I  =  
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bottom line). If the control qubit is set, then the single qubit operation U is applied to the 

target qubit. If the control qubit is not set, then the target qubit will not change.  

 
 

 

 Figure 3- 1 Circuit for the controlled-U operation 

  �
Controlled-NOT operation 

 
A controlled-NOT operation is a special case of controlled-U operation. It flips 

the target qubit if the control qubit is set. Its circuit and matrix representation are shown 

in Figure 3-2. 

 

 
 
 
 
 
 
 
 
 

Figure 3- 2 Circuit and matr ix representation for controlled-NOT operation 

 �
Cn(U) operation 

 
            A controlled operation Cn(U) is an operation on n control qubits and k target 

qubits, where U is a k qubit unitary operator. This operation can be defined by the 

following equation: 

Cn(U)|x1 x2 … xn� | � �  = |x1 x2 … xn� U x1 x2 … xn | � � , 

where x1 x2 … xn  is the product of the bits x1 x2 … xn. That is, when the n numbers of the 

control qubits are all set, the operator U is applied on the k target qubits, otherwise, the 

U 

1 0 0 0 
0 1 0 0 
0 0 0 1 
0 0 1 0 
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target qubits are unchanged. The circuit notation for this operation is ill ustrated in Figure 

3-3. 

 

 
 
 
 
 

 Figure 3- 3 Circuit for the Cn(U) operation when n=3 and k=3 

 
 
 

U 

n=3 

k=3 
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Chapter 4 Špalek’s Algor ithm 
 
 

In this chapter, we will briefly review some important aspects of Špalek’s 

algorithm. This chapter follows Høyer and Špalek’s paper [HS03]. In the circuits below, 

we will need the following tools: the quantum fan-out operation, the parallelization 

method, the quantum Hadamard transformation, and the increment operation. 

4.1 Quantum Fan-out Operation 
 

As in classical circuits, fan-out is also an important operation in quantum circuits. 

One reason is that if two quantum operations commute, then each of them can be 

performed in parallel on a distinct copy of a qubit, which is produced by applying the 

fan-out operation.  

There is one important difference between the classical circuits and quantum 

circuit: because of the ‘no-cloning’ theorem, quantum circuits do not have a naïve fan-out 

operation that performs 

 
|s� |0��� n 

�
  |s��� n+1                 (4.3.1)  

 
for a general superposition state |s� . However, in [HS03], Špalek using ideas from earlier 

papers defined a modified quantum fan-out operation that performs 

|s��� |tk �  �   |s��� |tk � s�              (4.3.2)  
 
where |s�  is the source qubit and there are n target qubits |tk � . The effect of (4.3.2) on 

each computational basis state is the same as (4.3.1), and the effect on the super states is 

determined by linearity.  

 

K=1 K=1 

n n 
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4.2 Parallelization Method 
 

Having a model of quantum circuits with unbounded fan-out, we are now able to 

perform a more general task of applying an arbitrary number of commuting operations in 

parallel on an individual qubit. 

The idea of parallelization comes from the following observation: first, if some 

operators commute, then they are all diagonal in the same basis. That means, they consist 

of just phase shifts. Second, we can parallel these multiple phase shifts as following:  

1. By applying the fan-out operation, a qubit is duplicated to multiple copies. 

2. For each distinct copy apply the commute operation in parallel. 

3. The ancilla qubits are initialized to |0� , by applying the fan-out operation 

again, they can be cleaned at the end for reuse. 

This method can be extended to multiple qubi ts by copying all target qubits. Other 

tricks are similar to the one qubit case.  

4.3 Quantum Hadamard Transform 
 

The quantum Fourier Transform (QFT) is one of the important tools used in many 

quantum algorithms. The main trick used in Špalek’s algorithm is replacing QFT by the 

Hadamard transform. Špalek proved the equivalence of using these two transforms for his 

algorithm.  

The Hadamard transform Hn on n qubits is the following operation (written in the 

computational basis): 

Hn = 1/2n/2 ��� � �  ��� -1)y � �	� x|, 
 
where y 
 �������������� ���������������! "�!#%$�#�&('*)+�,�.-*/0)1���!2�)( �$�#�&�$(�!#���3&�2+������4��'��!5�!#�'  transformation 

is Hn = H 6 n. Figure 4-1 shows an example of H 6 2. When each qubits is initialed to |0 7 , 

j=0 

2n-1 2n-1 

j=0 
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after applying the Hadamard operations, the output will be (|00 7  + |01 7  + |10 7  + |11 7  ) / 

2. 

 

 

Figure 4- 1 The Hadamard transform H �� �� 2 on two qubits 

 

4.4 Increment Operation 
 

Špalek defined an increment operation P on n qubits to be an operation that maps 

each computational basis state |x
�
 to |x+1 mod 2n� . He also proved that P is diagonal in 

the Fourier basis. So, in this basis, these increment operations can be implemented in 

parallel by a depth one quantum circuit.  

Let D = FPF†, that is, the increment operation in the Fourier basis. Define a 

rotation operator about the z-axis by angle �  by Rz( � ) = |0
���

0| + e� i|1
���

1|. Then for every 

k �  {1, 2, …, n} , Dk = Rz( �  / 2n-k) �  Dk-1. The 0-qubit operation D0 is considered to be 

‘1’.  

4.5 Value Gate 
 

Having all these tools, a quantum circuit for value gate with unbounded fan-out 

can be constructed as shown in Figure 4-2. 

 

H 

H 
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                       Figure 4 - 2 Quantum circuit for value gate 
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Chapter 5 Design and Implementation 
 
 

One of the most challenging parts in simulating this algorithm is to understand the 

substantial mathematics involved. It took me a long time to figure out the matrix for each 

quantum gate in the circuit. In this part we demonstrate the matrix representation of the 

circuit.  

Then, in Section 5.2, we show a naïve implementation for classically simulating 

Špalek’s algorithm. This is a good start to understand from the view of implementation 

that how the algorithm works, and it is also a necessary step to explore much more 

efficient implementation ideas.  However, a naïve implementation needs both exponential 

space and time complexity. It is infeasible to calculate more than five qubits even using a 

super machine given this implementation. 

In Section 5.3, we introduce a very efficient idea for implementation, which 

reduces both the time complexi ty and the space complexity from exponential to 

polynomial, thus, is feasible on any qubit case.  

5.1 Matrix Representation 
 

From the view of implementation, we can divide the circuit, ill ustrated in Figure 

4-1, into 11 layers, as shown in Figure 5-1. From left to right these layers are: Hadamard 

layer, Permutation layer(P1), Fan-out layer, Permutation layer(P1´ ), Permutation 

layer(P2), Increment layer, Permutation layer(P2´ ),  Permutation layer(P1), Fan-out layer, 

Permutation layer(P1´ ), and at last, Hadamard layer. 
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Figure 5- 1 Layers of the circuit for value gate 

 
Among these 11 layers, there are four types of different layers, shown as 

Hadamard layer, Permutation layer, Fan-out layer, and Increment layer respectively. 

Other layers just repeat these layers. Each layer can be represented by a matrix, which is 

the tensor product of sub-matrices. The entire circuit can be represented by a matrix too, 

which is the result of multiplying the matrices for each layer.  

5.1.1 Matrix for the Hadamard layer 
 

The matrix representation for the Hadamard layer, denoted as H_layer, is very 

straightforward: 

 

 

where, n is the length of the input, p = 1 +  log2 (1 + n) . 

P1 
 

H � p H � p D1 

D1 

D1 

Dm 

|S1 S1… S1

�
 

… 

|0p �
 

|0p �
 

|0p �
 

|0p �
 

Hadamard 
Layer 

Fanout 
Layer 

Increment 
Layer 

Fanout 
Layer 

Hadamard 
Layer 

P1’  P2 P2’  P1 P1’  

H_layer = I �  … �  I �  H � p �  I �  … �  I 
 n n.p 
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5.1.2 Matrix for the Permutation layer 
 

A permutation operator changes the order of the rows of an input vector. Given an 

input vector v1, after applying a permutation matrix, we get another vector v2, which has 

the same entries as v1, but in a different order, as shown in Figure 5-2. 

 

 

 

 

Figure 5- 2 Permutation operator  

 

Suppose the entries in vector v1 are ordered as x = (1, 2, …, n), and we want these 

entries to be ordered as y = (y1, y2, …, yn ). The corresponding permutation matrix, P, 

would be: 

 

  

In circuit shown in Figure 5-1, six permutation matrices are used. Before applying 

the Fan-out layer, we first apply the permutation operator P1 to change the vector’s order 

so that it is suitable for applying Fan-out layer. Then, we use another permutation 

operator P1´ to change the order back. When applying the Increment layer, we do the 

same thing. However, because of the requirements on the order changing are different 

from the Fan-out layer, we use permutation operator P2 to change the order, and use P2´ 

to change the order back. Here, P1´ and P2´ are the transpose matrices of P1 and P2 

respectively.  

 

p11  p12 … p1n 
p21  p22 … p2n 

………. 
pn1  pn2 … pnn 

a1 
a2 

… 
an 

a5 
a1 

… 
a7 

= 

P v1 v2 

P[xi][ yi] = 1   when xi �  x, yi �  y, i �  Z, and 1 �  i �  n 
P[xi][ j] = 0   when xi �  x, yi �  y, j �  yi, i, j �  Z, and 1 �  i, j �  n 
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5.1.3 Matrix for the Fan-out layer 
 

Figuring out a matrix representation for Fan-out layer directly from Figure 5-1 is 

diff icult. Since we already have the Permutation layer, we can make things more 

straightforward by making some changes, as ill ustrated in Figure 5-3. 

 

 

 

 

 

 

 

Figure 5- 3 Fan-out layer transformation 

 
Consider the right part of the above figure, we have a matrix representation, 

F_layer, for the Fan-out layer as: 

 

 

where, n is the length of the input, p = 1 +  log2 (1 + n) , f is the matrix for the fan-out 

gate with n target qubits.  

According to Špalek’s algorithm, a fan-out operation, f, with source qubits |s
�
 and 

n target qubits |tk
�
 is defined as: 

 
 |s

�
 �  |tk

�
  |s

�
 �  |tk �  s

�
. 

Thus, we have a matrix for f as shown in Figure 5-4. 

… 

… 

F_layer = I �  … �  I �  f �  … �  f 
 n    p 

K=1 

n 

K=1 

n 
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Figure 5- 4 Matr ix for f operator  

 
5.1.4 Matrix for the Increment layer  
 

We can use the same method as for the Fan-out layer to make some changes to the 

Increment layer, and so can make things easier.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5- 5 Increment layer transformation 

 
As Figure 5-5 shows, by applying Permutation layer we can make the above 

transformation. We then have a matrix representation for the right part of the figure. 

Suppose we use I_layer to represent this matrix, then: 

 

1 0 … … … 0 … … … 0  
0 1 … … … 0 … … … 0  
0 0 1 … … 0 … … … 0  
0 … … … … 0 … … … 0  
0 … … … 1 0 … … … 0  
0 … … … 0 0 … … … 1  
0 … … … 0 0 … … 1 …  
0 … … … 0 0 … 1 … 0  
0 … … … 0 0 … … … 0  
0 … … … 0 1 … … … 0  
 

2n 

2n 

… 

D1 

D1 

D1 

Dm 

D1 

D1 

D1 

Dm 

… 
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where, n is the length of the input, p = 1 +  log2 (1 + n) , d is the matrix for increment 

gate with p qubits, c_d is the matrix for controlled increment gate on p target qubits. 

The increment operator d is explained in detail in [HS03]. We now examine the 

matrix representation for c_d, which is a ‘controlled-U’ operation, also called a Cn(U) 

operation. In general, we cannot find a simple matrix representation for a Cn(U) 

operation, fortunately, in our case we can limi t our considerations to C1(U), where the 

unitary operator U is replaced by d. In this case, we have a matrix representation for c_d 

as shown in Figure 5-6. 

 

 

 

 

 

 

 

Figure 5- 6 Matr ix for C1(d) operator  

 
 
5.1.5 Matrix for the entire circuit  
 

Having the matrix for each layer, we now turn to the matrix representation for the 

entire value gate circuit. A matrix (M) for value gate is made from the product of each 

layer, which is: 

M = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer � P1 � H_layer 

I_layer = c_d �  … �  c_d �  d 
 n 

1 0 … … … 0 … … … 0  
0 1 … … … 0 … … … 0  
0 0 1 … … 0 … … … 0  
0 … … … … 0 … … … 0  
0 … … … 1 0 … … … 0  
0 … … … 0  
0 … … … 0  
0 … … … 0  
0 … … … 0  
0 … … … 0  
 

2n 

2n d 
2n 2n 
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5.2 A Naïve Implementation 
 

In this section we want to introduce our initial implementation. This 

implementation is the basis for us to explore a much more efficient implementation idea. 

A natural way do to the simulation is to generate and store each matrix. Then, we can do 

calculations on them, such as addition, multiplication, tensor-product, etc. Further, we 

can generate quantum gates using these matrices.    

5.2.1 Class organization 
 

In my implementation, four classes were used: Complex number, Matrix, Gate 

and Value gate. In the Complex number, we define a complex number and its operations. 

In the Matrix, the notion of matrix and operations on it are defined. The Gate class works 

like a gate factory, we define and generate base quantum gates that are needed by each 

layer. At last, the Value gate class defines a value gate using each layer that was 

described in Section 5.1, and can be used to evaluate the entire circuit. A class diagram is 

show in Figure 5-7. 
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Figure 5- 7 Class diagram 

 

CComplex_number 

real_part 
imaginary_part 

CComplex_number() 
CComplex_number(double, double) 
set_value(double, double) 
operator = (CComplex_number&) 
operator + (CComplex_number) 
operator * (CComplex_number c2) 
operator == (CComplex_number c2) 
comlex_conjugate() 
display() 
 

CMatrix 

m_NumOfRow 
m_NumOfCol 
m_pMatrix 
 
CMatrix() 
CMatrix(int, int) 
setMatrix (int, int, CComplex_number** ) 
CMatrix(const CMatrix&) 
operator=(const CMatrix&) 
display() 
mult_matrix(CMatrix, CMatrix) 
tensor_products(CMatrix, CMatrix) 
transpose(CMatrix) 
hermitian_conjugate(CMatrix) 
mult_number(CComplex_number, CMatrix) 
add_matrix(CMatrix, CMatrix) 

CGate 

m_num_of_qubits 
m_ppt 
m_operator_matrix 
 
CGate() 
CGate(int) 
set_hadamard_gate() 
set_identity_gate() 
set_fanout_gate(int) 
set_flip_gate(int, int) 
set_increment_gate(int, double) 
set_controlled_increment_gate(int, double) 

CValue_gate 

m_p 
m_num_of_ancill a 
m_threshold 
 
CValue_gate() 
CValue_gate(int, double) 
compose(char*) 
set_hadamard_layer(bool) 
set_fanout_layer(bool) 
set_increment_layer() 
set_value_gate() 
evaluate_value_gate(char*) 
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5.2.2 Limitation of the naïve implementation 
 

As we shown in Section 5.1, to evaluate the value gate, we need to generate 11 

matrices for each layer, and calculate their product from right to left. Notice that the size 

for each such matrix is: 2n+(n+1)logn by 2n+(n+1)logn, thus, both the space complexity and time 

complexity are O(2 nlogn). Storing and computing on such huge matrices is very machine 

intensive. For example in the five qubits case, we will need at least 8G bytes memories. 

So the exponential time and space complexities make using this program on even small 

inputs impractical. 

5.3 A Very Eff icient Implementation 
 

In this part, we introduce an idea for implementing Špalek’s algorithm that uses 

polynomial time and space complexity. We begin with a rough sketch of the idea. Then 

we explain how we do the implementation in detail. Finall y, we show our way of 

introducing error scheme to the simulation. 

5.3.1 Sufficient for reducing computational complexity  
 

Normally, simulating a quantum algorithm is very expensive because of the need 

to calculate with exponential sized matrices. Given a quantum circuit, one may or may 

not able to find a way to reduce the complexity to polynomial; it depends on the specific 

algorithm involved. Our idea is based on three ideas: 

1. For result matrix M (see Section 5.1.5), we are only interested in one element. See 

Section 5.3.1.1 for details. 

2. In each matrix that represents a layer, there are at most O(n) non-zero elements in 

each row/column, which is explained in Section 5.3.1.2.  
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3. Every row/column in any layer matrix can be computed in polynomial time. This 

will be discussed in Section 5.3.1.3. 

5.3.1.1 Determining which element is needed 
 

Recall in Section 5.1, we calculated the matrix M as 

                M = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer � P1 � H_layer 

we can calculate the value-gate value val as: 

 

 

 

 

In vector V, we have: 

 

                      

  

From here we can see that in order to calculate the value of val, we do not need to 

calculate the entire matrix M, knowing the element M[S � 2(n+1) � p,  S � 2(n+1) � p] is sufficient 

for us. 

5.3.1.2 Reducing the size of problem from exponential to polynomial 
 

As we discussed earlier, we have 

               M = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer � P1 � H_layer, 

suppose that we have already calculated  

               X = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer � P1, 

m11  m12 … m 1n 
m21  m22 … m 2n 

………. 
mn1  mn2 … m nn 

v1 
v2 

… 
vn 

v1 v2…vn 

M V’  V 

val   =  

1,  if i = S � 2(n+1) � p,   S, n, p as in Figure 5.1 

0, otherwise 
vi  =  
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and that we want to go ahead to figure out the value of M[S � 2(n+1) � p,  S � 2(n+1) � p] . In this 

case, we are only interested in the ( S � 2(n+1) � p)’th row of X, thus the problem is reduced to 

two sub-problems: 

a) Sub-problem SP1:  how to efficiently calculate the (S � 2(n+1) � p)’th row of X 

b) Sub-problem SP2:  once we get calculate the (S � 2(n+1) � p)’th row of X, how to 

efficiently calculate M[S � 2(n+1) � p,  S � 2(n+1) � p] . 

Later we’ll see that SP2 is simpler than SP1 and can be solved in the same way as 

solving SP1. Now we start discussing how to solve SP1: 

 

a). Solving SP1 

 

We now describe a recursive way of solving SP1. Suppose we already have the result of  

                        Y = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer 

then we have: 

                        X = Y � P1. 

Note that we do not need to calculate the entire matrix Y to solve SP1 (i.e., calculate the 

(S � 2(n+1) � p)’th row of X), having value of  (S � 2(n+1) � p)’th row of Y is enough to calculate 

the (S � 2(n+1) � p)’th row of X. 

Recursively applying this idea, we have a method to solve SP1 as follows: 

1). Calculate (S � 2(n+1) � p)’th row of Z, where 

               Z =H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ 

2). Step 1) can be calculated by calculating (S � 2(n+1) � p)’th row of Q, where 

               Q =H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 



  24   

 

3). Step 2) can be calculated by calculating (S � 2(n+1) � p)’th row of R, where 

              R =H_layer � P1´ � F_layer � P1 � P2´ � I_layer 

     … 

n) We can start from (S � 2(n+1) � p)’th row of H_layer and move forward  

       to finally compute 1) 

 

Remark 1: In this implementation, for intermediate results, we only save the 

(S �� �� 2(n+1) �� �� p)’th row for each layer matrix and for the final matrix V. 

 

So far, we reduced the intermediate result size from the entire matrix to one row. 

Yet this is not sufficient to reduce time and space complexity to polynomial, since there 

are exponential many of elements in each row.  

Before we go further, let’s first study the layer matrix a little more. From our 

matrix definition for each layer, we can observe the following property of layer matrices:  

 

Proposition 1: 

� There are 2p=O(n) non-zero elements per row/column in the matrix for Hadamard 

layer. 

� There is exactly one non-zero element per row/column in the matrix for fan -out 

layer. 

� There is exactly one non-zero element per row/column in the matrix for incremen t 

layer. 
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� There is exactly one non-zero element per row/column in the matrix for 

permutation layer. 

 

Based on the above observations, we have the following lemma: 

Lemma 1: In the value gate matrix X, where 

            X = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer � P1 

there are at most O(n) non-zero elements in (S � 2(n+1) � p)’th row. 

Proof: We calculate X from left to right: 

� First, row (S � 2(n+1) � p) of H-Layer has O(n) non-zero elements, 

� Because P1´ has only one non-zero element in each column, then row (S � 2(n+1) � p) 

of H-Layer � P1´ has at most O(n) non-zero elements  

� For the same reason, we can continue compute until reach 

      X =  H_layer � P1’ � F_layer � P1 � P2’ � I_layer � P2 � P1’ � F_layer � P1                 
�

 

     

Thus, we note that: 

Remark 2: In intermediate results of the value gate, i.e., the (S �� �� 2(n+1) �� �� p)’th row of the 

matrix, there are at most O(n) non-zero elements, while the total number of 

elements in this row is O(2nlogn). 

 

At this point, we have reduced the problem of calculating O(2nlogn) elements to a 

problem of calculating O(n) elements. Now we give an efficient way of calculating these 

O(n) elements in polynomial time and space. 
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Consider the following scenario: we have already got the row r=(r1,r2, …, r n), in 

which r is sparse and only r i,r j and rk are non-zero elements. To multiply the next matrix: 

 

 

 

 

 

 

If r is sparse, and r i,r j and rk are non-zero elements, then what will happen during 

the multiplication?  In this case, only the row i or j or k of P will multiply against a non-

zero value (r i,r j and rk respectively), other rows will simply multiply a ‘0’ from r. 

What this means is that we do not even need to calculate all rows in P, it is 

sufficient to calculate only rows that correspond to a non-zero element in r (in this case, 

we only need to calculate i, j and k rows of P). 

As we already know from Remark 2, r has at most O(n) non-zero elements, so we 

need to calculate at most O(n) rows. 

Because there are only O(n) non-zero elements in both the vector and the row of 

the layer matrix, we can effectively save a vector by a linked-list to achieve polynomial 

complexity elements. 

Now, we are only one step away from getting a polynomial time algorithm. We 

now explore how to effectively save a layer matrix and how to compute a particular row 

of it. 

 
… 
pi1  pi2 … pin 

… 
pj1  pj2 … pjn 
… 
pk1  pk2 … pkn 

… 

… r i…r j…r k …  

P
_l
ay
er 

r 

next_row   = 
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From proposition 1, we know that there are at most O(n) non-zero elements in a 

row of any layer matrix.  If we can figure out an effective way to calculate a row of a 

layer matrix, we will be able to find a polynomial value-gate algorithm. 

5.3.1.3 Getting a row of a layer matrix 
 

Now we describe the idea of saving the layer and getting one row of it in 

polynomial time.  We discuss two cases: a layer matrix created by tensor product 

(H_layer, I_layer, F_layer) and a permutation layer matrix (P layers). 

 

� Case 1:  Tensor product matrix 

If a matrix is created as the tensor products of sub-matrices, it is very cheap to 

only save the base matrices that participate in the tensor product. This needs at most 

polynomial space. The question is how to effectively compute a row as required above? 

First, let’s study the relationship between rows in the base matrix and the rows in 

a layer matrix.  Take the following simple tensor product as an example: 

 

 

 

 

We see that  

� row 00 comes from row 0 of ‘a’ and row 0 of ‘b’  

� row 01 comes from row 0 of ‘a’ and row 1 of ‘b’  

� row 10 comes from row 1 of ‘a’ and row 0 of ‘b’  

� row 11 comes from row 1 of ‘a’ and row 1 of ‘b’  

 
a00 � b00      a00 � b01    a01 � b00     a01 � b01              Row 00 

a00 � b10      a00 � b11    a01 � b10     a01 � b11              Row 01 

a10 � b00      a10 � b01    a11 � b00     a11 � b01              Row 10 

a10 � b10      a10 � b11    a11 � b10     a11 � b11              Row 11 

 

⊗ = 
 
a00  a01 
a10  a11 

 
b00  b01 
b10  b11 
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In this simple case, if a layer matrix is the tensor product of n (2X2) base matrices 

b1,b2,…,b n, then the row r1r2…rn, where ri 
� [0..1], can be computed from row r1,r2,… ,r n 

of matrix b1,b2,…,b n respectively.  Using a linked-list and a sparse matrix, this can be 

done in polynomial space. 

A similar idea is used for more complex base matrices. For example, if a layer is 

the tensor product of a (2X2) matrix a and a (4X4) matrix b, then line r1r2r3 of the layer 

results from the r1 row of a and the r2r3 row of b. 

 

� Case 2: Permutation matrix 

Please see Section 5.1.2 for more information. This can be done in polynomial 

time. 

 

Remark 3: The intermediate results of value gate, i.e., the (S �� �� 2(n+1) �� �� p)’th row of the 

matrix, can be calculated in O(n) time and space complexity. 

 

b) Solving SP2 

 

Once we calculate SP1 as a vector r, the situation is as following: 

 

  

 

 

 

 
… 
hi1  hi2 … h in 

… 
hj1  hj2 … h jn 
… 
hk1  hk2 … h kn 

… 

… r i…r j…r k …  

H
_l
ay
er 

r 

final_row   = 
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And now our final goal is to get the  (S � 2(n+1) � p)’th element of final_row. 

The only values in the H_layer that contribute to final_row[S � 2(n+1) � p] are column  

(S � 2(n+1) � p), see below: 

 

 

In the H_layer, there are O(n) non-zero elements in each row, if we use the 

algorithm in SP1 to create the row, then each row takes O(n) time to create, the cost of 

finding its (S � 2(n+1) � p)’th element is also O(n), thus the complexity of finding all hx is 

O(n2).  Computing final_row[S � 2(n+1) � p] is then trivial and costs O(n). Thus the total cost 

is O(n2)+ O(n) = O(n2).     

 

Remark 4: M[S �� �� 2(n+1) �� �� p,  S �� �� 2(n+1) �� �� p] can be calculated in O(n2) time and space 

complexity. 

 

5.3.2 Implementation detail 
 
5.3.2.1 Saving each row of the layer matrix 
 

A natural way to save a sparse row of any layer matrix is to use a linked-list. We 

used the following data structure to represent one node of this linked-list: 

struct node  

{      char                                    column_index[Max_NP+1];  

       CComplex_number            value;  

       node*                                  next; 

} ; 

final_row(S � 2(n+1) � p) =      (rx �  hx, (S � 2(n+1) � p) )  
�

 
x = i,j,k,… 
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Normally, we use the data type ‘ integer’ to represent the index of a row/column, 

but as you can see, we are using a string instead in this implementation.  In Špalek’s 

algorithm, given n bits input, there will be O(nlogn) lines in the circuit, thus, we will need 

a vector of length 2O(nlogn) to represent this quantum state. However, 32 bits is not enough 

to store the result as n gets large. This is reason for using a ‘0/1’ string for index 

representation. 

5.3.2.2 Computing and saving the layer’s matrix 
 

Now the question is how to efficiently save and compute the layer matrices, i.e., 

H_layer, F_layer, I_layer, Ps. 

� The matrix for Hadamard layer: it is the tensor product of small matrices. We can 

easily compute a row from its base matrices.  Saving the base matrices is enough. 

� The matrix for fan-out layer: saving the base matrices is enough to compute a 

row. 

� The matrix for increment layer: saving the base matrices is enough to compute a 

row. 

� The matrix for permutation layer: we can easily compute a row by its permutation 

table. Saving the permutation table is enough. 

For the Hadamard, the Fan-out and the Incremental matrices, we can save their 

base matrices, and use the algorithm described in Section 5.3.1.3 to compute any row. 

The pseudo-code is listed below: 

 

Function get_matrix_row(Matrix M,  char *r) 

Input: A char* for row  
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            A matrix M, represented using its base matrices  

Output: row r of matrix M, saved in a linked-list for its non-zero elements 

Variables:   

struct node *p, *q, *x, *y; 

char subrow[MAX_ROWS][MAX_LEN]; 

int i, num; 

Begin 

        num = M->num_base_matrices; 

Based on the sizes of M’s base matrices, split the input string r into subrow 

corresponding to the log size of each base matrix 

 

/**********************************  

 For example, if there are two base matrices b1 and b2, b1 is a (4X4) matrix 

and b2 is a (8X8) matrix, then the input “01101” should be split into 

subrow[0]=“01” and subrow[1]=“101”  

********************************** / 

 

p = get_row_of_base_matrix(M->base_matrix[0], subrow[0]); 

for (i=1; i<num; i++) 

Begin 

    q = get_row_of_base_matrix(M->base_matrix[i], subrow[i]); 

    x = NULL; 

while ( p != NULL ) 
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Begin 

    all ocate y; 

    while (q != NULL) 

    Begin 

        y ->row = strcat(p->row, q->row); 

        y ->value = p->value * q->value; 

        link node y into x; 

        q = q->next; 

    End 

    p = p->next; 

End 

    p = x; 

End 

return p; 

End 

 

5.3.2.3 Computing a intermediate row 
 

Computing an intermediate row can be efficiently implemented using a linked-

list. The pseudo-code for multiplication is: 

 

Function row_calculation(Row_pointer r, Matrix M) 

Input: a row r of non-zero elements, represented using a linked-list 
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            A matrix M, represented using either its base matrix (it M is generated by 

tensor product , or the permutation map, if M s a permutation matrix) 

Output: a new row of r �� �� P 

Variables:   

struct node *p, *q, *x[MAX_ROWS], result; 

char * row; 

int i, num=0; 

double v; 

boolean finish; 

Begin 

/*******  Step 1: Compute all output lines into x[] ******* / 

p = r;       

while ( p != NULL ) 

Begin 

    v = p->value; 

    row = p->row; 

 

    x[num] = get_matrix_row (M, row); 

    q = x[num]; 

    while (q != NULL) 

    Begin 

        q->value *= v;   

        q = q->next; 
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    End 

    num++; 

    p = p->next; 

End 

/******* Step 2: merge x[] into one single row ******* /  

finish = false; 

while ( !finish ) 

Begin 

   find k such that x[k] has the smallest column id;  

   allocate new p,  

   p->value = 0.0; 

   p->column = x[k]->column; 

   insert p into result; 

   for (i=0; i<num; i++) 

   Begin 

       if (x[i]->column == p->column) 

       Begin 

            p->value += x[i ]->value; 

            x[i] = x[i] ->next; 

       End 

   End 

   finish = (all x[i]==NULL) 

End 
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return result; 

End 

5.3.2.4 Class organization 
 

A class diagram for this project is shown in Figure 5-8. The Complex_number 

class is used to define a complex number and its operation. Base_matrix is an abstract 

class, and five other classes are derived from it. We define five base quantum gates 

described in Section 5.3.2.3 as classes Fan-out_matrix, Identity_matrix, 

Hadamard_matrix,  Controlled_D_matrix, and D_matrix respectively.  Each layer matrix 

is made from either the tensor product of these base matrices or using permutations; we 

use the TensorProduct_layer class and Permutation_layer class to implement these ideas. 

The Multiplication class is used for producing intermediate rows. Finally, the Value_gate 

class is used to construct a quantum value gate circuit and evaluate it.  
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Figure 5- 8 Class diagram 

 

5.4 Error scheme 
 

Špalek’s algorithm assumes that we can perform certain rotation operators to 

arbitrary accuracy, but this is not the case in practice. To this point, our implementation is 

Fanout_matrix 

Complex_number 

Controlled_D_matrix D_matrix 

Hadamard_matrix 

Identity_matrix 

Base_matrix 

TensorProduct_layer Permutation_layer 

Multiplication 

Value_gate 
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based on the ideal case. To simulate a more reali stic criterion, we add an error scheme to 

our system.  

In Špalek’s algorithm, a rotation operator about the z -axis by angle 
�
 is defined by  

                    Rz(
�
) = |0��� 0| + e� i|1��� 1|, 

which is 

                    Rz(
�
) = |0��� 0| + (cos

�
 + isin

�
) |1��� 1|, 

In increment layer (I_layer) each increment operator (D) is made from: 

                    Dk = Rz( � /2n-k) �  Dk-1, where k is the number of qubits, D0 = 1. 

Suppose we have an error � , we add errors in two ways: 

1) Add a fix error �  to each rotation operator, that is 

                     Rz(
�
+ � ) = |0��� 0| + (cos(

�
+ � ) + isin(

�
+ � )) |1��� 1|. 

Then, Dk is made from the tensor product of the one qubit rotation operators with 

the same error.  

2) For each rotation operator, random select an error �	� 
�������������������������� - �  and 

� , add �	���! ��"����$#% ��!&��"�� ��� �'���#%&��! �#%
��"�&������  

                    Rz(
�
+ �	� ($)+* ,���� 0| + (cos(

�
+ �	� ($-  isin(

�
+ �	� (!(.*0/���� 1|. 

 So, we have different error �	��1" �#2��&����#% ��!&��"�� ��� �'���#%&��! �#%
��"435�%
 Dk is made from 

the tensor product of the one qubit rotation operators with different errors.           

 

 



  38   

 

Chapter 6 Tests 
 
 

There are two purposes for our tests. First, we want to verify the correctness of 

the simulation program. Second, observing test results can help us to understand the 

behavior of the simulated algorithm with errors.  

6.1 Test Case Design   
 

In an ideal case where there is no error added to the system, the simulation should 

perform the exact function as a value gate. This gives a way to verify if my program 

works correctly. Thus, we designed test case 1 as follows: 

 
Test Case 1 
 
String: Arbitrary 0/1 string with arbitrary length.   

Threshold: 1) An integer that equals to the number of bits that is ‘ on’ in the input string.  

2) An arbitrary integer that does not equal to the number of bits that is ‘on’ in the input 

string. 

Error: 0 

Output: Probabili ty for accepting, which is computed by calculating |M[S � 2(n+1) � p,  

S � 2(n+1) � p]|2 

In practice, we cannot perform certain rotation operations to arbitrary accuracy. 

To simulate this phenomenon, we need to introduce errors into the system. It is 

interesting to see how these errors affect the behavior of the Špalek’s algorithm.  

We designed two test cases for such observations that we call Test Case 2 and 3. 

Test Case 2 is designed to see how we will l ose the abili ty to give a correct result as the 

error size increases. Given a Hamming length (the number of bits that is ‘on’ in the input 
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string) and a length of input string, we can generate all possible strings. In test case 3 we 

want to see how the algorithm acts on such strings. 

In real quantum devices, it is more likely that for each rotation operation, a 

different error will occur. To see the effects of this kind of factor, in both Test Case 2 and 

Test Case 3, we tested two cases: first, set the error for each rotation operator the same; 

second, set the error for each rotation operator randomly in some range. 

 
Test Case 2: 

For each run we have: 

String: A fixed ‘0/1’ string.  

Threshold: A fixed integer either from 1) an integer which equals to the number of bits 

that is ‘on’ in the input string, or 2) an arbitrary integer which does not equal to the 

number of bits that is ‘on’ in the input string.  

Error: A real number, � . In the case of setting the same error to each rotation operator, �  

is applied. In the case of setting different error to each rotation operator, a random 

selected real number, which between - �  and �  is applied. 

Same Rotation Error: A fixed Boolean value either from 1) true for setting the same error 

for each rotation operator, or 2) false for setting different ones. 

Output: Probabili ty for accepting, which is computed by calculating |M[S � 2(n+1) � p,  

S � 2(n+1) � p]|2 

We tested 100 runs for each sub-case. Each run represents one point in the test 

result figure. X-axis represents i � � /100, where i is a integer and 0 <= i < 100, that is, 100 

equal distance ascend errors from 0 to � . Y-axis represents the probabili ty for accepting. 
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Test Case 3: 

For each run we have: 

Length of String: A fixed integer number, which shows the length of the input string. 

Hamming Length of String: A fixed integer number, which shows how many bits of the 

input string are set to be ‘ on’.  

Threshold: A fixed integer either from 1) an integer that equals to the number of bits that 

is ‘on’ in the input string, or 2) an arbitrary integer that does not equal to the number of 

bits that is ‘on’ in the input string.  

Error: A fixed real number, say � . In the case of setting the same error to each rotation 

operator, �  is applied. In the case of setting different error to each rotation operator, a 

random selected real number, which between - �  and � , is applied. 

Same Rotation Error: A fixed Boolean value either from 1) true for setting the same error 

for each rotation operator, or 2) false for setting different ones. 

Output: Probabili ty for accepting, which is computed by calculating |M[S � 2(n+1) � p,  

S � 2(n+1) � p]|2 

We tested all possible input strings with the given length and the given Hamming 

length. The X-axis represents each possible string with the same length and the Hamming 

length in a lexicographical order. The Y-axis represents the probabili ty for accepting. 

6.2 Test Results Sample 
 

As described in Chapter 5, the simulator runs in polynomial time and polynomial 

space. It is thus feasible to run tests on many qubits. In our tests, we limited our tests to 

no more than 30 qubits on a PC and 50 qubits on a HP workstation. For the 30 qubits 
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case, it took about 4.5 seconds for each run on a 600 MHZ PC. In this section, we show 

some typical test samples. 

 
Sample of Test Case 1 Results 
 

We ran 200 tests with different input strings and different threshold values, where 

the error was zero for each run. Our tests show that when the threshold equals the number 

of bits that are ‘on’ in the input string, we got output ‘1’, otherwise the output w as ‘0’. 

This result is the same as what is described in Špalek’s algorithm, thus verifying the 

correctness of our simulator. Table 6-1 lists 20 sample tests of this case. 

  
Input string Threshold 

value 
Error Output 

111111111100000000001111111111 20 0 1 
111111111100000000001111111111 15 0 0 
010101010101010101010101010101 15 0 1 
010101010101010101010101010101 25 0 0 
000000011111110000000101010 10 0 1 
000000011111110000000101010 2 0 0 
0000000000000000000000001 1 0 1 
0000000000000000000000001 2 0 0 
11111111111111111111 20 0 1 
11111111111111111111 7 0 0 
01110111010000000 7 0 1 
01110111010000000 20 0 0 
10011000001111 7 0 1 
10011000001111 2 0 0 
10000111000 4 0 1 
10000111000 1 0 0 
101 2 0 1 
101 1 0 0 
1 1 0 1 
1 0 0 0 

Table 6- 1 Test results for test 1 
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Sample of Test Case 2 Results 
Test 2.1  
 
String: 10000111 
Threshold: 4 
Error: 1 
Same Rotation Error: true 

0

0.2

0.4

0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

 
Figure 6- 1 Test result for test 2.1 

 
Test 2.2 
 
String: 10000111 
Threshold: 5 
Error: 12.5666370614359 ( around 4*PI ) 
Same Rotation Error: true  

0

0.05

0.1

0.15

0.2

0.25

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

 

Figure 6- 2 Test result for test 2.2 
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Test 2.3 
 
String: 111110000011111 
Threshold: 12 
Error: 12.5666370614359 ( around 4*PI ) 
Same Rotation Error: true 
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Figure 6- 3 Test result for test 2.3 

 
Test 2.4 
 
String: 10000111 
Threshold: 4 
Error: 1 
Same Rotation Error: false 
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Figure 6- 4 Test result for test 2.4 
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Test 2.5 
 
String: 000001111100000111110000011111 
Threshold: 15 
Error: 1 
Same Rotation Error: false 
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Figure 6- 5 Test result for test 2.5 

 
Test 2.6 
 
String: 10000111 
Threshold: 4 
Error: 0.1 
Same Rotation Error: false 
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Figure 6- 6 Test result for test 2.6 
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Test 2.7 
 
String: 000001111100000111110000011111 
Threshold: 15 
Error: 0.1 
Same Rotation Error: false 
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Figure 6- 7 Test result for test 2.7 

 
Test 2.8 
 
String: 10000111 
Threshold: 5 
Error: 1 
Same Rotation Error: false 
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Figure 6- 8 Test result for test 2.8 
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Test 2.9 
 
String: 000001111100000111110000011111 
Threshold: 18 
Error: 1 
Same Rotation Error: false 
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Figure 6- 9 Test result for test 2.9 

 
Sample of Test Case 2 Results 
Test 3.1 
 
Length of Input String: 7 
Hamming length: 3 
Threshold: 3 
Error: 1 
Same Rotation Error: true 
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Figure 6- 10 Test result for test 3.1 
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Test 3.2 
 
Length of Input String: 7 
Hamming length: 3 
Threshold: 4 
Error: 1 
Same Rotation Error: true 
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Figure 6- 11 Test result for test 3.2 

 
Test 3.3 
 
Length of Input String: 7 
Hamming length: 3 
Threshold: 3 
Error: 1 
Same Rotation Error: false 
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Figure 6- 12 Test result for test 3.3 
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Test 3.4 
 
Length of Input String: 7 
Hamming length: 3 
Threshold: 3 
Error: 0.05 
Same Rotation Error: false 
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Figure 6- 13 Test result for test 3.4 

 
Test 3.5 
 
Length of Input String: 7 
Hamming length: 3 
Threshold: 4 
Error: 1 
Same Rotation Error: false 
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Figure 6- 14 Test result for test 3.5 
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Sample of Tests on HP Workstation 
 

We also migrated our simulator to an Itarium 64 bits processor workstation 

running Linux. We did some tests on 50 qubits on this machine; it took about 18 minutes 

for 100 runs, while we estimate it would take 360 minutes on a 600MHZ PC. We show a 

sample of our test results as follows. 

 
String: 11111111110000000000111111111100000000001111111111 
Threshold: 30 
Error: 1 
Same Rotation Error: false 
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Figure 6-15 Test results on HP workstation 
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6.3 Test Results Analysis 
 

Many interesting observations can be made from the above test samples. Proving 

conjectures based on these observations is beyond the scope of the current work. In this 

section, however, we summarize what we saw.   

 

1.   In the case of setting the same error to each rotation operator: 

� As Test 2.1 shows, if the threshold equals to the number of bits that is ‘on’ in 

the input string, whatever error it is, the output is always ‘1’. However, as you 

can see in Test 2.2 and Test 2.3, if the threshold does not equal to the number of 

bits that is ‘on’ in the input string, the output is not necessary to be ‘0’. From 

these facts, we can conclude that Špalek’s algorithm in this case has one-sided 

error. 

� Furthermore, Test 2.2 and 2.3 suggest that although when threshold does not 

equal to the number of bits that is ‘on’ the output is not necessarily ‘0’, there are 

some cycles in just how great the error is. These cycles are related to the length 

of the input string.  

� Given a string length and a Hamming length of this string, we tested all possible 

strings in Test 3.2, our results show that when threshold does not equal to 

number of bits that are ‘on’, all strings have the same output.  

 

2. In the case of different errors are applied to each rotation operator  
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� Observing Tests 2.4 to 2.7, when we have the threshold value equal to the number 

of bits that is ‘on’, the value of the error and the length of the input string will 

both affect the acceptance probabili ty.  

� In Test 2.6, when the string length is 8, and the error is no more than 0.05, we 

have output between 0.96 and 1.0. Increasing the error value causes us to lose the 

information for acceptance. This is shown in Test 2.4. 

� In Test 2.7, when the string length is 30, and the error is no more than 0.013, we 

have output between 0.96 and 1.0. With increasing the error value, we will l ose 

the information for acceptance, as shown in Test 2.5. 

� When the string length does not equal to the number of bits that is ‘on’ in the 

input string as in Test 2.8 and 2.9, we conclude that as the error gets smaller the 

output is closer to ‘0’. And, the smaller the length of the input string, the closer 

the output is to ‘0’.  
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Chapter 7 Conclusion 
 
 

In this project, we developed a simulator that simulates a quantum circuit for 

value gate. The basic algorithm to construct this circuit is Špalek’s algorithm, which is 

described in [HS03]. A naïve implementation of [HS03] takes exponential time and space 

complexity, and thus is infeasible in the multi -qubits case. We explored an 

implementation idea that reduces both the time and space complexity to a polynomial 

quantity. Our simulator uses these ideas, so it runs in reasonable time and space. 

In practice, the acceptance model of Špalek’s algorithm is unrealistic due to its 

assumption of exactly prepared quantum states. It is diff i cult to accurately estimate the 

effects of errors by calculating from Špalek’s algorithm itself. To observe this kind of 

effect, we introduced an error scheme to our simulator, so our program can simulate more 

realistic models. 

We did tests on inputs up to fifty qubits. Our test results suggest that when 

applying the same error to each rotation operation, the simulator always produce the 

correct results whatever the error is. However, when adding different errors there are 

some ranges for the errors, if the error is out of these ranges then we will l ose the abili ty 

to give the correct results. This simulator may help further researches on this. 
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