

QUANTUM VALUE GATE SIMULATOR

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Xin Chen

April 2003

ABSTRACT

QUANTUM VALUE GATE SIMULATOR

by Xin Chen

In this project, a polynomial implementation idea of simulating Špalek’s

algorithm is explored and implemented. The simulator supports ways of experiments with

error models applied to the base gates. Experimental results are presented and evaluated.

Also, the foundational concepts and notations of quantum computation used to

understanding this work are introduced. The main results from Špalek’s algorithm of

simulating a value gate with small depth quantum circuits are reviewed.

 iv

ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to my advisor, Dr. Chris Pollett, for

introducing me to this exciting research area. This project would not have been possible

without his guidance, patience and constant encouragement.

I would like to thank Dr. Robert Chun, and Dr. Walter Kirchherr for having made

available their time and commitment to serve on my committee.

I would like to thank my parents for always supporting and encouraging me and

for their unflinching faith in my abili ties. Without their unselfish love and affection I

would not have written this thesis.

I would like to thank Min Ouyang for his patience and support through the good

dreams and the nightmares.

 v

Contents

CHAPTER 1 INTRODUCTION ...1

CHAPTER 2 BACKGROUND..3

CHAPTER 3 QUANTUM COMPUTATION.......................................4

3.1 MODELS OF COMPUTATION ...4
3.2 FOUR POSTULATES OF QUANTUM MECHANICS...4

3.2.1 State space...4
3.2.2 Evolution..5
3.2.3 Quantum measurement ...5
3.2.4 Composite systems..6

3.3 QUANTUM CIRCUIT...6
3.3.1 Single qubit operations...6
3.3.2 Quantum circuits..6

CHAPTER 4 ŠPALEK’S ALGORITHM ...9

4.1 QUANTUM FAN-OUT OPERATION...9
4.2 PARALLELIZATION METHOD..10
4.3 QUANTUM HADAMARD TRANSFORM ...10
4.4 INCREMENT OPERATION..11
4.5 VALUE GATE ..11

CHAPTER 5 DESIGN AND IMPLEMENTATION..........................13

5.1 MATRIX REPRESENTATION..13
5.1.1 Matrix for the Hadamard layer...14
5.1.2 Matrix for the Permutation layer ..15
5.1.3 Matrix for the Fan-out layer ...16
5.1.4 Matrix for the Increment layer ..17
5.1.5 Matrix for the entire circuit ..18

5.2 A NAÏVE IMPLEMENTATION ..19
5.2.1 Class organization..19
5.2.2 Limitation of the naïve implementation...21

5.3 A VERY EFFICIENT IMPLEMENTATION ...21
5.3.1 Sufficient for reducing computational complexity21

5.3.1.1 Determining which element is needed...22
5.3.1.2 Reducing the size of problem from exponential to polynomial22
5.3.1.3 Getting a row of a layer matrix ...27

5.3.2 Implementation detail ...29
5.3.2.1 Saving each row of the layer matrix..29
5.3.2.2 Computing and saving the layer’s matrix ..30
5.3.2.3 Computing a intermediate row..32
5.3.2.4 Class organization ..35

5.4 ERROR SCHEME...36

 vi

CHAPTER 6 TESTS..38

6.1 TEST CASE DESIGN ...38
6.2 TEST RESULTS SAMPLE...40
6.3 TEST RESULTS ANALYSIS..50

CHAPTER 7 CONCLUSION..52

REFERENCES .…………………………………………………………..53

 vii

List of Figures

Figure 3- 1 Circuit for the controlled-U operation ..7
Figure 3- 2 Circuit and matr ix representation for controlled-NOT operation7
Figure 3- 3 Circuit for the Cn(U) operation when n=3 and k=3..8
Figure 4- 1 The Hadamard transform H

�� �� 2 on two qubits ...11
Figure 4- 2 Quantum circuit for value gate..12
Figure 5- 1 Layers of the circuit for value gate...14
Figure 5- 2 Permutation operator ..15
Figure 5- 3 Fan-out layer transformation..16
Figure 5- 4 Matr ix for f operator ...17
Figure 5- 5 Increment layer transformation ..17
Figure 5- 6 Matr ix for C1(d) operator ...18
Figure 5- 7 Class diagr am ..20
Figure 5- 8 Class diagram ..36
Figure 6- 1 Test result for test 2.1 ..42
Figure 6- 2 Test result for test 2.2 ..42
Figure 6- 3 Test result for test 2.3 ..43
Figure 6- 4 Test result for test 2.4 ..43
Figure 6- 5 Test result for test 2.5 ..44
Figure 6- 6 Test result for test 2.6 ..44
Figure 6- 7 Test result for test 2.7 ..45
Figure 6- 8 Test result for test 2.8 ..45
Figure 6- 9 Test result for test 2.9 ..46
Figure 6- 10 Test result for test 3.1...46
Figure 6- 11 Test result for test 3.2...47
Figure 6- 12 Test result for test 3.3...47
Figure 6- 13 Test result for test 3.4...48
Figure 6- 14 Test result for test 3.5...48
Figure 6-15 Test results on HP workstation ...49

 viii

List of Tables

Table 6- 1 Test results for test 1...41

 1

Chapter 1 Introduction

In recent years interest in quantum computation has been steadily increasing. One

reason for this is due to Shor' s [S97] discovery of a polynomial time quantum algorithm

for factoring, which is one of the strongest arguments in favor of the superiority of

quantum computing models over classical ones. Since this discovery, many efforts have

been made to find new, efficient quantum algorithms for classical problems and to

develop quantum complexity theory. The goal of this research will be to develop a

simulator, which will aid in understanding the robustness of certain quantum algorithms.

Špalek gives a way of simulating value gates with small depth quantum circuits in

the exact acceptance model [HS03]. The simulation is an improvement over what can be

done with classical AND, OR, NOT circuits. Yet, Špalek’s algorithm assumes that we

can perform certain rotation operation to arbitrary accuracy. So the question is how much

error is introduced if we choose a more realistic acceptance criterion? Good formal

estimates of this are somewhat diff icult to directly calculate from the algorithm itself, so

it would be interesting to do some simulations.

In this project we developed a program that simulates Špalek’s algorithm, that is,

simulates a quantum circuit that performs the function of a classical value gate. Then we

added an error facili ty to the simulator, so that it supports ways of experimenting with

error models applied to the base gates. The simulator is implemented in a very efficient

way; in theory, it can work on any number of bits using reasonable time and space.

This report is organized as follows. Chapter 2 describes the background of value

gate. In Chapter 3 we introduce the concepts and notations used in quantum computation

 2

that relative to our simulation. We briefly review the main results of Špalek’s algorithm

in Chapter 4.

A naïve implementation of Špalek’s algorithm takes exponential space and time,

and thus is infeasible. We present our implementation idea, which reduce both the space

and the time complexity from exponential to polynomial, in detail in Chapter 5. Then, in

Chapter 6, we explain our test case, show the test results, and give some analysis. Finally,

Chapter 7 concludes the report.

I would like to mention that this project work is based on an early version of

[HS03]. That early version of paper assumes infinite precision of the gates. During the

time of our project was done, Špalek added more ideas to his final published version. The

main idea he added is to all ow the use of a fixed set of one-qubit gates to construct

rotation operations. However, this does not have much effect on our simulating.

 3

Chapter 2 Background

A value gate is a logical gate that does the following computation: given an input

with n bits and a threshold value m, if the number of bits that are ‘1’ is equal to m, then

the value gate outputs ‘1’ , otherwise the output is ‘0’ . A value gate can be constructed by

a classical AND-OR circuit [Vol00].

 A threshold gate is a logical gate that performs the following logical function:

Tm (a1, a2, …, an) = def
�����

i > m� ,
it can be simulated by the value gate circuits, that is, by circuits where the value gates are

the only logical gates in the circuit.

 Threshold gates play an important role in logical circuits. One example for this is

shown in [Vol00], where an idea for constructing a constant-depth threshold circuits for

multiplication is ill ustrated.

 In this project, instead of simulating a value gate in a classical way, we simulate

the value gate with a quantum circuit using Špalek’s algorithm [HS03]. This quantum

unit can be further embedded into the classical circuit to construct a threshold gate.

i=1

n

 4

Chapter 3 Quantum Computation

Quantum mechanics is a mathematical model to describe the physics of the real

world. In this section, we will review some important concepts of quantum mechanics,

for details, see the textbook by Nielson and Chuang of quantum computation [NC00].

3.1 Models of Computation

In the classical world, we can use either a Turing machine or a logical circuit to

represent the concept of a universal computer. Similarly, in quantum world, we can use

either a quantum Turing machine or a quantum circuit to represent that same concept.

3.2 Four Postulates of Quantum Mechanics

 There are four postulates of quantum mechanics, which are described below:

3.2.1 State space

For each isolated physical system, we can use a unit vector in a complex vector

space with inner product to describe the system. This space is known as the state space of

the system, the vector is known as the state vector. Quantum mechanics takes place in

this state space.

A qubit is a two-dimensional state space. We can use |0� and |1� to form an

orthonormal basis for the state space. Then any state in the state space can be written as:

|ψ � = a|0� + b|1� ,

where a and b are complex numbers, and |a|2 + |b|2 = 1.

 5

3.2.2 Evolution

The evolution of a closed quantum system is described by a unitary

transformation. That is, suppose at time t1, the state of a system is |ψ � , and at time t2 it

changes to state |ψ´ � . We can use a unitary operator U to describe this change, note that

U depends only on the times t1 and t2,

|ψ´ � = U|ψ � .

A transformation U is said to be unitary if U†U = I, where U† is the conjugate-

transpose of U. An example of unitary operator is the Hadamard operator, which we

denote as H:

 H = 1/ ���

3.2.3 Quantum measurement

We can use a collection of measurement operators, denoted as {M m} , to describe

the quantum measurements. Here m refers to the measurement outcomes that may occur

in the experiment. If the state of the quantum system is |ψ � immediately before the

measurement, then the probabili ty that the measurement results in m is:

 p(m) = � ψ|Mm
† Mm|ψ � ,

and the system state right after the measurement is:

 M m|ψ �

 ��� ψ|Mm
† Mm|ψ � ,

the measurement operators must satisfy the completeness equation:

�

m Mm
† Mm = I.

1 1
1 -1

 6

3.2.4 Composite systems

If a quantum system is composed of several component systems, then its state

space can be represented by the tensor product of the state space of these sub systems.

For example, if a system is composed of n component systems, and the state of the i’ th

system is |ψi � , then the joint state of the total system is |ψ1 � � |ψ2 � � … � |ψn� .

3.3 Quantum Circuit

3.3.1 Single qubit operations

A single qubit is a vector |ψ � = a|0� + b|1� , where a and b are complex numbers

and must satisfy |a|2 + |b|2 = 1. Each operation (described by a 2x2 matrix) must be

unitary to ensure the property that the probabilit ies must sum to one. We li st two of the

most important ones that are used in this project: the Hadamard gate (denoted H), and the

Identity gate (denoted I) :

3.3.2 Quantum circuits
 �

Controlled U operation

A controlled-U operation is a two qubits operation, as shown in Figure 3.1. In a

controlled-U operation, there is a control qubit (the top line) and a target qubit (the

1 1
1 -1 H = 1/ ���

1 0
0 1 I =

 7

bottom line). If the control qubit is set, then the single qubit operation U is applied to the

target qubit. If the control qubit is not set, then the target qubit will not change.

 Figure 3- 1 Circuit for the controlled-U operation

 �
Controlled-NOT operation

A controlled-NOT operation is a special case of controlled-U operation. It flips

the target qubit if the control qubit is set. Its circuit and matrix representation are shown

in Figure 3-2.

Figure 3- 2 Circuit and matr ix representation for controlled-NOT operation

 �
Cn(U) operation

 A controlled operation Cn(U) is an operation on n control qubits and k target

qubits, where U is a k qubit unitary operator. This operation can be defined by the

following equation:

Cn(U)|x1 x2 … xn� | � � = |x1 x2 … xn� U x1 x2 … xn | � � ,

where x1 x2 … xn is the product of the bits x1 x2 … xn. That is, when the n numbers of the

control qubits are all set, the operator U is applied on the k target qubits, otherwise, the

U

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 8

target qubits are unchanged. The circuit notation for this operation is ill ustrated in Figure

3-3.

 Figure 3- 3 Circuit for the Cn(U) operation when n=3 and k=3

U

n=3

k=3

 9

Chapter 4 Špalek’s Algor ithm

In this chapter, we will briefly review some important aspects of Špalek’s

algorithm. This chapter follows Høyer and Špalek’s paper [HS03]. In the circuits below,

we will need the following tools: the quantum fan-out operation, the parallelization

method, the quantum Hadamard transformation, and the increment operation.

4.1 Quantum Fan-out Operation

As in classical circuits, fan-out is also an important operation in quantum circuits.

One reason is that if two quantum operations commute, then each of them can be

performed in parallel on a distinct copy of a qubit, which is produced by applying the

fan-out operation.

There is one important difference between the classical circuits and quantum

circuit: because of the ‘no-cloning’ theorem, quantum circuits do not have a naïve fan-out

operation that performs

|s� |0��� n

�
 |s��� n+1 (4.3.1)

for a general superposition state |s� . However, in [HS03], Špalek using ideas from earlier

papers defined a modified quantum fan-out operation that performs

|s��� |tk � � |s��� |tk � s� (4.3.2)

where |s� is the source qubit and there are n target qubits |tk � . The effect of (4.3.2) on

each computational basis state is the same as (4.3.1), and the effect on the super states is

determined by linearity.

K=1 K=1

n n

 10

4.2 Parallelization Method

Having a model of quantum circuits with unbounded fan-out, we are now able to

perform a more general task of applying an arbitrary number of commuting operations in

parallel on an individual qubit.

The idea of parallelization comes from the following observation: first, if some

operators commute, then they are all diagonal in the same basis. That means, they consist

of just phase shifts. Second, we can parallel these multiple phase shifts as following:

1. By applying the fan-out operation, a qubit is duplicated to multiple copies.

2. For each distinct copy apply the commute operation in parallel.

3. The ancilla qubits are initialized to |0� , by applying the fan-out operation

again, they can be cleaned at the end for reuse.

This method can be extended to multiple qubi ts by copying all target qubits. Other

tricks are similar to the one qubit case.

4.3 Quantum Hadamard Transform

The quantum Fourier Transform (QFT) is one of the important tools used in many

quantum algorithms. The main trick used in Špalek’s algorithm is replacing QFT by the

Hadamard transform. Špalek proved the equivalence of using these two transforms for his

algorithm.

The Hadamard transform Hn on n qubits is the following operation (written in the

computational basis):

Hn = 1/2n/2 ��� � � ��� -1)y � �	� x|,

where y
 �
������������� ���������������! "�!#%$�#�&('*)+�,�.-*/0)1���!2�)(�$�#�&�$(�!#���3
&�2+������4
��'��!5
�!#�' transformation

is Hn = H 6 n. Figure 4-1 shows an example of H 6 2. When each qubits is initialed to |0 7 ,

j=0

2n-1 2n-1

j=0

 11

after applying the Hadamard operations, the output will be (|00 7 + |01 7 + |10 7 + |11 7) /

2.

Figure 4- 1 The Hadamard transform H �� �� 2 on two qubits

4.4 Increment Operation

Špalek defined an increment operation P on n qubits to be an operation that maps

each computational basis state |x
�
 to |x+1 mod 2n� . He also proved that P is diagonal in

the Fourier basis. So, in this basis, these increment operations can be implemented in

parallel by a depth one quantum circuit.

Let D = FPF†, that is, the increment operation in the Fourier basis. Define a

rotation operator about the z-axis by angle � by Rz(�) = |0
���

0| + e� i|1
���

1|. Then for every

k � {1, 2, …, n} , Dk = Rz(� / 2n-k) � Dk-1. The 0-qubit operation D0 is considered to be

‘1’.

4.5 Value Gate

Having all these tools, a quantum circuit for value gate with unbounded fan-out

can be constructed as shown in Figure 4-2.

H

H

 12

 Figure 4 - 2 Quantum circuit for value gate

 13

Chapter 5 Design and Implementation

One of the most challenging parts in simulating this algorithm is to understand the

substantial mathematics involved. It took me a long time to figure out the matrix for each

quantum gate in the circuit. In this part we demonstrate the matrix representation of the

circuit.

Then, in Section 5.2, we show a naïve implementation for classically simulating

Špalek’s algorithm. This is a good start to understand from the view of implementation

that how the algorithm works, and it is also a necessary step to explore much more

efficient implementation ideas. However, a naïve implementation needs both exponential

space and time complexity. It is infeasible to calculate more than five qubits even using a

super machine given this implementation.

In Section 5.3, we introduce a very efficient idea for implementation, which

reduces both the time complexi ty and the space complexity from exponential to

polynomial, thus, is feasible on any qubit case.

5.1 Matrix Representation

From the view of implementation, we can divide the circuit, ill ustrated in Figure

4-1, into 11 layers, as shown in Figure 5-1. From left to right these layers are: Hadamard

layer, Permutation layer(P1), Fan-out layer, Permutation layer(P1´), Permutation

layer(P2), Increment layer, Permutation layer(P2´), Permutation layer(P1), Fan-out layer,

Permutation layer(P1´), and at last, Hadamard layer.

 14

Figure 5- 1 Layers of the circuit for value gate

Among these 11 layers, there are four types of different layers, shown as

Hadamard layer, Permutation layer, Fan-out layer, and Increment layer respectively.

Other layers just repeat these layers. Each layer can be represented by a matrix, which is

the tensor product of sub-matrices. The entire circuit can be represented by a matrix too,

which is the result of multiplying the matrices for each layer.

5.1.1 Matrix for the Hadamard layer

The matrix representation for the Hadamard layer, denoted as H_layer, is very

straightforward:

where, n is the length of the input, p = 1 +  log2 (1 + n) .

P1

H � p H � p D1

D1

D1

Dm

|S1 S1… S1

�

…

|0p �

|0p �

|0p �

|0p �

Hadamard
Layer

Fanout
Layer

Increment
Layer

Fanout
Layer

Hadamard
Layer

P1’ P2 P2’ P1 P1’

H_layer = I � … � I � H � p � I � … � I
 n n.p

 15

5.1.2 Matrix for the Permutation layer

A permutation operator changes the order of the rows of an input vector. Given an

input vector v1, after applying a permutation matrix, we get another vector v2, which has

the same entries as v1, but in a different order, as shown in Figure 5-2.

Figure 5- 2 Permutation operator

Suppose the entries in vector v1 are ordered as x = (1, 2, …, n), and we want these

entries to be ordered as y = (y1, y2, …, yn). The corresponding permutation matrix, P,

would be:

In circuit shown in Figure 5-1, six permutation matrices are used. Before applying

the Fan-out layer, we first apply the permutation operator P1 to change the vector’s order

so that it is suitable for applying Fan-out layer. Then, we use another permutation

operator P1´ to change the order back. When applying the Increment layer, we do the

same thing. However, because of the requirements on the order changing are different

from the Fan-out layer, we use permutation operator P2 to change the order, and use P2´

to change the order back. Here, P1´ and P2´ are the transpose matrices of P1 and P2

respectively.

p11 p12 … p1n
p21 p22 … p2n

……….
pn1 pn2 … pnn

a1
a2

…
an

a5
a1

…
a7

=

P v1 v2

P[xi][yi] = 1 when xi � x, yi � y, i � Z, and 1 � i � n
P[xi][j] = 0 when xi � x, yi � y, j � yi, i, j � Z, and 1 � i, j � n

 16

5.1.3 Matrix for the Fan-out layer

Figuring out a matrix representation for Fan-out layer directly from Figure 5-1 is

diff icult. Since we already have the Permutation layer, we can make things more

straightforward by making some changes, as ill ustrated in Figure 5-3.

Figure 5- 3 Fan-out layer transformation

Consider the right part of the above figure, we have a matrix representation,

F_layer, for the Fan-out layer as:

where, n is the length of the input, p = 1 +  log2 (1 + n) , f is the matrix for the fan-out

gate with n target qubits.

According to Špalek’s algorithm, a fan-out operation, f, with source qubits |s
�
 and

n target qubits |tk
�
 is defined as:

 |s

�
 � |tk

�
 |s

�
 � |tk � s

�
.

Thus, we have a matrix for f as shown in Figure 5-4.

…

…

F_layer = I � … � I � f � … � f
 n p

K=1

n

K=1

n

 17

Figure 5- 4 Matr ix for f operator

5.1.4 Matrix for the Increment layer

We can use the same method as for the Fan-out layer to make some changes to the

Increment layer, and so can make things easier.

Figure 5- 5 Increment layer transformation

As Figure 5-5 shows, by applying Permutation layer we can make the above

transformation. We then have a matrix representation for the right part of the figure.

Suppose we use I_layer to represent this matrix, then:

1 0 … … … 0 … … … 0
0 1 … … … 0 … … … 0
0 0 1 … … 0 … … … 0
0 … … … … 0 … … … 0
0 … … … 1 0 … … … 0
0 … … … 0 0 … … … 1
0 … … … 0 0 … … 1 …
0 … … … 0 0 … 1 … 0
0 … … … 0 0 … … … 0
0 … … … 0 1 … … … 0

2n

2n

…

D1

D1

D1

Dm

D1

D1

D1

Dm

…

 18

where, n is the length of the input, p = 1 +  log2 (1 + n) , d is the matrix for increment

gate with p qubits, c_d is the matrix for controlled increment gate on p target qubits.

The increment operator d is explained in detail in [HS03]. We now examine the

matrix representation for c_d, which is a ‘controlled-U’ operation, also called a Cn(U)

operation. In general, we cannot find a simple matrix representation for a Cn(U)

operation, fortunately, in our case we can limi t our considerations to C1(U), where the

unitary operator U is replaced by d. In this case, we have a matrix representation for c_d

as shown in Figure 5-6.

Figure 5- 6 Matr ix for C1(d) operator

5.1.5 Matrix for the entire circuit

Having the matrix for each layer, we now turn to the matrix representation for the

entire value gate circuit. A matrix (M) for value gate is made from the product of each

layer, which is:

M = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer � P1 � H_layer

I_layer = c_d � … � c_d � d
 n

1 0 … … … 0 … … … 0
0 1 … … … 0 … … … 0
0 0 1 … … 0 … … … 0
0 … … … … 0 … … … 0
0 … … … 1 0 … … … 0
0 … … … 0
0 … … … 0
0 … … … 0
0 … … … 0
0 … … … 0

2n

2n d
2n 2n

 19

5.2 A Naïve Implementation

In this section we want to introduce our initial implementation. This

implementation is the basis for us to explore a much more efficient implementation idea.

A natural way do to the simulation is to generate and store each matrix. Then, we can do

calculations on them, such as addition, multiplication, tensor-product, etc. Further, we

can generate quantum gates using these matrices.

5.2.1 Class organization

In my implementation, four classes were used: Complex number, Matrix, Gate

and Value gate. In the Complex number, we define a complex number and its operations.

In the Matrix, the notion of matrix and operations on it are defined. The Gate class works

like a gate factory, we define and generate base quantum gates that are needed by each

layer. At last, the Value gate class defines a value gate using each layer that was

described in Section 5.1, and can be used to evaluate the entire circuit. A class diagram is

show in Figure 5-7.

 20

Figure 5- 7 Class diagram

CComplex_number

real_part
imaginary_part

CComplex_number()
CComplex_number(double, double)
set_value(double, double)
operator = (CComplex_number&)
operator + (CComplex_number)
operator * (CComplex_number c2)
operator == (CComplex_number c2)
comlex_conjugate()
display()

CMatrix

m_NumOfRow
m_NumOfCol
m_pMatrix

CMatrix()
CMatrix(int, int)
setMatrix (int, int, CComplex_number**)
CMatrix(const CMatrix&)
operator=(const CMatrix&)
display()
mult_matrix(CMatrix, CMatrix)
tensor_products(CMatrix, CMatrix)
transpose(CMatrix)
hermitian_conjugate(CMatrix)
mult_number(CComplex_number, CMatrix)
add_matrix(CMatrix, CMatrix)

CGate

m_num_of_qubits
m_ppt
m_operator_matrix

CGate()
CGate(int)
set_hadamard_gate()
set_identity_gate()
set_fanout_gate(int)
set_flip_gate(int, int)
set_increment_gate(int, double)
set_controlled_increment_gate(int, double)

CValue_gate

m_p
m_num_of_ancill a
m_threshold

CValue_gate()
CValue_gate(int, double)
compose(char*)
set_hadamard_layer(bool)
set_fanout_layer(bool)
set_increment_layer()
set_value_gate()
evaluate_value_gate(char*)

 21

5.2.2 Limitation of the naïve implementation

As we shown in Section 5.1, to evaluate the value gate, we need to generate 11

matrices for each layer, and calculate their product from right to left. Notice that the size

for each such matrix is: 2n+(n+1)logn by 2n+(n+1)logn, thus, both the space complexity and time

complexity are O(2 nlogn). Storing and computing on such huge matrices is very machine

intensive. For example in the five qubits case, we will need at least 8G bytes memories.

So the exponential time and space complexities make using this program on even small

inputs impractical.

5.3 A Very Eff icient Implementation

In this part, we introduce an idea for implementing Špalek’s algorithm that uses

polynomial time and space complexity. We begin with a rough sketch of the idea. Then

we explain how we do the implementation in detail. Finall y, we show our way of

introducing error scheme to the simulation.

5.3.1 Sufficient for reducing computational complexity

Normally, simulating a quantum algorithm is very expensive because of the need

to calculate with exponential sized matrices. Given a quantum circuit, one may or may

not able to find a way to reduce the complexity to polynomial; it depends on the specific

algorithm involved. Our idea is based on three ideas:

1. For result matrix M (see Section 5.1.5), we are only interested in one element. See

Section 5.3.1.1 for details.

2. In each matrix that represents a layer, there are at most O(n) non-zero elements in

each row/column, which is explained in Section 5.3.1.2.

 22

3. Every row/column in any layer matrix can be computed in polynomial time. This

will be discussed in Section 5.3.1.3.

5.3.1.1 Determining which element is needed

Recall in Section 5.1, we calculated the matrix M as

 M = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer � P1 � H_layer

we can calculate the value-gate value val as:

In vector V, we have:

From here we can see that in order to calculate the value of val, we do not need to

calculate the entire matrix M, knowing the element M[S � 2(n+1) � p, S � 2(n+1) � p] is sufficient

for us.

5.3.1.2 Reducing the size of problem from exponential to polynomial

As we discussed earlier, we have

 M = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer � P1 � H_layer,

suppose that we have already calculated

 X = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer � P1,

m11 m12 … m 1n
m21 m22 … m 2n

……….
mn1 mn2 … m nn

v1
v2

…
vn

v1 v2…vn

M V’ V

val =

1, if i = S � 2(n+1) � p, S, n, p as in Figure 5.1

0, otherwise
vi =

 23

and that we want to go ahead to figure out the value of M[S � 2(n+1) � p, S � 2(n+1) � p] . In this

case, we are only interested in the (S � 2(n+1) � p)’th row of X, thus the problem is reduced to

two sub-problems:

a) Sub-problem SP1: how to efficiently calculate the (S � 2(n+1) � p)’th row of X

b) Sub-problem SP2: once we get calculate the (S � 2(n+1) � p)’th row of X, how to

efficiently calculate M[S � 2(n+1) � p, S � 2(n+1) � p] .

Later we’ll see that SP2 is simpler than SP1 and can be solved in the same way as

solving SP1. Now we start discussing how to solve SP1:

a). Solving SP1

We now describe a recursive way of solving SP1. Suppose we already have the result of

 Y = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer

then we have:

 X = Y � P1.

Note that we do not need to calculate the entire matrix Y to solve SP1 (i.e., calculate the

(S � 2(n+1) � p)’th row of X), having value of (S � 2(n+1) � p)’th row of Y is enough to calculate

the (S � 2(n+1) � p)’th row of X.

Recursively applying this idea, we have a method to solve SP1 as follows:

1). Calculate (S � 2(n+1) � p)’th row of Z, where

 Z =H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´

2). Step 1) can be calculated by calculating (S � 2(n+1) � p)’th row of Q, where

 Q =H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2

 24

3). Step 2) can be calculated by calculating (S � 2(n+1) � p)’th row of R, where

 R =H_layer � P1´ � F_layer � P1 � P2´ � I_layer

 …

n) We can start from (S � 2(n+1) � p)’th row of H_layer and move forward

 to finally compute 1)

Remark 1: In this implementation, for intermediate results, we only save the

(S �� �� 2(n+1) �� �� p)’th row for each layer matrix and for the final matrix V.

So far, we reduced the intermediate result size from the entire matrix to one row.

Yet this is not sufficient to reduce time and space complexity to polynomial, since there

are exponential many of elements in each row.

Before we go further, let’s first study the layer matrix a little more. From our

matrix definition for each layer, we can observe the following property of layer matrices:

Proposition 1:

� There are 2p=O(n) non-zero elements per row/column in the matrix for Hadamard

layer.

� There is exactly one non-zero element per row/column in the matrix for fan -out

layer.

� There is exactly one non-zero element per row/column in the matrix for incremen t

layer.

 25

� There is exactly one non-zero element per row/column in the matrix for

permutation layer.

Based on the above observations, we have the following lemma:

Lemma 1: In the value gate matrix X, where

 X = H_layer � P1´ � F_layer � P1 � P2´ � I_layer � P2 � P1´ � F_layer � P1

there are at most O(n) non-zero elements in (S � 2(n+1) � p)’th row.

Proof: We calculate X from left to right:

� First, row (S � 2(n+1) � p) of H-Layer has O(n) non-zero elements,

� Because P1´ has only one non-zero element in each column, then row (S � 2(n+1) � p)

of H-Layer � P1´ has at most O(n) non-zero elements

� For the same reason, we can continue compute until reach

 X = H_layer � P1’ � F_layer � P1 � P2’ � I_layer � P2 � P1’ � F_layer � P1
�

Thus, we note that:

Remark 2: In intermediate results of the value gate, i.e., the (S �� �� 2(n+1) �� �� p)’th row of the

matrix, there are at most O(n) non-zero elements, while the total number of

elements in this row is O(2nlogn).

At this point, we have reduced the problem of calculating O(2nlogn) elements to a

problem of calculating O(n) elements. Now we give an efficient way of calculating these

O(n) elements in polynomial time and space.

 26

Consider the following scenario: we have already got the row r=(r1,r2, …, r n), in

which r is sparse and only r i,r j and rk are non-zero elements. To multiply the next matrix:

If r is sparse, and r i,r j and rk are non-zero elements, then what will happen during

the multiplication? In this case, only the row i or j or k of P will multiply against a non-

zero value (r i,r j and rk respectively), other rows will simply multiply a ‘0’ from r.

What this means is that we do not even need to calculate all rows in P, it is

sufficient to calculate only rows that correspond to a non-zero element in r (in this case,

we only need to calculate i, j and k rows of P).

As we already know from Remark 2, r has at most O(n) non-zero elements, so we

need to calculate at most O(n) rows.

Because there are only O(n) non-zero elements in both the vector and the row of

the layer matrix, we can effectively save a vector by a linked-list to achieve polynomial

complexity elements.

Now, we are only one step away from getting a polynomial time algorithm. We

now explore how to effectively save a layer matrix and how to compute a particular row

of it.

…
pi1 pi2 … pin

…
pj1 pj2 … pjn
…
pk1 pk2 … pkn

…

… r i…r j…r k …

P
_l
ay
er

r

next_row =

 27

From proposition 1, we know that there are at most O(n) non-zero elements in a

row of any layer matrix. If we can figure out an effective way to calculate a row of a

layer matrix, we will be able to find a polynomial value-gate algorithm.

5.3.1.3 Getting a row of a layer matrix

Now we describe the idea of saving the layer and getting one row of it in

polynomial time. We discuss two cases: a layer matrix created by tensor product

(H_layer, I_layer, F_layer) and a permutation layer matrix (P layers).

� Case 1: Tensor product matrix

If a matrix is created as the tensor products of sub-matrices, it is very cheap to

only save the base matrices that participate in the tensor product. This needs at most

polynomial space. The question is how to effectively compute a row as required above?

First, let’s study the relationship between rows in the base matrix and the rows in

a layer matrix. Take the following simple tensor product as an example:

We see that

� row 00 comes from row 0 of ‘a’ and row 0 of ‘b’

� row 01 comes from row 0 of ‘a’ and row 1 of ‘b’

� row 10 comes from row 1 of ‘a’ and row 0 of ‘b’

� row 11 comes from row 1 of ‘a’ and row 1 of ‘b’

a00 � b00 a00 � b01 a01 � b00 a01 � b01 Row 00

a00 � b10 a00 � b11 a01 � b10 a01 � b11 Row 01

a10 � b00 a10 � b01 a11 � b00 a11 � b01 Row 10

a10 � b10 a10 � b11 a11 � b10 a11 � b11 Row 11

⊗ =

a00 a01
a10 a11

b00 b01
b10 b11

 28

In this simple case, if a layer matrix is the tensor product of n (2X2) base matrices

b1,b2,…,b n, then the row r1r2…rn, where ri
� [0..1], can be computed from row r1,r2,… ,r n

of matrix b1,b2,…,b n respectively. Using a linked-list and a sparse matrix, this can be

done in polynomial space.

A similar idea is used for more complex base matrices. For example, if a layer is

the tensor product of a (2X2) matrix a and a (4X4) matrix b, then line r1r2r3 of the layer

results from the r1 row of a and the r2r3 row of b.

� Case 2: Permutation matrix

Please see Section 5.1.2 for more information. This can be done in polynomial

time.

Remark 3: The intermediate results of value gate, i.e., the (S �� �� 2(n+1) �� �� p)’th row of the

matrix, can be calculated in O(n) time and space complexity.

b) Solving SP2

Once we calculate SP1 as a vector r, the situation is as following:

…
hi1 hi2 … h in

…
hj1 hj2 … h jn
…
hk1 hk2 … h kn

…

… r i…r j…r k …

H
_l
ay
er

r

final_row =

 29

And now our final goal is to get the (S � 2(n+1) � p)’th element of final_row.

The only values in the H_layer that contribute to final_row[S � 2(n+1) � p] are column

(S � 2(n+1) � p), see below:

In the H_layer, there are O(n) non-zero elements in each row, if we use the

algorithm in SP1 to create the row, then each row takes O(n) time to create, the cost of

finding its (S � 2(n+1) � p)’th element is also O(n), thus the complexity of finding all hx is

O(n2). Computing final_row[S � 2(n+1) � p] is then trivial and costs O(n). Thus the total cost

is O(n2)+ O(n) = O(n2).

Remark 4: M[S �� �� 2(n+1) �� �� p, S �� �� 2(n+1) �� �� p] can be calculated in O(n2) time and space

complexity.

5.3.2 Implementation detail

5.3.2.1 Saving each row of the layer matrix

A natural way to save a sparse row of any layer matrix is to use a linked-list. We

used the following data structure to represent one node of this linked-list:

struct node

{ char column_index[Max_NP+1];

 CComplex_number value;

 node* next;

} ;

final_row(S � 2(n+1) � p) = (rx � hx, (S � 2(n+1) � p))
�

x = i,j,k,…

 30

Normally, we use the data type ‘ integer’ to represent the index of a row/column,

but as you can see, we are using a string instead in this implementation. In Špalek’s

algorithm, given n bits input, there will be O(nlogn) lines in the circuit, thus, we will need

a vector of length 2O(nlogn) to represent this quantum state. However, 32 bits is not enough

to store the result as n gets large. This is reason for using a ‘0/1’ string for index

representation.

5.3.2.2 Computing and saving the layer’s matrix

Now the question is how to efficiently save and compute the layer matrices, i.e.,

H_layer, F_layer, I_layer, Ps.

� The matrix for Hadamard layer: it is the tensor product of small matrices. We can

easily compute a row from its base matrices. Saving the base matrices is enough.

� The matrix for fan-out layer: saving the base matrices is enough to compute a

row.

� The matrix for increment layer: saving the base matrices is enough to compute a

row.

� The matrix for permutation layer: we can easily compute a row by its permutation

table. Saving the permutation table is enough.

For the Hadamard, the Fan-out and the Incremental matrices, we can save their

base matrices, and use the algorithm described in Section 5.3.1.3 to compute any row.

The pseudo-code is listed below:

Function get_matrix_row(Matrix M, char *r)

Input: A char* for row

 31

 A matrix M, represented using its base matrices

Output: row r of matrix M, saved in a linked-list for its non-zero elements

Variables:

struct node *p, *q, *x, *y;

char subrow[MAX_ROWS][MAX_LEN];

int i, num;

Begin

 num = M->num_base_matrices;

Based on the sizes of M’s base matrices, split the input string r into subrow

corresponding to the log size of each base matrix

/**********************************

 For example, if there are two base matrices b1 and b2, b1 is a (4X4) matrix

and b2 is a (8X8) matrix, then the input “01101” should be split into

subrow[0]=“01” and subrow[1]=“101”

********************************** /

p = get_row_of_base_matrix(M->base_matrix[0], subrow[0]);

for (i=1; i<num; i++)

Begin

 q = get_row_of_base_matrix(M->base_matrix[i], subrow[i]);

 x = NULL;

while (p != NULL)

 32

Begin

 all ocate y;

 while (q != NULL)

 Begin

 y ->row = strcat(p->row, q->row);

 y ->value = p->value * q->value;

 link node y into x;

 q = q->next;

 End

 p = p->next;

End

 p = x;

End

return p;

End

5.3.2.3 Computing a intermediate row

Computing an intermediate row can be efficiently implemented using a linked-

list. The pseudo-code for multiplication is:

Function row_calculation(Row_pointer r, Matrix M)

Input: a row r of non-zero elements, represented using a linked-list

 33

 A matrix M, represented using either its base matrix (it M is generated by

tensor product , or the permutation map, if M s a permutation matrix)

Output: a new row of r �� �� P

Variables:

struct node *p, *q, *x[MAX_ROWS], result;

char * row;

int i, num=0;

double v;

boolean finish;

Begin

/******* Step 1: Compute all output lines into x[] ******* /

p = r;

while (p != NULL)

Begin

 v = p->value;

 row = p->row;

 x[num] = get_matrix_row (M, row);

 q = x[num];

 while (q != NULL)

 Begin

 q->value *= v;

 q = q->next;

 34

 End

 num++;

 p = p->next;

End

/******* Step 2: merge x[] into one single row ******* /

finish = false;

while (!finish)

Begin

 find k such that x[k] has the smallest column id;

 allocate new p,

 p->value = 0.0;

 p->column = x[k]->column;

 insert p into result;

 for (i=0; i<num; i++)

 Begin

 if (x[i]->column == p->column)

 Begin

 p->value += x[i]->value;

 x[i] = x[i] ->next;

 End

 End

 finish = (all x[i]==NULL)

End

 35

return result;

End

5.3.2.4 Class organization

A class diagram for this project is shown in Figure 5-8. The Complex_number

class is used to define a complex number and its operation. Base_matrix is an abstract

class, and five other classes are derived from it. We define five base quantum gates

described in Section 5.3.2.3 as classes Fan-out_matrix, Identity_matrix,

Hadamard_matrix, Controlled_D_matrix, and D_matrix respectively. Each layer matrix

is made from either the tensor product of these base matrices or using permutations; we

use the TensorProduct_layer class and Permutation_layer class to implement these ideas.

The Multiplication class is used for producing intermediate rows. Finally, the Value_gate

class is used to construct a quantum value gate circuit and evaluate it.

 36

Figure 5- 8 Class diagram

5.4 Error scheme

Špalek’s algorithm assumes that we can perform certain rotation operators to

arbitrary accuracy, but this is not the case in practice. To this point, our implementation is

Fanout_matrix

Complex_number

Controlled_D_matrix D_matrix

Hadamard_matrix

Identity_matrix

Base_matrix

TensorProduct_layer Permutation_layer

Multiplication

Value_gate

 37

based on the ideal case. To simulate a more reali stic criterion, we add an error scheme to

our system.

In Špalek’s algorithm, a rotation operator about the z -axis by angle
�
 is defined by

 Rz(
�
) = |0��� 0| + e� i|1��� 1|,

which is

 Rz(
�
) = |0��� 0| + (cos

�
 + isin

�
) |1��� 1|,

In increment layer (I_layer) each increment operator (D) is made from:

 Dk = Rz(� /2n-k) � Dk-1, where k is the number of qubits, D0 = 1.

Suppose we have an error � , we add errors in two ways:

1) Add a fix error � to each rotation operator, that is

 Rz(
�
+ �) = |0��� 0| + (cos(

�
+ �) + isin(

�
+ �)) |1��� 1|.

Then, Dk is made from the tensor product of the one qubit rotation operators with

the same error.

2) For each rotation operator, random select an error �	�
���
�����
������������������ - � and

� , add �	���! ��"
����$#% ��!&��"�� ��� �'���#%&��! �#%
��"
�&������

 Rz(
�
+ �	� ($)+* ,���� 0| + (cos(

�
+ �	� ($- isin(

�
+ �	� (!(.*0/���� 1|.

 So, we have different error �	��1" �#2��&���
�#% ��!&��"�� ��� �'���#%&��! �#%
��"
435�%
 Dk is made from

the tensor product of the one qubit rotation operators with different errors.

 38

Chapter 6 Tests

There are two purposes for our tests. First, we want to verify the correctness of

the simulation program. Second, observing test results can help us to understand the

behavior of the simulated algorithm with errors.

6.1 Test Case Design

In an ideal case where there is no error added to the system, the simulation should

perform the exact function as a value gate. This gives a way to verify if my program

works correctly. Thus, we designed test case 1 as follows:

Test Case 1

String: Arbitrary 0/1 string with arbitrary length.

Threshold: 1) An integer that equals to the number of bits that is ‘ on’ in the input string.

2) An arbitrary integer that does not equal to the number of bits that is ‘on’ in the input

string.

Error: 0

Output: Probabili ty for accepting, which is computed by calculating |M[S � 2(n+1) � p,

S � 2(n+1) � p]|2

In practice, we cannot perform certain rotation operations to arbitrary accuracy.

To simulate this phenomenon, we need to introduce errors into the system. It is

interesting to see how these errors affect the behavior of the Špalek’s algorithm.

We designed two test cases for such observations that we call Test Case 2 and 3.

Test Case 2 is designed to see how we will l ose the abili ty to give a correct result as the

error size increases. Given a Hamming length (the number of bits that is ‘on’ in the input

 39

string) and a length of input string, we can generate all possible strings. In test case 3 we

want to see how the algorithm acts on such strings.

In real quantum devices, it is more likely that for each rotation operation, a

different error will occur. To see the effects of this kind of factor, in both Test Case 2 and

Test Case 3, we tested two cases: first, set the error for each rotation operator the same;

second, set the error for each rotation operator randomly in some range.

Test Case 2:

For each run we have:

String: A fixed ‘0/1’ string.

Threshold: A fixed integer either from 1) an integer which equals to the number of bits

that is ‘on’ in the input string, or 2) an arbitrary integer which does not equal to the

number of bits that is ‘on’ in the input string.

Error: A real number, � . In the case of setting the same error to each rotation operator, �

is applied. In the case of setting different error to each rotation operator, a random

selected real number, which between - � and � is applied.

Same Rotation Error: A fixed Boolean value either from 1) true for setting the same error

for each rotation operator, or 2) false for setting different ones.

Output: Probabili ty for accepting, which is computed by calculating |M[S � 2(n+1) � p,

S � 2(n+1) � p]|2

We tested 100 runs for each sub-case. Each run represents one point in the test

result figure. X-axis represents i � � /100, where i is a integer and 0 <= i < 100, that is, 100

equal distance ascend errors from 0 to � . Y-axis represents the probabili ty for accepting.

 40

Test Case 3:

For each run we have:

Length of String: A fixed integer number, which shows the length of the input string.

Hamming Length of String: A fixed integer number, which shows how many bits of the

input string are set to be ‘ on’.

Threshold: A fixed integer either from 1) an integer that equals to the number of bits that

is ‘on’ in the input string, or 2) an arbitrary integer that does not equal to the number of

bits that is ‘on’ in the input string.

Error: A fixed real number, say � . In the case of setting the same error to each rotation

operator, � is applied. In the case of setting different error to each rotation operator, a

random selected real number, which between - � and � , is applied.

Same Rotation Error: A fixed Boolean value either from 1) true for setting the same error

for each rotation operator, or 2) false for setting different ones.

Output: Probabili ty for accepting, which is computed by calculating |M[S � 2(n+1) � p,

S � 2(n+1) � p]|2

We tested all possible input strings with the given length and the given Hamming

length. The X-axis represents each possible string with the same length and the Hamming

length in a lexicographical order. The Y-axis represents the probabili ty for accepting.

6.2 Test Results Sample

As described in Chapter 5, the simulator runs in polynomial time and polynomial

space. It is thus feasible to run tests on many qubits. In our tests, we limited our tests to

no more than 30 qubits on a PC and 50 qubits on a HP workstation. For the 30 qubits

 41

case, it took about 4.5 seconds for each run on a 600 MHZ PC. In this section, we show

some typical test samples.

Sample of Test Case 1 Results

We ran 200 tests with different input strings and different threshold values, where

the error was zero for each run. Our tests show that when the threshold equals the number

of bits that are ‘on’ in the input string, we got output ‘1’, otherwise the output w as ‘0’.

This result is the same as what is described in Špalek’s algorithm, thus verifying the

correctness of our simulator. Table 6-1 lists 20 sample tests of this case.

Input string Threshold

value
Error Output

111111111100000000001111111111 20 0 1
111111111100000000001111111111 15 0 0
010101010101010101010101010101 15 0 1
010101010101010101010101010101 25 0 0
000000011111110000000101010 10 0 1
000000011111110000000101010 2 0 0
0000000000000000000000001 1 0 1
0000000000000000000000001 2 0 0
11111111111111111111 20 0 1
11111111111111111111 7 0 0
01110111010000000 7 0 1
01110111010000000 20 0 0
10011000001111 7 0 1
10011000001111 2 0 0
10000111000 4 0 1
10000111000 1 0 0
101 2 0 1
101 1 0 0
1 1 0 1
1 0 0 0

Table 6- 1 Test results for test 1

 42

Sample of Test Case 2 Results
Test 2.1

String: 10000111
Threshold: 4
Error: 1
Same Rotation Error: true

0

0.2

0.4

0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

Figure 6- 1 Test result for test 2.1

Test 2.2

String: 10000111
Threshold: 5
Error: 12.5666370614359 (around 4*PI)
Same Rotation Error: true

0

0.05

0.1

0.15

0.2

0.25

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

Figure 6- 2 Test result for test 2.2

 43

Test 2.3

String: 111110000011111
Threshold: 12
Error: 12.5666370614359 (around 4*PI)
Same Rotation Error: true

0

0.05

0.1

0.15

0.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

Figure 6- 3 Test result for test 2.3

Test 2.4

String: 10000111
Threshold: 4
Error: 1
Same Rotation Error: false

0

0.2

0.4

0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

Figure 6- 4 Test result for test 2.4

 44

Test 2.5

String: 000001111100000111110000011111
Threshold: 15
Error: 1
Same Rotation Error: false

0

0.2

0.4

0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

Figure 6- 5 Test result for test 2.5

Test 2.6

String: 10000111
Threshold: 4
Error: 0.1
Same Rotation Error: false

0

0.2

0.4

0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

Figure 6- 6 Test result for test 2.6

 45

Test 2.7

String: 000001111100000111110000011111
Threshold: 15
Error: 0.1
Same Rotation Error: false

0

0.2

0.4

0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

Figure 6- 7 Test result for test 2.7

Test 2.8

String: 10000111
Threshold: 5
Error: 1
Same Rotation Error: false

0

0.05

0.1

0.15

0.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

Figure 6- 8 Test result for test 2.8

 46

Test 2.9

String: 000001111100000111110000011111
Threshold: 18
Error: 1
Same Rotation Error: false

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

Figure 6- 9 Test result for test 2.9

Sample of Test Case 2 Results
Test 3.1

Length of Input String: 7
Hamming length: 3
Threshold: 3
Error: 1
Same Rotation Error: true

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34

Series1

Figure 6- 10 Test result for test 3.1

 47

Test 3.2

Length of Input String: 7
Hamming length: 3
Threshold: 4
Error: 1
Same Rotation Error: true

0
0.0005

0.001
0.0015

0.002
0.0025

0.003
0.0035

0.004
0.0045

1 4 7 10 13 16 19 22 25 28 31 34

Series1

Figure 6- 11 Test result for test 3.2

Test 3.3

Length of Input String: 7
Hamming length: 3
Threshold: 3
Error: 1
Same Rotation Error: false

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

1 4 7 10 13 16 19 22 25 28 31 34

Series1

Figure 6- 12 Test result for test 3.3

 48

Test 3.4

Length of Input String: 7
Hamming length: 3
Threshold: 3
Error: 0.05
Same Rotation Error: false

0.95
0.955

0.96
0.965

0.97
0.975

0.98
0.985

0.99
0.995

1 4 7 10 13 16 19 22 25 28 31 34

Series1

Figure 6- 13 Test result for test 3.4

Test 3.5

Length of Input String: 7
Hamming length: 3
Threshold: 4
Error: 1
Same Rotation Error: false

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4

1 4 7 10 13 16 19 22 25 28 31 34

Series1

Figure 6- 14 Test result for test 3.5

 49

Sample of Tests on HP Workstation

We also migrated our simulator to an Itarium 64 bits processor workstation

running Linux. We did some tests on 50 qubits on this machine; it took about 18 minutes

for 100 runs, while we estimate it would take 360 minutes on a 600MHZ PC. We show a

sample of our test results as follows.

String: 11111111110000000000111111111100000000001111111111
Threshold: 30
Error: 1
Same Rotation Error: false

0

0.2

0.4

0.6

0.8

1

1.2

1 9 17 25 33 41 49 57 65 73 81 89 97

Series1

Figure 6-15 Test results on HP workstation

 50

6.3 Test Results Analysis

Many interesting observations can be made from the above test samples. Proving

conjectures based on these observations is beyond the scope of the current work. In this

section, however, we summarize what we saw.

1. In the case of setting the same error to each rotation operator:

� As Test 2.1 shows, if the threshold equals to the number of bits that is ‘on’ in

the input string, whatever error it is, the output is always ‘1’. However, as you

can see in Test 2.2 and Test 2.3, if the threshold does not equal to the number of

bits that is ‘on’ in the input string, the output is not necessary to be ‘0’. From

these facts, we can conclude that Špalek’s algorithm in this case has one-sided

error.

� Furthermore, Test 2.2 and 2.3 suggest that although when threshold does not

equal to the number of bits that is ‘on’ the output is not necessarily ‘0’, there are

some cycles in just how great the error is. These cycles are related to the length

of the input string.

� Given a string length and a Hamming length of this string, we tested all possible

strings in Test 3.2, our results show that when threshold does not equal to

number of bits that are ‘on’, all strings have the same output.

2. In the case of different errors are applied to each rotation operator

 51

� Observing Tests 2.4 to 2.7, when we have the threshold value equal to the number

of bits that is ‘on’, the value of the error and the length of the input string will

both affect the acceptance probabili ty.

� In Test 2.6, when the string length is 8, and the error is no more than 0.05, we

have output between 0.96 and 1.0. Increasing the error value causes us to lose the

information for acceptance. This is shown in Test 2.4.

� In Test 2.7, when the string length is 30, and the error is no more than 0.013, we

have output between 0.96 and 1.0. With increasing the error value, we will l ose

the information for acceptance, as shown in Test 2.5.

� When the string length does not equal to the number of bits that is ‘on’ in the

input string as in Test 2.8 and 2.9, we conclude that as the error gets smaller the

output is closer to ‘0’. And, the smaller the length of the input string, the closer

the output is to ‘0’.

 52

Chapter 7 Conclusion

In this project, we developed a simulator that simulates a quantum circuit for

value gate. The basic algorithm to construct this circuit is Špalek’s algorithm, which is

described in [HS03]. A naïve implementation of [HS03] takes exponential time and space

complexity, and thus is infeasible in the multi -qubits case. We explored an

implementation idea that reduces both the time and space complexity to a polynomial

quantity. Our simulator uses these ideas, so it runs in reasonable time and space.

In practice, the acceptance model of Špalek’s algorithm is unrealistic due to its

assumption of exactly prepared quantum states. It is diff i cult to accurately estimate the

effects of errors by calculating from Špalek’s algorithm itself. To observe this kind of

effect, we introduced an error scheme to our simulator, so our program can simulate more

realistic models.

We did tests on inputs up to fifty qubits. Our test results suggest that when

applying the same error to each rotation operation, the simulator always produce the

correct results whatever the error is. However, when adding different errors there are

some ranges for the errors, if the error is out of these ranges then we will l ose the abili ty

to give the correct results. This simulator may help further researches on this.

 53

References

[AMP02] F.Ablayev, C.Moore, and C.Pollett. Quantum and Stochastic Branching
Programs of Bounded Width. 29th International Colloquium on Automata, Languages,
and Programming (ICALP). 2002. p.343--354. ECCC TR02-013.

[FGHP99] S. Fenner, F. Green, S. Homer, and R. Pruim. Determining Acceptance
Possibili ty for a Quantum Computation is Hard for the Polynomial Hierarchy.
Proceedings of the Royal Society A (1999) 455, pp 3953--3966.

[GHMP02] F.Green, S.Homer, C.Moore, C.Pollett. Counting, Fanout, and the
Complexity of Quantum ACC. Quantum Information and Computation. Vol. 2. No. 1.
2002. pp.35--65.

[HS03] Peter Høyer and Robert Špalek. Quantum Circuits with Unbounded Fan-out.
Proceedings of 20th Annual Symposium on Theoretical Aspects of Computer Science
(STACS 2003), Lecture Notes in Computer Science (LNCS 2607), pages 234-246.
Springer-Verlag, Berlin, Germany, 2003.

[I94] Circuit Complexity and Neural Networks. Ian Parberry. The Mit Press. 1994.

[NC00] Quantum Computation and Quantum Information. M.Nielson and I.Chuang.
Cambridge. 2000.

[Pap94] Computational Complexity. C.Papapdimitriou. Addison Wesley. 1994.

[PS97] P.Shor. Polynomial -time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing 26(5): 1484-1509,
1997.

[Vol00] Introduction to Circuit Complexity. H.Vollmer. Springer-Verlag. 2000.

[Y93] A. C.-C. Yao. Quantum circuit complexity. Proc. 34th IEEE Symposium on
Foundations of Computer Science, 352--361, 1993.

