QUANTUM VALUE GATE SIMULATOR

A Writing Projed
Presented to
The Faaulty of the Department of Computer Scierce

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Xin Chen

April 2003

ABSTRACT
QUANTUM VALUE GATE SSIMULATOR

by Xin Chen

In this projed, a polynomial implementation ideaof simulating Spalek’s
algorithm is explored and implemented. The smulator supports ways of experiments with
error models applied to the base gates. Experimental results are presented and evaluated.
Also, the foundational concepts and notations of quantum computation used to
understanding this work are introduced. The main results from Spalek’ s algorithm of

simulating a value gate with small depth quantum drcuits are eviewed.

ACKNOWLEDGMENTS

| would like to expressmy sincerest gratitude to my advisor, Dr. Chris Pollett, for
introducing me to this exciting research area This projed would not have been possble
without his guidance, patience and constant encouragenent.

| would like to thank Dr. Robert Chun, and Dr. Walter Kirchherr for having made
avail able their time and commitment to serve on my committee

| would like to thank my parents for always supporting and encouraging me and
for their unflinching faith in my abilities. Without their unsdfish love ard aff edion |
would not have written this thesis.

| would like to thank Min Ouyang for his patienceand support through the goad

dreams and the nightmares.

Contents

CHAPTER 1 INTRODUCTION...cccoiiiiiiici e 1
CHAPTER 2 BACKGROUND.......cciiiiiiee e 3
CHAPTER 3 QUANTUM COMPUTATION.....ccooiiiiiiiiiieieeeen 4
3.1 MODELSOF COMPUTATION ...iiiitiineeteeeitisaeeseeeeeettnnnaeeseesstnnaaeeseennnssnnnaeens 4
3.2 FOURPOSTULATES OF QUANTUM MECHANICS.......ccuvuiiieeiiiiiiiineeenneneeeiiinn 4
3.21 S 1L 01 01 < PPN 4.
322 EVOIULION. ...ttt e e e e eeanes 5
3.2.3 QUANMUM MEASU EIMENLttt eee e e e e rn e e eaeees 5
3.24 (00010000 S (=1 (= 1 1S 6

3.3 QUANTUM CIRCUIT euttuieeetteiiinseeeeeeettieaeeeseeessisaeeseeessnnseeeseeseeennnneeeeeesssd 6.
331 Sngle qubt OPErationS..........cooiiiiii i 6
3.3.2 QUANMUM CIFCUITS. .. cevt e eei et e e e et e e et e et e e et e e en e et eeeaeeeeas 6
CHAPTER 4 SPALEK’SALGORITHM ..., 9
4.1 QUANTUM FAN-OUT OPERATION....cuuuuieeeierinnneeeeeerennssnnaeeseesssnneeeeeesssnnnnns 9
4.2 PARALLELIZATIONIMETHOD. .. .citttttiuaeeeeeiiiiseesseeeeeeiiineeeeeeesiinnaeeeeeeeeennnes 10
4.3 QUANTUM HADAMARD TRANSFORMcccuuuniieeiieiiinneesieenaeesnnnaeeeeennnnnaeaens 10
4.4 INCREMENT OPERATION. ...cutuuunieettitttunaeeeteennsssnnaaeseesssnnsaaeseesrennssnnaeseeenen 11
Y N U | = €7 1 =SSP 11
CHAPTERS DESIGNAND IMPLEMENTATION........cceevviieanee. 13
51 MATRIX REPRESENTATION...ccuttuuiiiiiiitiiieeeeeeenesisi s e eeeeessinaeeseeesnnnnsnnseeeens 13
511 Matrix for the Hadamard layer...........coooovviiiiiii e 14
5.1.2 Matrix for the Permutation layercooevveiiiiiiiiiiee e 15
5.1.3 Matrix for the Fan-out layer.............ccoeeveiiieiiiiceeece e 16
5.1.4 Matrix for the Increment layer...........coovviiiiiiii e 17
515 Matrix for the entir@ CIrCUILuovveiiiiiiiiie e 18

52 A NAIVEIMPLEMENTATION L.uuiiiiiiitiiieeeeeetitisaaseeeseestsnnaeeseessnnnaeesaeseessnns 19
521 ClassSOrganzation.............euuuieeiuiie e e e e e e eenr e 19
5.2.2 Limitation of thenaive implementation..............ccccooevviiiiieeeii e, 21

53 A VERY EFACIENT IMPLEMENTATION t.ctttuneeeeteitiieeeeeeesiannsinseeeeeenennnneeeeens 21
531 Suficient for redwing computationd complexitycccoeevveviveeeennnen. 21
5.3.1.1 Determiningwhich element isneaded..............ccoovviviiiiiieeeiiineeeennn. 22
5.3.1.2 Reducingthe size of problem from exponential to polynomial 22
5.3.1.3 Getting arow of alayer MatriXcccoeeeieiiiieiiiiiiee e 27

5.3.2 Implementation detail.................ooveiiiiii e 29
5.3.2.1 Savingeah row of thelayer matrixX...........cccoeeieviiiiiiiiiicii e 29
5.3.2.2 Computing and savingthe layer’ SmatriXccoeevevieeeviiiiieeeeninnnnnn, 30
5323 Computing aintermediat@ rOW.........cccuuieviiiiieeiiiiiee e e e 32
5.3.24 ClasSorganiZationuieeeiuiiieeiiiieee e e e e e e 35

5.4 ERROR SCHEME.ciiiiittinieeetieitiiaeee s e e e e eetts s e e e e eeta s anaeeaeeeatt s e e e e eesbnann s 36

CHAPTER G TEST S e 38

B.1 TEST CASEDESIGN ..ccutiiuiiiiiiiiiieiee st ett ettt 38
6.2 TESTRESULTS SAMPLEueiiiiiiiieiieiienisenneesinesieenneesneennesnesneseeneeenneenn 40
6.3 TEST RESULTSANALYSIS....iitiitiaitiairesieesieenesteete ettt naee e 50
CHAPTER 7 CONCLUSION ..ot a2

REFERENCES. 200003

Vi

List of Figures

Figure 3- 1 Circuit for the controlled-U Operationccvveiiiiiiiiiiiiiee e eas 7
Figure 3- 2 Circuit and matrix representation for controlled-NOT operation.........ccccvevvivveinennens 7.
Figure 3- 3 Circuit for the C"(U) operation When n=3 and K=3........cccvervriiiiiiieniriinrreneenenennen. 8
Figure 4- 1 The Hadamard transform H®% 0on tWo QUDITSu.vvveeernieeieeiieeeeaeeeeieeeeneeeeneens 11
Figure 4- 2 QUantum CirCUIt fOr VAIUE QAIE.vuiveeiriiniriiteeiieraietreeriineeieseeesienerreneeenes 12
Figure 5- 1 Layersof the Grouit for ValUB gate.. .. .vuieirieniiiirieiitieeeiteeeteeeenereeea e aiennens 14
Figure 5- 2 Per MULALTION OPEIALON .u.vuivenisiseeniteeneteeneeneenesaeseeeteenesersesrteenseseensternesarnenns 15
Figure 5- 3 Fan-out layer transforMatione.eeieeenisieesieieeieeeeseeesieesienreereeaeseenenns 16
FIigure 5- 4 MatriX fOr T OPEIELON .uuivvnisienit it eeit e et ieneet et e e et eea e ee st eeenrenesseneaenrenanns 17
Figure 5- 51ncrement layer transforMatione.eeeeseenisienesiiseeireereesreesteneenesreesreeenrenees 17
Figure 5- 6 Matrix for CH(0) OPEIALON .. cevu.ierneieneeieneeeet e eeesteestesea e st essaneesrnnsesenneesnnaes 18
FIQUIE 5= 7 ClasSOiagr @M . .eusiuesiseenestenesitnernteneeessenettenesesssnsssrasatsenssieneseseensseenesnren 20
FIiQUE 5- 8 ClasSOIaQr @M . .euvinisirieetienet ittt rreneeeseeaettenesessensssraaatsenssieneeeseeneteenesnren 36
FIigure 6- 1TeSt reSUIL FOr TS 2.0 .u.uuiriniiiiniiiteiet et eieea et eteeet e et ra e et eneeseen st ernesarnens 42
FIigure 6- 2 TESE FESUIL FOr TS 2.2 11 uuitiiniiiin it ieet et eeea et et e e et e et ra e e et e et eensternesaeneens 42
FIigure 6- 3TESt reSUIt FOr TS 2.3 1. uuitiinit it ittt eeea et et e et e et e e et e et e st eenesarnens 43
FIQUrE 6- 4 TESt rESUIL FOr TS 2.4 .u.uuiriinii ittt ee et e e e et e e et e e et eeneaaraens 43
FIigUre 6- 5TESt rESUIL FOr TES 2.5 .1 uuitiinit it et ieet et eie e et e ettt e et e e e et e ea e e st eeneaaenens 44
FIiQUre 6- BTESE FESUIL FOr TS 2.6 v uuiriiniriiniiitieet et eeeen ettt eeteeneternea et eeneeseensternesarneens 44
FIiQUrE 6- 7 TESE FESUIL FOr TS 2.7 v .vuitiinii it eiit ettt ee e et e e e et e et ea e e et e et e e st eeneaenens 45
FIigure 6- 8TESt reSUIL FOr TS 2.8 .. uuiuiinitiiniiit et ieteeiert et et ettt et e e e et e et e et erneaernens 45
Figure 6- 9Test reSUIt FOr TES 2.9 .. uuiuiinii ittt eee ettt e e e et e et e e et e e aeaens 46
Figure 6- 10 Test FESUIT fOr tES 3. duu.uuirinieirieit it eritieneeteeet e et et ee st e et eeneserneanrsrenasns 46
FIigure 6- 11 TSt FESUIE fOr TES 3201 euitiniririeit ittt eetiee et et et e e ea et ean et een et aeneserneassrenasnss a7
Figure 6- 12 Test FESUIE fOr TES 3.3 . e u it iniiiriiit it et eiteeaeet ettt e ea et ee et e et aeneseeneanssrenasnss a7
Figure 6- 13 TSt FESUIT fOr tES B4 u.uuiriniiir it ettt ee et ettt e et e e e et e e et een e s rneaneseenasnes 48
FIigUre 6- 14 TSt FESUIE fOr TES 35,1 e uitiniririenitienetiteeneet et et e e esaeseen et een et eenaeserneanssrenasnss 48
Figure 6-15 Test resultSon HP WOrKSEaIONvueuivirieitiiet it eeieeeeeeeteeeseee e e e eneaeeeenrenens 49

Vii

List of Tables

I o] =Y R =S A = U R e gl U= R 41

viii

Chapter 1 Introduction

In recet yeasinterest in quantum computation hes been steadily increasing. One
reason for thisisdue to Shor' s[S97] discovery of a polynomial time quantum algorithm
for fadoring, which is one of the strongest argumentsin favor of the superiority of
guantum computing models over classcd ones. Sincethis discovery, many efforts have
been made to find new, efficient quantum algorithms for classcd problems and to
develop quantum complexity theory. The goal of thisresearch will beto develop a
simulator, which will aid in understanding the robustnessof certain quantum algorithms,

Spalek givesa way of smulatingvaue gates with smal depth quantum drcuitsin
the exactaccetancemodd [HS03]. The simulation is an improvement over what can be
done with classcd AND, OR, NOT circuits. Y et, Spalek’s algorithm assumes that we
can perform certain rotation operation to arbitrary acaracy. So the question is how much
error isintroduced if we choose amore redi stic accepancecriterion? Good formal
estimates of this are somewhat difficult to diredly calculatefrom thea gorithm itsdf, so
it would be interesting to do some simulations.

In this projed we developed a program that simulates Spalek’ s algorithm, that is,
simulates a quantum circuit that performs thefunction of a dasscal value gate. Thenwe
added an error fadlity to the smulator, so that it supports ways of experimenting with
error models applied to the base gates. The smulator isimplemented in avery efficient
way; in theory, it can work on any number of bits using reasonable time and space

Thisreport isorganized as follows. Chapter 2 describes the kadkground of vaue

gate. In Chapter 3 we introduce the concepts and notations used in quantum computation

that relative to our sSmulation. We briefly review the man results of Spalek’s dgorithm
in Chapter 4.

A naive implementation of Spalek’s algorithm takes exponential spaceand time,
and thusisinfeasible. We present our implementation idea which reduce both the space
and the time complexity from exponential to polynomid, in detail in Chapter 5. Then, in
Chapter 6, we explain our test cag, show the test results, and give some andysis. Finally,
Chapter 7 concludes the report.

| would like to mention that this projed work isbased on anealy verson of
[HSO3]. That ealy version of paper asaumesinfinite predsion of the gates. During the
time of our projea was done, Spalek added more ideas to his final published version. The
main ideahe addelis to dl ow the use of afixed set of one-qubit gatesto construct

rotation operations. However, this does not have much effead on our simulating.

Chapter 2 Background

A value gateisalogicd gate that does the following computation: given an input
with n bits and athreshold value m, if the number of bitsthat are ‘1’ isequal to m, then
the value gate outputs ‘1, otherwise the output is*0’. A value gate can le constructed by
aclasscd AND-OR circuit [VolOQ].

A threshold gateis alogicd gatethat performs thefollowinglogica function:

Tm(a, &, ..., &) = de [[Izzlai >m],
it can be simulated by the value gate circuits, thatis, by circuits where the \due gatesare
the only logicd gatesin the circuit.

Threshold gates play animportant role in logical drcuits. One example for thisis
shown in [V 0ol0Q], where an ideafor constructing a constant-depth threshold circuits for
multiplicaion isill ustrated.

In this projed, instead of smulating a value gate in aclasscd way, we Smulate
the value gate with a quantum circuit using Spalek’ s algorithm [HS03]. This quantum

unit can be further embedded into the classcal drcuit to construct athreshold gate.

Chapter 3 Quantum Computation

Quantum medhanics is a mathematica model to describe the physics of the red
world. In thissedion, we will review someimportant concepts of quantum mechanics,

for detail s, seethe textbook by Nielson and Chuang of quantum computation [NCOQ].

3.1 Modelsof Computation

In the clasgcd world, we can useeither a Turing madine a alogicd circuit to
represent the concept of auniversal computer. Simil arly, in quantum world, we can use

either a quantum Turing machine or a quantum circuit to represent that same concept.

3.2 Four Postulates of Quantum Medanics

There arefour postulates of quantum mechanics, which are de<cribed bel ow:
3.21 Satespace

For ead isolated physica system, we can use aunit vedor in acompex veaor
gpacewith inner product to describe the system. This spaceisknown asthe gate gpaceof
the system, the vedor is known asthe state vedor. Quantum mechanics takes placein

this state space

A qubit isatwo-dimensional state space We can use |0) and |1 to forman
orthonormal basis for the state space Then any state in the state spacecan ke writtenas:
|b) =al0) +bl1),

where a and b are complex numbers, and [a* + |bf? = 1.

3.2.2 Evolution
The evolution of aclosed quantum system s described byaunitary
transformation. That is, suppose at time t;, the state of asystem is|), and at timet; it
changesto state [{") . We can use aunitary operator U to de<cribe this change, note that
U depends only on the timest; and to,
W) =Uly,).
A transformation U is said to be unitary if UTU = I, where U isthe conjugate-

transpose of U. An example of unitary operator isthe Hadamard operator, which we

denote as H:

H:1/\/2[i i}

3.2.3 Quartum measuenent
We can use a olledion of measirement operators, deroted as {M ,}, to describe
the quantum measurements. Here mrefersto the measurement outcomes that may occur

in the experiment. If the state of the guantum system is |y immediately before the

measurement, then the probability that the measurement resultsin mis:

pM) = (WMm' MulW),

and the system state right after the measurement is:

M W
VWM M)

the measurement operators must satisfy the competenessequation:

SMm' Mm = 1.

3.2.4 Composite systems
If a quantum system is composed of several component systems, then its state
gpacecan ke represented by the tensor product of the state spaceof thesesub systems.

For example, if a system is composed of n component systems, and the state of the i’th

system is |, , then the joint state of the total systemis|Py) @ [W2) ® ... @ |[Yn).

3.3 Quantum Circuit
3.3.1 Sngequht operations

A single qubit isavedor [{) = a|0) + b|1), where a and b are compex numbers
and must satisfy |al° + |bJ? = 1. Each operation (described by a 2x2 matrix) must be
unitary to ensure the property that the probabilities must sum to one. Weli st two of the

most important onesthat are used in this projed: the Hadamard gate (denoted H), and the

| dentity gate (denoted 1) :

H =12 [ii}

— O
| I

3.3.2 Quartumcircuits
= Controlled U operation
A controlled-U operation isatwo qubits operation, asshown in Figure 3.1 Ina

controlled-U operation, thereisacontrol qubit (the topline) and atarget qubit (the

bottom line). If the control qubit is set, then thesingle gubit operation U isapplied to the

target qubit. If the control qubit isnot set, then the farget qubit will not change.

—e

Figure 3- 1 Circuit for thecontrolled-U operation

= Controlled-NOT operation

A controlled-NOT operation is a spedal case of controlled-U operation. It flips
the target qubit if the control qubit is set. Itscircuit and matrix represertation are shown
in Figure 3-2.

N
N

oNeoNoN]
oNoh o)
RO OO
OoOr OO

Figure 3- 2 Circuit and matrix representation for controlled-NOT operation

= C"(U) operation
A controlledoperation C"(U) is an operation on n control qubits and k target
gubits, where U isak qubit unitary operator. This operation can le dfined by the
following equation:
CU) X1 X2 ... X [= Xa X2 ... Xy U X2y
where X Xz ... Xn isthe product of the bits X1 X2 ... Xn. That is, when the n numbers of the

control qubitsare dl set, the operator U isapplied on the k target qubits, otherwise, the

target qubits are unchanged. The circuit notation for this operation isill ustrated in Figure

3-3.

U

—1—

} e

Figure 3- 3 Circuit for the C"(U) operation when n=3 and k=3

Chapter 4 Spalek’s Algorithm

In this chapter, we will briefly review some important aspeds of Spalek’s
algorithm. This chapter follows Hayer and Spalek’ s paper [HS03]. In the dircuits bel ow,
we will neal the following tools. the quantum fan-out operation, the parall €lization

method, the quantum Hadamard transformation, and the increment operation.

4.1 Quantum Fan-out Operation

Asin clasdcd circuits, fan-out isalso an important operation in quantum circuits.
Onereason isthat if two quantum operations commute, then ead of them can be
performed in parallel on adistinct copy of aqubit, which is produced by applying the
fan-out operation.

There isone important difference between the classcal drcuits and quantum
circuit: becaise of the ‘no-cloning’ theorem, quantum circuits do not have a reive fan-out

operation that performs

510 °" > |s) *™ ¢.3.1)
for agenera superposition state |s) . However, in [HS03], Spalek using ideas from ealier
papers defined a modified quantum fan-out operation that performs

Sel >eues @32
where |s) isthe source qubit and there are n target qubits|tx) . The effed of (4.32) on
eat computational basis stateis the same as (4.3.1), andthe eff ed on the super statesis

determined by lineaity.

10

4.2 Parallelization M ethod

Having a model of quantum circuits with unbounded fan-out, we are now able to
perform amore general task of applying an arbitrary number of commuting operationsin
paralel on anindividual qubit.

Theideaof parall€lization comes from the following observation: first, if some
operators commute, then they are al diagond in the same besis. That means, they consist
of just phase shifts. Second, we can paralld these mutiple phaseshifts asfollowing:

1. By applying the fan-out operation, a qubit is dugicated to multiple copies.

2. For ead distinct copy apply the commute operation in paralld.

3. Thearxillagubits areinitialized to |0), by applying the fan-out operation

again, they can be clearedat the end for reuse.

Thismethod can be extended to mutiple qubi ts by copying all target qubits. Other

tricks are smilar to the one qubit case.

4.3 Quantum Hadamard Transform

The quantum Fourier Transform (QFT) is one of the important tods used in many
quantum algorithms. The main trick usedin Spalek’s algorithm is repladng QFT by the
Hadamard transform. Spalek proved the equivalenceof usingthese two transforms for his
algorithm.

The Hadamard transform H, on n qubits is thefollowing operation (written in the
computational basis):

2 2n-1 2n-1 .
Ho= 12" y) 3 (-1)"(X],
=0 =
where y-x is the bitwise scalar product. A useful property of the Hadamard transformation

isH,= H®". Figure 4-1 shows an example of H®2. When each qubitsisinitialed to |0)

11

after applying the Hadamard operations, the output will be (|00) + [01) +|10) +]11))/

2.

Figure 4- 1 The Hadamard transform H®? on two qubits

4.4 Increment Operation

Spalek defined an increment operation P on n qubits to bean operation that maps
eath computationa basis state [x) to [x+1 mod 2"). He dso proved that P isdiagonal in
the Fourier basis. So, in this basis, these increment operations can be implemented in
parallel by a depth one quantum circuit.

Let D = FPF', that is, the increment operation in the Fourier basis. Define a
rotation operator about the z-axis by angle 6 by R/6) =0 (0] + €”|1) (1]. Then for every
ke{l, 2, ..,n}, D«=Rfrr/2™) ® Dy.1. The 0-qubit operation Dy is considered to be

‘1.

45 Value Gate

Having al these tools, a quantum circuit for value gate with unbounded fan-out

can be congtructed as shown in Figure 4-2.

I :
—:— H® ——-: b";} —-; H®p :{:
I I |
| |
| |
I |
| |
|_ |

Fgure 4 - 2 Quantum circuit for value gae

12

13

Chapter 5 Design and | mplementation

One of the most challenging partsin smulating this agorithm is to understand the
substantial mathematics involved. It took mea long time tofigure out the matrix for eat
guantum gate in the circuit. In this part we demonstratethe matrix representation of the
circuit.

Then, in Sedion 5.2, we show a naive implementation for classcdly smulating
Spalek’s algorithm. Thisisagood start to understand from theview of implementation
that how the agorithm works, andit isaso a recesary step to exploremuch more
efficient implementation ideas. However, a naive implementation neels both exponential
gpaceand time complexity. It isinfeasible to cdculate more than five qubitseven using a
super machine given thisimplementation.

In Sedion 5.3, we introduce a \ery efficient ideafor implementation, which
reduces both the time complexity and the spacecompexity from exponential to

polynomial, thus, is feasible on any qubit case.

5.1 Matrix Representation

From the view of implementation, we can divide thecircuit, ill ustrated in Figure
4-1, into 11 layers, as shown in Figure 5-1. From left to right these layersare: Hadamard
layer, Permutation layer(P1), Fan-out layer, Permutation layer(P1"), Permutation
layer(P2), Increment layer, Permutation layer(P2"), Permutation layer(P1), Farout layer,

Permutation layer(P1”), and at last, Hadamardayer.

14

u]
u |]
S St... S @ -
1 ® x
[] \\ .
u]
u |]
L]
P ® ‘ w 1] ‘ ®
) H? LI Te 11 | DY [T H®
@ — . @
u]
u |]
& - 1 D
p
1) <>r\ : D : <>r\
A\ 74 L] [] V
u]
u |]
- []
u]
u |]
D . - Py
p - =
10%) YA - Dl L] YA
YA = . Y
A\ 74 . : V
u |]
u]
Pa Y . D Pa Y
A\ 4 - A\ 4
ary L]] FanY
A\ L] n %
u |]
u]
u]
Hadamard il Fanout 2 Increment . Fanout Hadamard
Layer Layer : Layer u Layer Layer
n
P1 PL P2 P2 P1 PL

Figure 5- 1 Layersof the drcuit for value gate

Among these 11 layers, there arefour types of diff erent layers, shown as
Hadamard layer, Permutation layer, Fan-out layer, and Increment layer respedively.
Other layers just repea these layers. Each layer can ke represented by a matrix, whichis
the tensor product of sub-matrices. The entirecircuit can be represerted by a matrix too,
which isthe result of multiplying the matrices for ead layer.

5.1.1 Matrix for the Hadamard layer

The matrix representation for the Hadamard layer, denoted as H_layer, isvery

straightforward:

Hlayer=1® .. 1 9 H**®1® ... ® |
TJ %{_J
n.p

where, nisthe length of theinput, p=1+ Oog, (1 + n)[1

15

5.1.2 Matrix for the Permutation layer
A permutation operator changes the order of the rows of an input vedor. Given an
input vedor v1, after applying a permutation matrix, we get another veaor v2, which has

the same entries & v1, but in a different order, as shown in Figure 5-2.

P11 P12... Pin a1 5
P21 P22 ... Pon & A
Pn1 Pr2 ... Prn &n &

P vl V2

Figure 5- 2 Permutation operator

Suppose the entriesin vedor vl are ordered as x = (1, 2, ..., n), and we want these
entriesto be ordered asy = (y1, Y2, ... Yn). The corresponding permutation matrix, P,

would be:

P[x]ly] =1 whenx ex, yiey,i€eZ,and1<i<n
P[x][j]]=0 whenx e X, i€y, j#Vy,i,jeZ and1l<i,j<n

In circuit shown in Figure 5-1, six permutation matrices are used. Before appying
the Fan-out layer, wefirst apply the permutation operator P1 to change the vedor’s order
so that it is suitablefor appying Fan-out layer. Then, we use another permutation
operator P1" to change the order badk. When applyigy the Increment layer, we do the
same thing. However, because of the requirements on the order changing are different
from the Fan-out layer, we use permutation operator P2 to change the order, and use P2’
to change the order back. Here, P1” andP2” are tle transpose matrices of P1 and P2

respedively.

16
5.1.3 Matrix for the Fan-out layer

Figuring out a matrix representation for Fan-out layer direaly from Figure 5-1 is
difficult. Sincewe dready hawe the Rermutation layer, we canmake things more

straightforward by making some changes, asill ustratedin Figure 5-3.

L g
. Va N
®
Va N
Fany
D o
oD
o} —
D
oD

&
7

0] §

Figure 5- 3 Fan-out layer transfor mation

Consider theright part of the abovefigure, we hawe amatrix represertation,
F_layer, for the Fan-out layer as:
Flayer=1© ..0lefe..of

J
v

n P

where, nisthe length of theinput, p =1+ Oog, (1 + n)[J, f isthe matrix for the fan-out

gate with n target qubits.

According to Spalek’s algorithm, afan-out operation, f, with source qubits |s) and

n target qubits [ty is defined as:

IS gt — s ltk®s.

Thus, we have a matrix for f as shown in Figure 5-4.

10...... ... O.......... 0
01......... O.......... 0
001..... O......... 0
0 0 0
O.......... 10...... ... 0
O.......... 00......... 1
O.......... 00...... 1

O.......... 00..1...0
O.......... 00......... 0
O.......... 01......... 0

Figure 5- 4 Matrix for f operator

5.1.4 Matrix for the Increment layer

2n

2n

17

We can use the same nethod asfor the Fan-out layer to make some changes to the

Increment layer, and so can make things easier.

* .
1 i
1 pt ’
/ D!
— 1 pt
— —
. hd
— 1ot D!
| pm D™

As Figure 5-5 shows, by applying Permutation layer we can make theabove

transformation. We then have a matrix representation for the right part of the figure.

Figure 5- 5 Increment layer transfor mation

Supposewe use | _layer to represent this matrix, then:

| layer=c d® ...®c de®d
- 7

where, nisthe length of theinput, p =1+ [og, (1 + n)[J, d isthe matrix for increment
gate with p qubits, ¢c_disthe matrix for controlled increment gate on p target qubits.
The increment operator d isexplained in detail in [HS03]. We now examine the
matrix representation for ¢_d, which isa‘controlled-U’ operation, also cdled a C"(U)
operation. In general, we cannot find asmple matrix representation for a C"(U)

operation, fortunately, in our case we can limit our considerations to C'(U), where the

n

18

unitary operator U isreplaced by d. In this case, we have a matrix representationfor c_d

as shown in Figure 5-6.

10, ... 0 0
01 ... 0 0
001 ... 0 0
I
0. 10... ... 0
0 0

0. 0

0.l 0 d
0 0

0. 0

Figure 5- 6 Matrix for C(d) operator

5.1.5 Matrix for the entire circuit

2n

2n

Having the matrix for ead layer, we now turn to the matrix representation for the

entire value gate circuit. A matrix (M) for value gate is made from the product of eat

layer, which is:

M= H_layer -P1" -F _laye -P1-P2" -1 _layer -P2-P1" -F _laye -P1-H_layer

19

5.2 A Naivelmplementation

In this sedion we want to introduceour initial implementation. This
implementation is the basis for usto explore amuch more efficient implemertation idea
A natura way do to the sSmulation is to gererate and store eat marix. Then,we can do
cdculations on them, such as addition, multiplication, tensor-product, etc. Further, we
can generate quantum gates using these matrices.

5.2.1 Classorganzation

In my implementation, four classes were used: Complexnumber, Matrix, Gate
and Value gate. In the Complexnumber, we define a complex number and its operations.
In the Matrix, the notion of matrix and operationson it are defined. The Gate classworks
like a cate factory, we define and generate base quantum gatesthat are neaded by eath
layer. At last, the Value gate classdefines a value gate using ead layer that was
described in Sedion 5.1, and can be used to evaluate the entirecircuit. A classdiagam is

show in Figure 5-7.

CMatrix

m_NumOfRow
m_NumOfCol
m pMatrix

CComplex_number

real_part
imaginary_part

CComplex_number()
CComplex_number(double, double)
set_value(double, double)

operator = (CComplex_number&)
operator + (CComplex_number)
operator * (CComplex_number c2)
operator == (CComplex_number c2)
comlex_conjugate()

display()

CMatrix()

CMatrix(int, int)

setMatrix (int, int, CComplex_number**)
CMatrix(const CMatrix&)
operator=(const CMatrix&)

display()

mult_matrix(CMatrix, CMatrix)
tensor_products(CMatrix, CMatrix)
trangpase(CMatrix)
hermitian_conjugate(CMatrix)
mult_number(CComplex_number, CMatrix)
add_matrix(CMatrix, CMatrix)

<

CGate

m_num_of_qubits

m_ppt _
m operator matrix

CGate()

CGate(int)

set_hadamard_gate()

set_identity_gate()

set_fanout_gate(int)

et flip_gate(int, int)
set_increment_gate(int, double)

et controlled increment_gate(int, double)

CVaue _gate

m_p
m_num_of_ancilla
m threshdd

CValue _gate()
CValue_gate(int, double)
compose(char*)
set_hadamard_layer(bod)
set_fanout_layer(bod)
set_increment_layer()

et value gate()

evaluate value gate(char*)

Figure 5- 7 Classdiagram

20

21

5.2.2 Limitation of the naiveimplenmentation

Aswe shown in Sedion 5.1, to evaluate the value gate, we need to generate 11
matrices for each layer, and cdculate their product from right to left. Notice that the sze
for eact such matrix is; 2™ (M 1109" py oM DIeN 15 hoth the spacecomplexity and time
complexity are O(2 "°9"). Storing and computing on such huge matricesis very machine
intensive. For example in the five qubits case, we will need at least 8G bytes memories.
So the exponential time and spacecomplexities make us ng this program on even small

inputsimpradicd.

5.3 A Vey Efficient Implementation

In this part, we introduce an ideafor implementing Spalek’s agorithm that uses
polynomial time and gpacecomplexity. We begin with a rough sketch of the idea Then
we explain how we do the implemertation in detail. Findly, we show our way of
introducing error scheme to the simulation.

5.3.1 Suficient for redwcing mmputationd conplexity

Normally, smulating a quantum algorithm is very expensive becaise of the need
to cdculate with exponential sized matrices. Given a quantum circuit, one may or may
not able to find away to reducethe compexity to polynomid; it depends on the spedfic
algorithm involved. Our ideais based on threeideas:

1. For result matrix M (seeSedion 5.1.5), we are only interested in one dement. See

Sedion 5.3.1.1 for details.

2. Inead matrix that represents alayer, there are a most O(n) non-zero elementsin

ead row/column, which is explained in Sedion 5.3.1.2.

22

3. Every row/columnin any layer matrix can be computed in polynomid time. This
will be discussed in Sedion 5.3.1.3.

5.3.1.1 Determining which element is needed

Recd in Sedion 5.1, we calculated the netrix M as
M= H_laye -P1" -F laye -P1-P2 -1 _layer -P2-P1" -F laye -P1-H_layer

we cancakulatethe \dlue-gate value val as.

M1 Ma2...M1p Vi1
M1 Ma2 ...M 2n Vo
Val == [Vl V2 LI} Vn]
Mh1 Mp2 M pn Vn
\Y M V

In vedor V, we have:

1, ifi=S-2™YP g n pasinFigure5.1
Vi = {

0, otherwise
From here we can seethat in order to calculatethe A ue of val, we do not nead to
cdculate the entire matrix M, knowing the elenent M[S- 2D P, 5. 20" P] js qufficient

for us.

5.3.1.2 Reducing the size of problem from exponential to polynomial

Aswe discussed earlier, we have
M= H_laye -P1 -F layer -P1-P2 -1 _laye -P2-P1" -F_laye -P1-H_layer,
suppose that we have dready calculated

X=H_laye Pl -F _laye -P1-P2 -|_laye -P2-P1 -F_layer -P1,

23

and that we want to go ahead tofigure out the vaue of M[S-2MV P S.2"DP] |n this
case, we are only interested in the (S- 2™ P)th row of X, thus the problem is reduced to
two sub-problems:
a) Sub-problem SP1: how to efficiently calculate the (S-2 P)'th row of X
b) Sub-problem SP2: once we get calculate the (S-2™ P)'th row of X, how to
efficiently calculate M[S- 2™V P .20 D P
Later well seethat SP2 issmpler than SP1 and can be solvedin the same way as

solving SP1. Now we start discussng how to solve SP1.:

a). Solving SP1

We now describe arecursve way of solving SP1. Suppose wealready have the result of
Y= H laye-P1l -F_layer -P1-P2 I _laye -P2-P1" -F_layer
then we have:
XY -P1L
Note that we do not need to calculate the entire matrix Y to solve SP1 (i.e., calculate the
(S-2D Py th row of X), having value of (S-2™% P)'th row of Y isenough to calculate
the (S-2™% Py’ th row of X.
Recursively applying this idea, we have a method to solve SP1 asfollows:
1). Calculate (S-2™? Py'th row of Z, where
Z=H_ laye -P1 -F_layer -P1-P2 | laye -P2 -P1
2). Step 1) can be calculated by calculating (S-2® P)'th row of Q, where

Q=H_layer -P1" -F _laye -P1-P2 -1_layer -P2

24

3). Step 2) can be calculated by calculating (S-2% P)'th row of R, where

R=H_layea -P1" -F laye -P1-P2 ‘| _laye

n) We can start from (S-2™% P)'th row of H_layer and move forward

tofinally compute 1)

Remark 1: In thisimplementation, for intermediate results, we only save the

(S -2 P)'th row for each layer matrix and for the final matrix V.

So far, we reduced the intermediate result size from the entire matrix to one row.
Y et thisisnot sufficient to reduce time and space complexity to polynomial, since there
are exponential many of elementsin each row.

Before we go further, let'sfirst study the layer matrix alittle more. From our

matrix definition for each layer, we can observe thefollowing property of layer matrices:

Proposition 1:

» Thereare 2°=0(n) non-zero elements per row/column in the matrix for Hadamard

layer.

» Thereisexactly one non-zero element per row/column in the matrix for fan-out

layer.

» Thereisexactly one non-zero element per row/column in the matrix for increment

layer.

25

» Thereisexactly one non-zero element per row/column in the matrix for

permutation layer.

Based on the above observations, we have thefollowing lemma:
Lemma 1: In the value gate matrix X, where
X=H_laye -P1 -F_laye -P1-P2" -1_layer -P2-P1" -F laye -P1
there are a most O(n) non-zero elementsin (S-2™% P)'th row.
Proof: We calculate X from left to right:
» First, row (S-2™Y P) of H-Layer has O(n) non-zero elements,
» Because P1° hasonly one norzero element in each column, then row (S -2 P
of H-Laye -P1" hasat most O(n) non-zero elements
* For the same reason, we can continue compute until reach

X=H_laye -P1' -F_layer -P1-P2' -1 _layer -P2-P1’' -F_layer -P1 [|

Thus, we note that:
Remark 2: In intermediate results of the value gate, i.e., the (S -2 P)'th row of the
matrix, thereareat most O(n) non-zero elements, whilethetotal number of

elementsin thisrow is O(2"°9").

At this point, we have reduced the problem of calculating O(2"°%") elementsto a
problem of calculating O(n) elements. Now we give an efficient way of calculating these

O(n) elementsin polynomial time and space.

26

Consider the following scenario: we have dready got the row r=(ry,r2, .., r), in

which r is sparseand only rj,r; and ry are non-zero elements. To multiply the next matrix:

Piz Pi2 ... Pin

nex_row = [...ri..r,-..rk...] Piz Pi2 --- Pin
Pr1 Pk2 --- Pxn
' P

If r issparse, and r;,rj and r are non-zero elements, then what will happen during
the multiplication? Inthiscase, only therow i or j or k of P will multiply against a non-
zero value (r;,rj and r respectively), other rows will Smply multiply a“0’ from r.

What thismeansis that we do not even need to calculateall rowsin P, it is
sufficient to calculate only rows that correspond to anon-zero element inr (in this case,
we only need to calculatei, j and k rows of P).

Aswe dready know from Remark 2, r hasat most O(n) non-zero elements, so we
need to calculate at most O(n) rows.

Because there are only O(n) non-zero elements in both the vector and the row of
the layer matrix, we can effectively save avector by alinked-list to achieve polynomia
complexity elements.

Now, we are only one step away from getting a polynomid time al gorithm. We
now explore how to effectively save alayer matrix and how to compute a particular row

of it.

27

From proposition 1, we know that there areat most O(n) non-zero elementsin a
row of any layer matrix. If we can figure out an effective way to calculate a row of a
layer matrix, we will be able to find a polynomia vaue-gate agorithm.

5.3.1.3 Getting arow of alayer matrix

Now we describe theidea of saving the layer and getting one row of itin
polynomial time. We discusstwo cases: alayer matrix created by tensor product

(H_layer, |_layer, F_layer) and a permutation layer matrix (P layers).

. Case 1. Tensor product matrix
If amatrix is created as the tensor products of sub-matrices, it isvery cheap to
only save the base matrices that participate in the tensor product. This needs at most
polynomial space. The question is how to effectively compute a row as required above?
First, let’s study the relationship between rowsin the base matrix and the rowsin

alayer matrix. Take the following smple tensor product as an example:

a0 -boo 80 bo1 @1 -boo @01 bor Row 00

a0 801 ® boo boz _ an b0 a0 b1 a1-bio @ -bir Row 01
ao an b1 b1a - a0-0o0 @0 bor &1-boo au1-bos Row 10

a0-b1o @0 b @ -bio aa-bu Row 11
We see that

= row 00 comesfromrow O of ‘a and row O of ‘b’
= row 01 comesfromrow O of ‘a and row 1 of ‘b’
= row 10 comesfromrow 1 of ‘a and row O of ‘b’

= row 11 comesfromrow 1 of ‘a and row 1 of ‘b’

28

In thissmple case, if alayer matrix isthe tensor product of n (2X2) base matrices
by,by,..,bn, thentherow rir,...rn, wherer; €[0..1], can be computed from row ry,ro,...,rq
of matrix by,by,..,b,respectively. Using alinked-list and a sparse matrix, this can be
done in polynomial space.

A similar ideais used for more complex base matrices. For example, if alayeris
the tensor product of a (2X2) matrix a and a (4X4) matrix b, then line rirors of the layer

results from the r1 row of a and the rorzrow of b.
] Case 2: Permutation matrix
Please see Section 5.1.2 for more information. This can be done in polynomial

time.

Remark 3: Theintermediate results of value gate, i.e., the (S -2V P)'th row of the

matrix, can be calculated in O(n) time and space complexity.

b) Solving SP2

Oncewe calculate SPL asa vedor r, the situation is as foll owing:

hix hiz...hin
final_row = [...ri..rj..rk...] hiz hi2 ...hijn
hkl hk2...h kn

H

29

And now our final goal isto getthe (S-2? P)th element of final_row.
The only valuesin the H_layer that contribute to final_row{S-2™" P] are column

(S-2D Py seebelow:

x=ijk

final_rowm(S-2™YP) = X (rx - hy, (s-2001) p))

Inthe H_layer, there are O(n) non-zero elementsin ead row, if we usethe
algorithm in SPL to crede the row, then ead row takes O(n) time to crede, the cost of
finding its (S-2™? Pyth element isalso O(n), thus the complexity of finding al hyis
O(n%). Computing final_row{S-2™? P] isthen trivial and costs O(n). Thusthe total cost

isO(n?)+ O(n) = O(n?).

Remark 4: M[S-2™D P 5.2 P] can be calculated in O(n?) time and space

complexity.

5.3.2 Implementation detail

5.3.2.1 Saving ead row of the layer matrix

A natura way to save asparse row of any layer matrix is to usealinked-list. We

used the following data structure to represent onenode of this linked-list:

struct node

{ char olumn_index[Max_NP+1];
CComplex_number \aue
node* next;

30

Normally, we use the data type ‘integer’ to represent theindex of a row/column,
but as you can see we are using astringinstead in thisimplementation. In Spalek’s
algorithm, given n bitsinput, there will be O(nlogn) linesin the circuit, thus, we will need
avedor of length 2°("°9" to represent this quantum state. However, 32 bits is not enough
to storetheresult as n getslarge. This is reason for uang a‘0/1’ string for index
representation.

5.3.2.2 Computing and saving the layer's matrix

Now the question is how to efficiently save and compute the layer matrices, i.e.,
H_layer, F_layer, | _layer, Ps.
» The matrix for Hadamard layer: it isthe tensor product of small matrices. We can
easlly compute arow from itsbase matrices. Saving the base matricesis enough.
» The matrix for fan-out layer: saving the base matricesis enough to compute a
row.
» The matrix for increment layer: saving the base matricesis enough to compute a
row.
» The matrix for permutation layer: we caneasly compute arow by its permutation
table. Saving the permutation table is enough.
For the Hadamard, the Fan-out and the Incremental matrices, we can save their
base matrices, and use the a gorithm described in Sedion 5.3.1.3 to computeany row.

The pseudo-code s listed below:

Function get_matrix_row(Matrix M, char *r)

Input: A char* for row

31

A matrix M, represented usngitsbase matrices

Output: row r of matrix M, saved in alinked-list for its non-zero elements
Variables:

struct node *p, *q, *X, *y;

char subrow[MAX_ROWS][MAX_LEN];

int i, num;
Begin

num = M->num_base matrices,

Based on the sizes of M’s base matrices, split the input string r into subrow

corresponding to the log size of each base matrix

/**********************************

For example, if there are two base matricesbl and (2, blisa (4X4) matrix
and b2 isa (8X8) matrix, then theinput “011071 should be split into

subrow[0]="01" and subrow[1]="101"

kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk /

p = get_row_of base matrix(M->base matrix[Q], subrow[0]);
for (i=1; i<num; i++)
Begin
g =get row_of base matrix(M->base_matrix[i], subrow][i]);
X =NULL,;

while (p!=NULL)

Begin
alocaey;
while (q!'=NULL)
Begin
y ->row = strca(p->row, g->row);
y ->value = p->value * q->value;
link nodey into x;
g =g->next;
End
p =p->next;
End
P =X
End
return p;

End

5.3.2.3 Computing aintermediate row

Computing an intermediate row can be efficiently implemented using alinked-

list. The pseudo-code for multiplicetion is:

Function row_cdculation(Row_pointer r, Matrix M)

Input: arow r of non-zero elements, represented using alinked-list

33

A matrix M, represented usng either itsbase matrix (it M is generated by
tensor product , or the permutation map, if M s apermutation matrix)
Output: anew row of r - P
Variables:
struct node *p, *q, *Xx[MAX_ROWS], result;
char *row;
int i, num=0;
doublev;
boolean finish;
Begin
[rexxxxk Step 1. Compute al output lines into X[******* [
p=r;
while(p!=NULL)

Begin
v = p->value;
row = p->row;

X[num] = get_matrix_row (M, row);
g =X[num;
while (q!=NULL)
Begin
g>vaue*=v;

q =q->next;

/*******

End
num++;
p =p->next;
End
Step 2: merge X[] into onesingle row ***x***x /
finish = falsg;
while (!finish)
Begin
find k such that x[k] hasthe smallest column id;
allocatenew p,
p->value = 0.0;
p->column = x[K]->column;
insert p into resullt;
for (i=0; i<num; i++)
Begin
if (X[i]->column == p->column)
Begin
p>value +=x[i]->value;
X[i] = x[i] ->next;
End
End
finish = (al x[i]==NULL)

End

34

35

return result;
End

5.3.2.4 Classorganizaion

A classdiagram for this projed is shown in Figure 5-8. The Complex_number
classis used to define a complex number and its operation. Base matrix is an abstrac
class and five other classes are derived from it. We define five base quantum gates
described in Sedion 5.3.2.3 as classes Fan-out_matrix, Identity matrix,
Hadamard_matrix, Controlled D_matrix, and D_matrix respedively. Each layer matrix
is made from either the tensor product of these base matrices or using permutations, we
use the TensorProduct_layer classand Permutation_layer classto implement thesidess.
The Multiplication classis used for producing intermediate rows. Finaly, the Value gate

classis used to construct a quantum value gate circuit and evauateit.

Complex_number

&

o

36

Controlled D_matrix

D_matrix

|dentity _matrix

Hadamard_matrix

Base_matrix

Fanout_matrix

&

TensorProduct_layer

Permutation_layer

&

Multiplication

Figure 5- 8 Classdiagram

54 Error scheme

<

Vaue gate

Spalek’s algorithm assumes that we can perform certain rotation operators to

arbitrary acairacy, but this isnot the case in pradice. Tothis point, our implementation is

37

based on the ided case. To simulate amore redi stic criterion, we ald an error scheme to
our system.
In Spalek’s algorithm, arotation operator about the z -axis by angle 6 is defined by
R{(6) =10/ (0] + €”|1) (1],
whichis
R/(6) =10) (0| + (coso +ising) [1) (1],
In increment layer (1_layer) ead increment operator (D) is made from:
Dk = R(172™*) ® Dy.1, where k is the number of qubits, Do = 1.
Suppose we have anerror €, we adderrorsin two ways:
1) Addafix error € to ead rotation operator, that is
RA0+¢) =]0) (O] + (cosg(0+¢) + isin(0+¢)) 1) (1]
Then, Dy is made from the tensor product of the one qubit rotation operators with
the same error.
2) For ead rotation operator, random seled an error €', which is between - and
€, add &' to this rotation operator, that is
RA6+¢") = 10) (O] + (cos(0+&") + isin(6+")) |1)(1]
So, we have different error €' for each rotation operator, thus, Dy is made from

the tensor product of the one qubit rotation operators with diff erent errors.

38

Chapter 6 Tests

There are two purposesfor our tests. First, we want to verify the mrrednessof
the simulation program. Seand, observing test results can help us to understand the

behavior of the smulated algorithm with errors.

6.1 Test CaseDesign

In an ided case where there isno error added to the system, the smulation should
perform the exad function asa vaue @te. This givesa way to verify if my program

works corredly. Thus, we designed test case 1 asfollows:

Test Case 1l
Sring: Arbitrary 0/1 string with arbitrary length.
Threshold: 1) An integer thatequals to thenumber of bits thatis‘on’in theinput string.
2) An arbitrary integer that does not equal to the number of bitsthat is‘on’ in the input
string.
Error: O
Output: Probability for accepting, which is computed by caculating [M[S -2 P,
.20 P2

In pradice we cannot perform certain rotation operations to arbitrary acaracy.
To smulate this phenomenon, we need to introduce errorsinto the system. Itis
interesting to seehow these errors affed the behavior of the Joalek’'sal gorithm.

We designed two test cases for such observationsthat we cdl Test Case 2and 3.
Test Case 2 is designed to seehow we will | ose the abili ty to give a corred result asthe

error sizeincreases. Given a Hamming length (the number of bitsthat is‘on’ in the input

39

string) and a length of input string, we can gererateall possble strings. In testcase 3 we
want to seehow the dgorithm ads on such strings.

In red quantum devices, it is more likely that for ead rotation operation, a
different error will occur. To seethe effeds of thiskind of fador, in both Test Case 2and
Test Case 3, we tested two cases. firdt, set the error for ead rotation operator the same;

sewnd, set the error for ead rotation operator randomly in some range.

Test Case 2:
For ead run we have:
Sring: A fixed *0/1’ string.
Threshold: A fixed integer either from 1) an integer which equals to the number of bits
that is‘on’ in the input string, or 2) an arbitrary integer which does not equal to the
number of bitsthat is‘on’ in the input string.
Error: A red number, €. In the ca of setting the same error to ead rotation operator, &
isapplied. In the cas of setting diff erent error to ead rotaion operator, arandom
seleded red number, which between - and ¢ isapplied.
Same Rotation Error: A fixed Boolean value ether from 1) truefor setting the same error
for ead rotation operator, or 2) false for setting diff erent ones.
Output: Probability for accepting, which is computed by cdculating [M[S -2 P,
.20 P2

Wetested 100 nsfor eat sub-case. Each run represents one point in the test
result figure. X-axisrepresentsi -£/100, wherei isainteger and 0 <= i <100 that is, 100

equal distanceascend errorsfrom 0 to . Y-axis represents the probabili ty for accepting.

40

Test Case 3:
For ead run we have:
Length of Sring: A fixed integer number, which shows the length of the input string.
Hamming Length of String: A fixed integer number, which shows how many bits of the
input string are set to be ‘on'.
Threshold: A fixed integer either from 1) an integer that equalsto the number of bits that
is‘on’ inthe input string, or 2) an arbitrary integer that does not equal to the number of
bitsthat is‘on’ in the input string.
Error: A fixed red number, say ¢. In the ca® of setting the same error to ead rotation
operator, ¢ isapplied. In the cas of setting diff erent error to ead rotation operator, a
random seleded red number, which between - and ¢, isapplied.
Same Rotation Error: A fixed Boolean value ether from 1) truefor setting the sanme error
for ead rotation operator, or 2) false for setting diff erent ones.
Output: Probability for accepting, which is computed by caculating [M[S -2 P,
S.20*1) 'p] |2

We tested all posshle input strings with the given length and the given Hamming
length. The X-axis represents eat possble string with the same length and the Hamming

length in alexicographicd order. The Y -axis represents the probabili ty for accepting.

6.2 Test ResultsSample

As described in Chapter 5, the smulator runsin polynomia time and polynomial
gpace It isthusfeasible to run tests on many qubits. In our tests, we limited our teststo

no more than 30 qubits on a PC and 50qubits on a HP workstation. For the30qubits

41

cese, it took about 4.5 secondsfor ead run on a600MHZ PC. In this sedion, we show

some typicd test samples.

Sample of Test Case 1 Results

We ran 200tests with different input strings and diff erent threshold values, where
the error waszero for ead run. Our tests show that when thethreshold equal sthe number
of bitsthat are ‘on’ in the input string, we got output ‘1, otherwise the output w as ‘0.
This result isthe same as what is described in Spalek’s agorithm, thus verifying the

correanessof our smulator. Table 6-1 lists 20 sample tests of this case.

Input string Threshold Error Output
value

1111111111000000000011111111120

1111111111000000000011111111115

0101010101010101010101010103a15
0101010101010101010101010103025

000000011111110000000101010

o

000000011111110000000101010

0000000000000000000000001

0000000000000000000000001

11111111111111111111

o

11111111111111111111

01110111010000000

01110111010000000

o

10011000001111

10011000001111

10000111000

10000111000

101

101

1

el el el Jdiell Jiell Jdlel] diell diell Jliel] Jllell

olR|R[N|R[ANNN (NN N RN

1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1

Table6- 1 Test resultsfor test

Sample of Test Case 2 Results
Test 2.1

Sring: 10000111
Threshold: 4

Error: 1

Same Rotation Error: true

1.2

T 1000:

0.8

0.6 —e— Seriesl
0.4
0.2
0 T T T T e T e e e e e e e e e T e e e T e T T T T e T T T T T T TTTT
— » N~ Ln ™ — (o)) N~ L0 ™ — ()] N~
— N (90 < < Lo O N~ [00] (o0} ()}
Figure 6- 1 Test result for test 2.1
Test 2.2
Sring: 10000111
Threshold: 5
Error: 125666370614359 around 4*PI)
Same Rotation Error: true
0.25
4t 4t
0.15
I i I t \—O—Seriesl
IR I3
0.05
OM%WW
— O N~ IO MO «dH O N~ IO M d O I~
— N (90 < < Lo O N~ [00] (o0} (@)}

Figure 6- 2 Test result for test 2.2

42

Test 2.3

Sring: 111110000011111

Threshold: 12

Error: 125666370614359around 4*PI)
Same Rotation Error: true

0.2

015 4 4 A A

A
A

ll% \—O—Seriesl
0.05 X
OMWMMM
— O N~ OO MO 4G O N~ IO M d O I~
— N (90 < < L0 O N~ [00] (o0} (@)}
Figure 6- 3 Test result for test 2.3
Test 2.4
Sring: 10000111
Threshold: 4
Error: 1
Same Rotation Error: fase
1.2
1
0.8 -
0.6 —e— Seriesl

HCDI\LOOOHCDI\LOC':)

— O I~
- N OO < < 1O © o o O

Figure 6- 4 Test result for test 2.4

43

Test 2.5

Sring: 000001111100000111110000011111
Threshold: 15

Error: 1

Same Rotation Error: fase

1.2
1
0.8

0.6 —e— Seriesl

0.4
0.2
0

— O N~ IO M S O N~ I M I O I~
1 N OO I < 1O © N~ 0 o O

Figure 6- 5 Test result for test 2.5

Test 2.6

Sring: 10000111
Threshold: 4

Error: 0.1

Same Rotation Error: fase

1.2
1
0.8

0.6 —e— Seriesl

0.4
0.2
0

Figure 6- 6 Test result for test 2.6

44

Test 2.7

Sring: 000001111100000111110000011111
Threshold: 15

Error: 0.1

Same Rotation Error: fase

1.2
1
0.8 "

0.6 —e— Seriesl

0.4 1
0.2

0 T e T e e e

— O N~ IO M <« O N~ I M G O I~
1 N OO I < O © N~ 0 0o o

Figure 6- 7 Test result for test 2.7

Test 2.8

Sring: 10000111
Threshold: 5

Error: 1

Same Rotation Error: false

0.2
¢
0.15
¢
¢ P ¢
0.1 A ¢ ‘ —e— Seriesl
4
0.05 fl *] |
LR y) :
4
4 *
0 4
-
<

— O N~ I ™ Lo
— N M (o]

73

[©2 N
< W

Figure 6- 8 Test result for test 2.8

Test 2.9

Sring: 000001111100000111110000011111
Threshold: 18

Error: 1

Same Rotation Error: false

0.08
0.07
0.06
0.05
0.04)

0.03 A

0.02
0.01 -
0

—

57
65
73
81
89
97

‘—0— Seriesl

Figure 6- 9 Test result for test 2.9

Sample of Test Case 2 Results
Test 3.1

Length of Input Sring: 7
Hamming length: 3
Threshold: 3

Error: 1

Same Rotation Error: true

1.2

O-O0-6-6-6-6-6-6606060606362060606060606200060606060020620020606-06-206

1

LR 2 2R 4 22 4h 4h 40 40 40 40 40 40 40 40 40 4h 40 40 b 40 40 40 40 40 40 4B b 40 40 A0 40 40 4 4

0.8

0.6

0.4

0.2

0

<t N~ O M O O N o0 «H <
=T = = —«=S N N AN MmO o™

i

Figure 6- 10 Test result for test 3.1

Test 3.2

Length of Input Sring: 7
Hamming length: 3
Threshold: 4

Error: 1

Same Rotation Error: true

0.0045
0.004
0.0035
0.003
0005
0.0015
0.001
0.0005
0
Y~ 3383888 E 3

Figure 6- 11 Test result for test 3.2

Test 3.3

Length of Input Sring: 7
Hamming length: 3
Threshold: 3

Error: 1

Same Rotation Error: fase

0.4
0.35
0.3
0.25

0.2
0.15
0.1
0.05
0

I < N~ O M © O N O 0o «H <
= = = < N N N ™M o™

Figure 6- 12 Test result for test 3.3

a7

Test 3.4

Length of Input Sring: 7
Hamming length: 3
Threshold: 3

Error: 0.05

Same Rotation Error: false

0.995
0.99

0.975

X
0.985 ﬁ\ / N"/\,
0.98 | N

I
—

0.97
0.965

>

0.96

0.955
0.95

T T T T T T
(92] (o] (o] N Lo (o]
— - - (a\] (a\] N

T
|
™

T
<t
(a0}

Test 3.5

Length of Input Sring: 7
Hamming length: 3
Threshold: 4

Error: 1

Same Rotation Error: false

Figure 6- 13 Test result for test 3.4

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

AR RN,

- ~ O
—

o0}
N

i
™

34

Figure 6- 14 Test result for test 3.5

48

49

Sample of Testson HP Workstation

We dso migrated our smulator to an Itarium 64 bits processor workstation
running Linux. We did some tests on 50 qubits on this madhine; it took about 18 minutes
for 100runs, while we estimateit would take360minutes on a 600MHZ PC. We show a
sample of our test results asfollows.
String: 11111111110000000000111111111100000000001111111111
Threshold: 30

Error: 1
Same Rotation Error: false

1.2
1

0.8 l
0.6 \ \—O—Seriesl

0.4

0.2 X
0 m

— O N~ IO ™ n o™
- N ™ O I~

— O I~ — O I~
< < o 0 o O

Figure 6-15 Test resultson HP workstation

50

6.3 Test ResultsAnalyss

Many interesting observations can be made from the above test sampes. Proving
conjedures based on these observations is beyond the scope of the current work. In this

sedion, however, we summarize what we saw.

1. Inthecaseof setting the sameerror to each rotation oper ator:

. AsTest 2.1 shows, if the threshold equals to the number of bitsthat is‘on’in
the input string, whatever error it is, the output isaways ‘1. However, asyou
canseein Test 2.2 and Test 2.3, if the threshold does not equel to thenumber of
bitsthat is‘on’ in the input string, the output is not necessary to be ‘0’. From
these fads, we cancondude that Spalek’s dgorithm in this cag has one-sided
error.

. Furthermore, Test 2.2 and 2.3 suggest that although when threshold does not
equal to the number of bitsthat is‘on’ the output is not necessarily ‘0’, there are
some cyclesin just how grea the error is. These ¢ycles are related to the length
of the input string.

. Given astring length and a Hamming length of this string, we testeddl possble
stringsin Test 3.2, our results show that when threshold does not equal to

number of bitsthat are ‘on’, all strings have the same output.

2. Inthecaseof different errorsareapplied to each rotation operator

51

Observing Tests 2.4 to 2.7, when we have the threshold value equal to the number
of bitsthat is‘on’, the value of the error and the length of theinput string will
both affed the accepance probability.

In Test 2.6, when the string length is 8, and the error isno more than 0.05 we
have output between 0.96 and 1.0. Increasing the error value caises usto lose the
information for acceptance Thisisshown in Test 2.4.

In Test 2.7, when the string length is 30, and the errorisno more than 0.013 we
have output between 0.96 and 1.0. With increasing the error vaue, we will | ose
the information for acceptance as shown in Test 2.5.

When the string length does not equal to the number of bitsthat is‘on’ in the
input string asin Test 2.8 and 2.9, we conclude thet asthe error getssmaller the
output iscloser to ‘0. And, the smaller the length of the input string, the closer

the output isto ‘0.

52

Chapter 7 Conclusion

In this projed, we developed a smulator that smulates a quantum circuit for
value gate. The basic dgorithm to construct this circuit is Spalek’s algorithm, which is
described in [HS03]. A naive implementation of [HS03] takes exponential time and gace
complexity, and thusisinfeasible in the multi-qubits case. We exploredan
implementation ideathat reduces both the time and spacecompexity to a polynomia
guantity. Our smulator usesthese ideas, so it runsin reasonable time and gace

In pradice, the acceptancemodd of Spalek’s dgorithm is unredistic due toits
assumption of exadly prepared quantum states. Itis diffi cult to acaratdy estimatethe
effeds of errors by cdculating from Spalek’s algorithm itself. To observe this kind of
effed, we introduced an error scheme to our smulator, so our program can simul ate more
redistic models.

We did tests on inputs up to fifty qubits. Our test results suggest that when
applying the same error to ead rotation operation, the smulator aways produce the
corred resultswhatever the error is. However, whenaddng differert errorsthere are
some ranges for the errors, if the error isout of these ranges then we will | ose the abili ty

to give the corred results. This smulator may help further researches on this.

53

References

[AMPO2] F.Ablayev, C.Moore, and C.Pollett. Quantum and Stochastic Branching
Programs of Bounded Width. 29th International Colloquium on Automata, Languages,
and Programming (ICALP). 2002 p.343--354 ECCCTR02-013

[FGHP99] S. Fenner, F. Green, S. Homer, and R. Pruim. Determining Acaeptan
Posshili ty for a Quantum Computation is Hard for the Polynomial Hierarchy.
Procealings of the Royal Society A (1999 455, pp 3953-3966

[GHMPO2] F.Green, S.Homer, C.Moore, C.Pollett. Counting, Fanout, and the
Complexity of Quantum ACC. Quantum Information and Computation. Vol. 2. No. 1.
2002 pp.35--65.

[HS03)] Peter Hayer and Robert Spalek. Quantum Circuits with Unbounded Fan-out.
Proceadings of 20th Annual Symposium on Theoreticd Aspeds of Computer Science
(STACS 2003, Ledure Notesin Computer Science (LNCS 2607), page84-246.
Springer-Verlag, Berlin, Germany, 2003

[194] Circuit Complexity and Neural Networks. lan Parberry. The Mit Press 1994

[NCOQ] Quantum Computation and Quantum Information. M.Nielson and 1.Chuang.
Cambridge. 2000

[Pap94] Computational Complexity. C.Papapdimitriou. Addison Wesley. 1994
[P7] P.Shor. Polynomia-time agorithmsfor prime factorization and discrete
logarithms on a quantum computer. SIAM Journd on Computing 265): 14841509
1997.

[VolOQ] Introduction to Circuit Complexity. H.Vollmer. Springer-Verlag. 200Q

[Y93] A. C.-C. Yao. Quantum circuit complexity. Proc. 34th IEEE Symposium on
Foundations of Computer Science,352-361, 1993

