Quantum Value Gate Simulator

by Xin Chen

Advisor: Prof. Chris Pollett

Introduction

- Simulates a quantum circuit that performs the function of a classical value gate
- Spalek's Algorithm
 - Robert Spalek
 - "Quantum Circuits with Unbounded Fan-out" STACS 2003 v2, 2003
- Supports ways of experiments with error models applied to the base gates
- Uses polynomial space and time

- Value gate: $T_m(a_1, a_2, ..., a_n) = \inf_{def} \left[\sum_{i=1}^n a_i = m\right]$
- Threshold gate: $T_m(a_1, a_2, ..., a_n) = \inf_{def} \left[\sum_{i=1}^n a_i \ge m\right]$
- Application of Threshold circuits

How does Quantum Mechanics work - Qubit

- Qubit
 - a qubit is a unit vector in a two-dimensional complex vector space
 - an arbitrary state vector in the state space

 $|\psi\rangle = a|0\rangle + b|1\rangle$

where *a* and *b* are complex numbers, and $|a|^2 + |b|^2 = 1$, $|0\rangle$ and $|1\rangle$ are known as computational basis, and form an orthonormal basis for this vector space

How does Quantum Mechanics work - Evolution

Unitary transform

 $|\psi'
angle = U|\psi
angle$

where U is a unitary matrix, that is, $U^{\dagger}U = I$

4/22/03

CS298 Writing Project Defense

How does Quantum Mechanics work - Measurement

- $\{\mathbf{M}_{m}\}$
- Immediately before the measurement the probability that result *m* occurs is:

 $p(m) = \langle \psi | M_m^{\dagger} M_m^{\dagger} | \psi \rangle$

• $M_m |\psi\rangle$ $\sqrt{\langle \psi | M_m^{\dagger} M_m |\psi \rangle}$ • $\nabla M^{\dagger} M = I$

How does Quantum Mechanics work – Composite Systems(1)

Tensor Product (Kronecker Product)

The tensor product of two vector spaces *V* and *W*, denoted $V \otimes W$, is a way of creating a new vector space analogous to multiplication of integers.

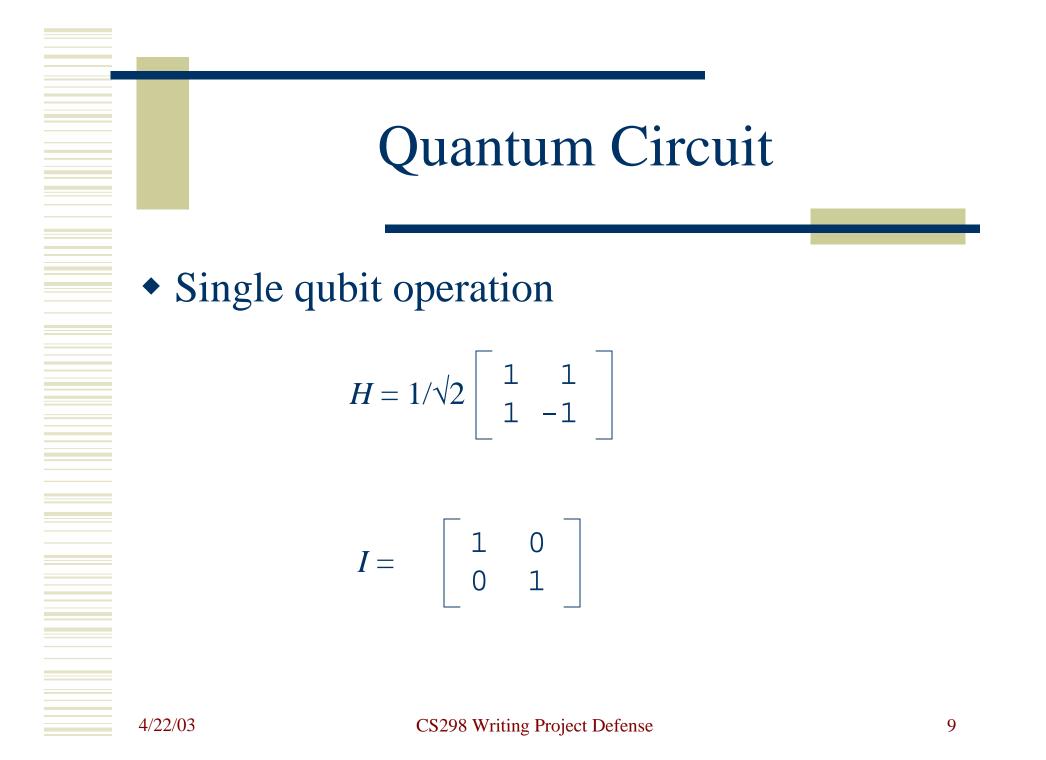
$$\begin{bmatrix} a \\ b \end{bmatrix} \otimes \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a \\ a \\ b \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a \\ a \\ b \\ b \\ b \\ d \end{bmatrix} = \begin{bmatrix} a \\ a \\ b \\ b \\ b \\ d \end{bmatrix}$$

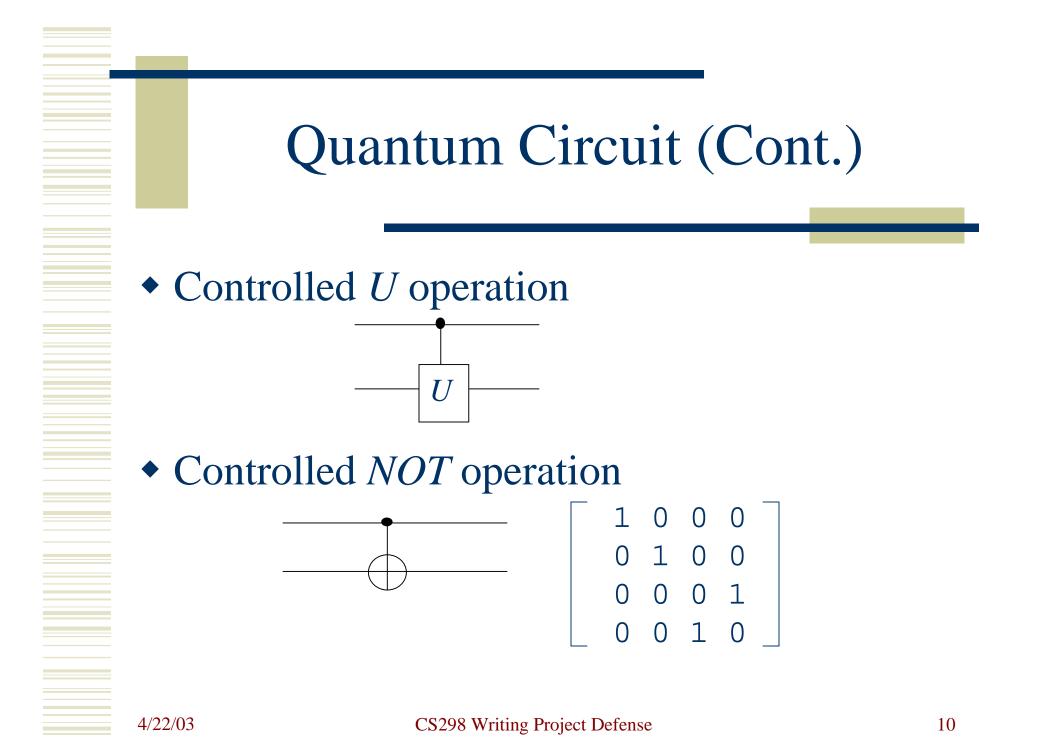
How does Quantum Mechanics work – Composite Systems(2)

 State space of a composite physical system is the tensor product of the state spaces of the component physical systems.

 $|\psi_1\rangle\otimes|\psi_2\rangle\otimes\ldots\otimes|\psi_n\rangle$

4/22/03





Spalek's Algorithm – Quantum Fan-out Operation

Classical fan-out operation:

 $|s\rangle|0\rangle \otimes n \rightarrow |s\rangle \otimes n+1$

• Define a quantum fan-out operation on source qubit $|s\rangle$ and *n* target qubits $|t_k\rangle$ performs:

 $|s\rangle \underset{K=1}{\overset{n}{\otimes}}|t_{k}\rangle \rightarrow |s\rangle \underset{K=1}{\overset{n}{\otimes}}|t_{k} \oplus s\rangle$

Spalek's Algorithm – Parallelization Method

- 1. Apply the fan-out operation on a qubit to copy the state.
- 2. Apply each phase shift on a distinct "copy".
- 3. Apply the fan-out operation again, and clear the ancilla qubits.

Spalek's Algorithm – Quantum Hadamard Transform

• Quantum Fourier Transform (QFT)

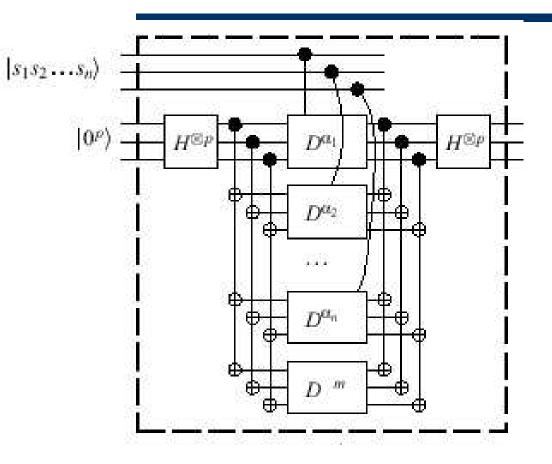
 $y_k \equiv 1/\sqrt{N} \sum_{j=0}^{N-1} e^{2\pi i j k/N} x_i$ transform a set of N complex numbers x_0, \dots, x_{N-1} into a set of complex numbers y_0, \dots, y_{N-1}

- Quantum Hadamard Transform
- A property of the Hadamard Transform: $H_n = H^{\otimes n}$

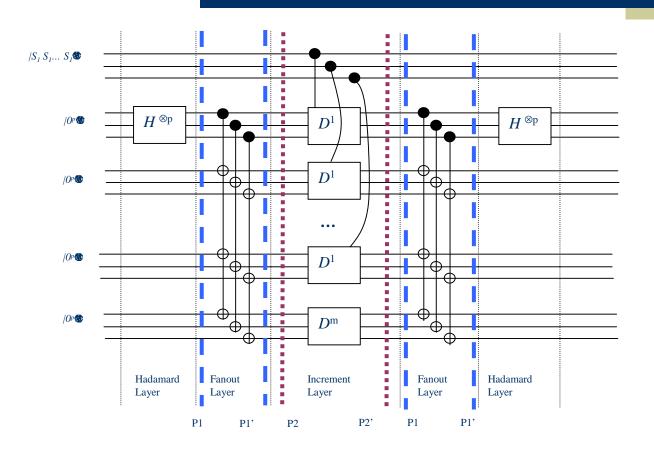
Spalek's Algorithm – Increment Operation

- An increment operation P on n qubits is an operation mapping each computational basis state |x > to |x+1 mod 2ⁿ>
- $D = FPF^{\dagger}$
- $R_z(\theta) = |0\rangle\langle 0| + e^{\theta i}|1\rangle\langle 1|$
- $D_k = R_z(\pi / 2^{n-k}) \otimes D_{k-1}$

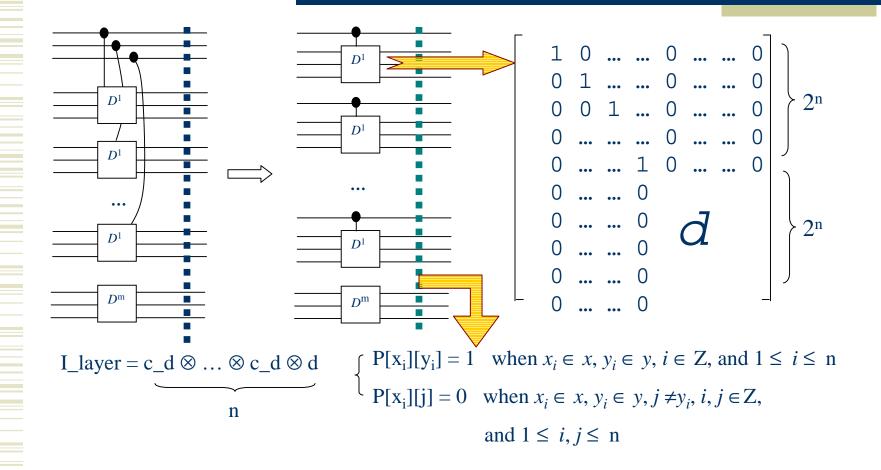
Spalek's Algorithm – Quantum Circuit for Value Gate



Design and Implementation – Matrix Representation



Design and Implementation – Matrix for the Increment Layer



CS298 Writing Project Defense

Design and Implementation – Matrix for the Entire Circuit

 $M = H_layer \cdot P1 \cdot F_layer \cdot P1 \cdot P2'$ $\cdot I_layer \cdot P2 \cdot P1' \cdot F_layer \cdot P1$ $\cdot H_layer$

Design and Implementation – A Naïve Implementation

 Space complexity: O(2 ^{nlogn})

 Time complexity:

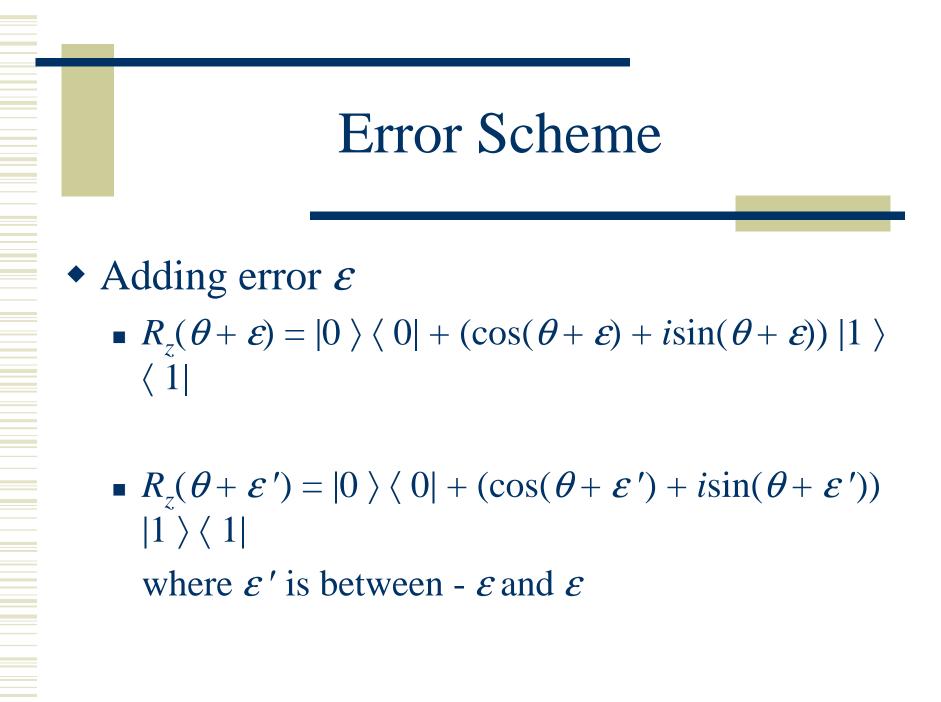
 $O(2^{nlogn})$

Design and Implementation – An Efficient Implementation(1)

- For the result matrix *M*, we are only interested in one element
- In each matrix that represents a layer, there are at most O(n) non-zero elements in each row/column
- Every row/column in any layer matrix can be computed in polynomial time

Design and Implementation – An Efficient Implementation(2)

- Complexity analysis
 - Creating each row: O(n)
 - Finding the $(S \cdot 2^{(n+1) \cdot p})$ 'th element: O(n)
 - Finding all h_x : $O(n^2)$
 - Total: $O(n^2) + O(n) = O(n^2)$



Test Case 1 (1)

- Parameters
 - String: Arbitrary 0/1 string with arbitrary length
 - Threshold:
 - Equals to the number of bits that are 'on'
 - Not equals to the number of bits that are 'on'

Test Case 1 (2)

• Sample results for test case 1

Input string	Threshold value	Error	Output
01110111010000000	7	0	1
01110111010000000	20	0	0
10011000001111	7	0	1
10011000001111	2	0	0
10000111000	4	0	1
10000111000	1	0	0
101	2	0	1
101	1	0	0
1	1	0	1
1	0	0	0

Tests Case 2 (1)

- String: 0/1 string
- Threshold
- Error
- Same Rotation Error: true/false

4/22/03

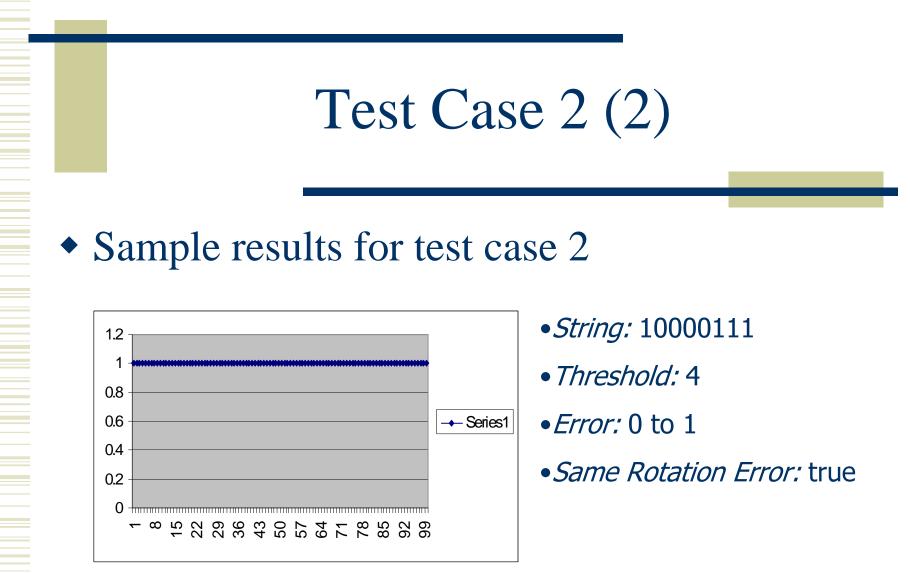


Figure 6-1 Test result for test 2.1

Test Case 2 (3)

• Sample results for test case 2

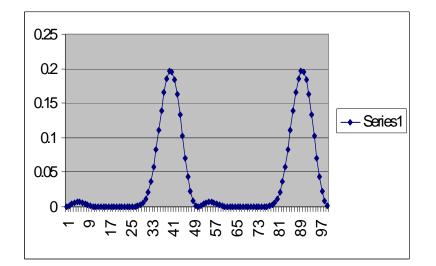


Figure 6- 2 Test result for test 2.2

- String: 10000111
- Threshold: 5
- *Error:* 0 to 12.56663706143 (around 4*PI)
- Same Rotation Error: true

Test Case 2 (4)

• Sample results for test case 2

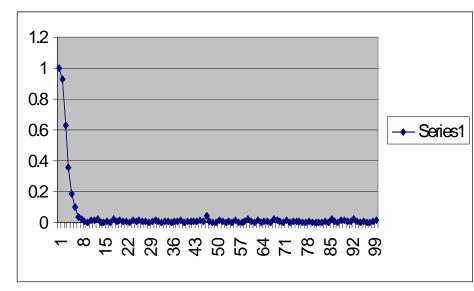


Figure 6-15 Test results on HP workstation

- Threshold: 30
- *Error:* 0 to 1
- *Same Rotation Error:* false

Conclusion

- Uses polynomial space and time
- Supports ways of experiments with error models applied to the rotation operator
- Tests on input up to 50 qubits

Thank You

