
Quantum Value Gate Simulator

by Xin Chen

Advisor: Prof. Chris Pollett

4/22/03 CS298 Writing Project Defense 2

Introduction

� Simulates a quantum circuit that performs the
function of a classical value gate

� Spalek’s Algorithm
� Robert Spalek
� “Quantum Circuits with Unbounded Fan-out” STACS

2003 v2, 2003

� Supports ways of experiments with error models
applied to the base gates

� Uses polynomial space and time

4/22/03 CS298 Writing Project Defense 3

Value Gate

� Value gate:
Tm (a1, a2, …, an) = def [∑ ai = m]

� Threshold gate:
Tm (a1, a2, …, an) = def [∑ ai ≥ m]

� Application of Threshold circuits

i=1

n

i=1

n

4/22/03 CS298 Writing Project Defense 4

How does Quantum Mechanics
work - Qubit

� Qubit
� a qubit is a unit vector in a two-dimensional complex

vector space

� an arbitrary state vector in the state space

|ψ〉 = a|0〉 + b|1〉
where a and b are complex numbers, and |a|2 + |b|2 = 1,
|0〉 and |1〉 are known as computational basis, and form
an orthonormal basis for this vector space

4/22/03 CS298 Writing Project Defense 5

How does Quantum Mechanics
work - Evolution

� Unitary transform

|ψ´〉 = U|ψ〉

where U is a unitary matrix, that is, U†U = I

4/22/03 CS298 Writing Project Defense 6

How does Quantum Mechanics
work - Measurement

� { Mm}

� Immediately before the measurement the
probability that result moccurs is:

p(m) = 〈ψ|Mm
† Mm|ψ〉

� Mm|ψ〉
√〈ψ|Mm

† Mm|ψ〉
� ∑m Mm

† Mm = I

4/22/03 CS298 Writing Project Defense 7

How does Quantum Mechanics
work – Composite Systems(1)

� Tensor Product (Kronecker Product)

The tensor product of two vector spaces V and W, denoted
V⊗W , is a way of creating a new vector spaceanalogous to
multiplication of integers.

a

b

c

d
⊗ =

c

d

c

d

a x

b x

=

ac

ad

bc

bd

4/22/03 CS298 Writing Project Defense 8

How does Quantum Mechanics
work – Composite Systems(2)

� State space of a composite physical system is
the tensor product of the state spaces of the
component physical systems.

|ψ1〉 ⊗ |ψ2〉 ⊗ … ⊗ |ψn〉

4/22/03 CS298 Writing Project Defense 9

Quantum Circuit

� Single qubit operation

1 1
1 -1

H = 1/√2

1 0
0 1

I =

4/22/03 CS298 Writing Project Defense 10

Quantum Circuit (Cont.)

� Controlled U operation

� Controlled NOT operation

U

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

4/22/03 CS298 Writing Project Defense 11

Spalek’s Algorithm –
Quantum Fan-out Operation

� Classical fan-out operation:

|s〉|0〉 ⊗ n � |s〉 ⊗ n+1

� Define a quantum fan-out operation on
source qubit |s〉 and n target qubits |tk〉
performs:

|s〉 ⊗ |tk〉� |s〉 ⊗ |tk⊕s〉
K=1

n

K=1

n

4/22/03 CS298 Writing Project Defense 12

Spalek’s Algorithm –
Parallelization Method

1. Apply the fan-out operation on a qubit to
copy the state.

2. Apply each phase shift on a distinct “copy” .

3. Apply the fan-out operation again, and clear
the ancilla qubits.

4/22/03 CS298 Writing Project Defense 13

Spalek’s Algorithm –
Quantum Hadamard Transform

� Quantum Fourier Transform (QFT)

yk ≡ 1/√N ∑e2πijk/N xi

transform a set of N complex numbers x0 ,…, xN-1
into a set of complex numbers y0 ,…, yN-1

� Quantum Hadamard Transform
� A property of the Hadamard Transform:

Hn = H ⊗ n

j=0

N-1

4/22/03 CS298 Writing Project Defense 14

Spalek’s Algorithm –
Increment Operation

� An increment operation P on n qubits is an
operation mapping each computational basis
state |x 〉 to |x+1 mod 2n 〉

� D = FPF†

� Rz(θ) = |0 〉 〈0| + e θ i|1 〉 〈1
� Dk = Rz(π / 2n-k) ⊗ Dk-1

4/22/03 CS298 Writing Project Defense 15

Spalek’s Algorithm –
Quantum Circuit for Value Gate

4/22/03 CS298 Writing Project Defense 16

Design and Implementation –
Matrix Representation

P1

H ⊗p H ⊗pD1

D1

D1

Dm

|S1 S1… S1

�

…

|0p

�

|0p

�

|0p

�

|0p

�

Hadamard
Layer

Fanout
Layer

Increment
Layer

Fanout
Layer

Hadamard
Layer

P1’ P2 P2’ P1 P1’

4/22/03 CS298 Writing Project Defense 17

Design and Implementation –
Matrix for the Increment Layer

I_layer = c_d ⊗ … ⊗ c_d ⊗ d

n

…

D1

D1

D1

Dm

D1

D1

D1

Dm

…

1 0 … … 0 … … 0
0 1 … … 0 … … 0
0 0 1 … 0 … … 0
0 … … … 0 … … 0
0 … … 1 0 … … 0
0 … … 0
0 … … 0
0 … … 0
0 … … 0
0 … … 0

2n

2nd

P[xi][yi] = 1 when xi ∈ x, yi ∈ y, i ∈ Z, and 1 ≤ i ≤ n

P[xi][j] = 0 when xi ∈ x, yi ∈ y, j ≠yi, i, j ∈Z,

and 1 ≤ i, j ≤ n

4/22/03 CS298 Writing Project Defense 18

Design and Implementation –
Matrix for the Entire Circuit

� M = H_layer ⋅ P1 ⋅ ´F_layer ⋅ P1 ⋅ P2´

⋅ I_layer ⋅ P2 ⋅ P1´ ⋅ F_layer ⋅ P1

⋅ H_layer

4/22/03 CS298 Writing Project Defense 19

Design and Implementation –
A Naïve Implementation

� Space complexity:

O(2 nlogn)

� Time complexity:

O(2 nlogn)

4/22/03 CS298 Writing Project Defense 20

Design and Implementation –
An Efficient Implementation(1)

� For the result matrix M, we are only
interested in one element

� In each matrix that represents a layer, there
are at most O(n) non-zero elements in each
row/column

� Every row/column in any layer matrix can be
computed in polynomial time

4/22/03 CS298 Writing Project Defense 21

Design and Implementation –
An Efficient Implementation(2)

� Complexity analysis
� Creating each row: O(n)

� Finding the (S ⋅ 2(n+1) ⋅ p)’ th element: O(n)

� Finding all hx: O(n2)

� Total: O(n2)+ O(n) = O(n2)

4/22/03 CS298 Writing Project Defense 22

Error Scheme

� Adding error ε
� Rz(θ + ε) = |0 〉 〈 0| + (cos(θ + ε) + isin(θ + ε)) |1 〉
〈 1|

� Rz(θ + ε ′) = |0 〉 〈 0| + (cos(θ + ε ′) + isin(θ + ε ′))
|1 〉 〈 1|

where ε ′ is between - ε and ε

4/22/03 CS298 Writing Project Defense 23

Test Case 1 (1)

� Parameters
� String: Arbitrary 0/1 string with arbitrary length

� Threshold:
� Equals to the number of bits that are ‘on’

� Not equals to the number of bits that are ‘on’

4/22/03 CS298 Writing Project Defense 24

Test Case 1 (2)

� Sample results for test case 1
Input string Threshold

value
Error Output

01110111010000000 7 0 1

01110111010000000 20 0 0

10011000001111 7 0 1

10011000001111 2 0 0

10000111000 4 0 1

10000111000 1 0 0

101 2 0 1

101 1 0 0

1 1 0 1

1 0 0 0

4/22/03 CS298 Writing Project Defense 25

Tests Case 2 (1)

� Parameters
� String: 0/1 string

� Threshold

� Error

� Same Rotation Error: true/false

4/22/03 CS298 Writing Project Defense 26

Test Case 2 (2)

� Sample results for test case 2

0

0.2

0.4

0.6

0.8

1

1.2

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Series1

Figure 6- 1 Test result for test 2.1

•String: 10000111
•Threshold: 4
•Error: 0 to 1
•Same Rotation Error: true

4/22/03 CS298 Writing Project Defense 27

Test Case 2 (3)

� Sample results for test case 2

0

0.05

0.1

0.15

0.2

0.25

1 9 17 25 33 41 49 57 65 73 81 89 97
Series1

Figure 6- 2 Test result for test 2.2

•String: 10000111
•Threshold: 5
•Error: 0 to 12.56663706143
(around 4*PI)
•Same Rotation Error: true

4/22/03 CS298 Writing Project Defense 28

Test Case 2 (4)

� Sample results for test case 2

0

0.2

0.4

0.6

0.8

1

1.2

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Series1

Figure 6-15 Test results on HP workstation

•String:
11111111110000000000
11111111110000000000
1111111111
•Threshold: 30
•Error: 0 to 1
•Same Rotation Error:
false

4/22/03 CS298 Writing Project Defense 29

Conclusion

� Uses polynomial space and time

� Supports ways of experiments with error
models applied to the rotation operator

� Tests on input up to 50 qubits

Thank You

