HOMEWORK 2 EXPERIMENT RESULTS

SJSU Students

. You should keep your testing and training sets separate. Your test set can be
relatively small, say 1000 items.

. In one experiment | want you to vary just the amount of data trained on from say
1000, 5000, 10000, 15000, 20000, while training only for Clubs, and fixing
everything else. What is the effect of the training set size on accuracy of the
trained model?

. The second experiment should compare for the same amount of training data
how accurate an SVM for C, D, H, S will be. Which symbols are the
easiest/hardest to recognize? Why?

. The third experiment should try to vary the tweakable parameters at the top of
suits_generator.py and see the effect of increasing distortion on the training.

. The last experiment should vary ¢ and see the effect of this on the accuracy of

the trained models.

EXPERIMENT 1:

To vary just the amount of data trained on from say 1000, 5000, 10000, 15000, 20000,
while training only for Clubs, and fixing everything else. What is the effect of the training

set size on accuracy of the trained model?

DESCRIPTION:

We have used variable training set sizes from 1000 to 20000. The test set is of size
1000 for every run. The epsilon value is set to 0.01 and the number of update steps is
10000. The model used is clubs and the model file is named clubs_model.txt.

RUNS:
Training Size Test Size Class Final Result
1000 1000 C Correct: 74.2%

False positive:0%
False negative:25.8%




5000 1000 C Correct: 75.1%
False positive:0.0%
False negative:24.9%

10000 1000 C Correct: 75.3%
False positive:0%
False negative:24.7%

15000 1000 C Correct:23.6%
False positive:76.4%
False negative:0%

20000 1000 C Correct:75.3%
False positive:0%
False negative:24.7%

INFERENCE:

The accuracy was around 75% for all the training set sizes but an exception to this trend
was the training set size of 15000. For the 15000 training set, we also found false
positive results which were not found in other experiments. Sometimes increasing the
training size affects the SVM performance negatively and the model may have
undergone overfitting for that particular training set. Increasing the training size did not
seem to have any effect on the accuracy of the model.

EXPERIMENT 2:

To compare for the same amount of training data how accurate an SVM for C, D, H, S
will be. Which symbols are the easiest/hardest to recognize? Why?

DESCRIPTION:

We have used a fixed training set of size 10000 and a test set of size 1000 for every
run. The epsilon value is set to 0.01 and the number of update steps is 10000. We ran
the training program for classes C, D,H and S.

RUNS:
Training Size Test Size Class Final Result
10000 1000 C Correct:74.9%

False positive:0%
False negative:25.1%




10000 1000 D Correct:74.5%
False positive:0 %
False negative:25.5%

10000 1000 H Correct:75.2%
False positive:0%
False negative:24.8%

10000 1000 S Correct:75.4%
False positive:0%
False negative:24.6%

INFERENCE:

The accuracy for all the symbols is roughly around 75% but it is slightly less for
diamonds making it difficult to identify. Spades symbol has shown the highest accuracy
of 75.4% and is the easiest to detect.Diamond is hard to detect because it is a simple
shape and it’s vertex portions resemble the top portion of spades and bottom portions of
hearts. Spade is the easiest to detect, although it is odd since spade does resemble
heart in a way.It might have been easier to tell apart a spade from a heart because we
never inverted any shape in our experiment.

EXPERIMENT 3:

To vary the tweakable parameters at the top of suits_generator.py and see the effect of
increasing distortion on the training.

DESCRIPTION:

The data size used for this experiment is 1000. There are 300 images in the test folder.
The epsilon value is set to 0.01 and the number of update steps is set to 20000. The
model used is clubs_model.txt. We have conducted four different runs with varied
parameters.

RESULTS:
1. For the first case, the tweakable parameters are varied as follows ->
position=1

size=5
thickness = 10



angle_min=-20
angle_max=20
stray_number=2
stray_size=3

These are the initial parameters set. The accuracy obtained is 76%, with 24% of
the data being classified as false negative and 0% as false positive.

. For the second case, the tweakable parameters are varied as follows ->

position=1

size =5
thickness = 10
angle_min=-40
angle_max=40
stray_number=2
stray_size=3

For this case, we have increased the range of the orientation of the symbol from
20 degrees to 40 degrees.The accuracy obtained is 71%, with 29% of the data
being classified as false negative and 0% as false positive.

. For the third case, the tweakable parameters are varied as follows ->

position=1

size =7
thickness = 10
angle_min=-20
angle_max=20
stray_number=3
stray_size=4

For this case, the number and size of stray marks are increased. The size of the
symbol is also increased. The accuracy obtained is 78.34%, with 21.66% of the
data being classified as false negative and 0% as false positive.

. For the last case, the tweakable parameters are varied as follows ->

position=2
size=7



thickness = 15
angle_min=-40
angle_max=40
stray_number=3
stray_size=5

For this case, every parameter is increased by a certain value. The accuracy

obtained is 22.6%, with 77.33% of the data being classified as false negative and
0% as false positive.

INFERENCE:

From the experimental results it can be inferred that, increasing the orientation range
resulted in decreased accuracy of 71%. However, increasing the size of the symbol and
the number and size of the stray marks had a positive impact on the accuracy. It
increased to 78.34%. Increasing all the parameters by some value had a drastic
negative impact on the accuracy of the trained model, as it dropped to 22.6%. Changing
these parameters have both positive and negative effects on the accuracy of the trained
model.

EXPERIMENT 4:
Vary € and see the effect of this on the accuracy of the trained models.

DESCRIPTION:

The data size used for this experiment is 1000. There are 300 images in the test folder.
The number of update steps is set to 20000. The model used is clubs_model.txt. We
have conducted four runs and the epsilon value is varied from 0.01 to 0.8 in different
increments.

RESULTS:

1. For the first case, the epsilon value is set to 0.01. The accuracy obtained is 76%,
with 24% of the data being classified as false negative and 0% as false positive.

2. For the second case, the epsilon value is set to 0.1. The accuracy obtained is
76%, with 24% of the data being classified as false negative and 0% as false
positive.



3. For the third case, the epsilon value is set to 0.5. The accuracy obtained is 76%,
with 24% of the data being classified as false negative and 0% as false positive.

4. For the fourth case, the epsilon value is set to 0.8. The accuracy obtained is
76%, with 24% of the data being classified as false negative and 0% as false
positive.

INFERENCE:

As seen in the experimental results, any change in the epsilon value does not have any
effect on the accuracy of the trained model as it is 76% for every case. Hence, it can be
inferred that changing the epsilon value does not impact the accuracy of the model.





