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Q1. An almost clique is any graph that is the result of deleting one edge from a clique. Prove that the
problem of whether a graph Ghas an almost clique of size ¢is NP-complete.

Let ALMOST-CLIQUE be the language: {{(G) | G is a graph with an almost clique of size t}

Consider an algorithm A({G), (ac)), which:
1. Checks whether (G) is in the form of a graph and (ac) is in the format of a set of t vertices for
this graph. Otherwise, it rejects the inputs.
2. Checks whether (ac) is an almost clique by checking in G whether all except one of the tC;
vertex pairs in (ac) is connected with an edge

Since, (G) represents a set of vertices and edges in the graph, and (ac) represents only a subset of t
vertices in this graph: |[(G)| < [{ac)|.

Since, (G) represents a set of vertices and edges in the graph, the number of edges checked to verify
almost clique will be less than or equal to the total number of edges in the graph. Hence, the
verification will take (O[(G)|) time.

Hence, ALMOST-CLIQUE is the language: {{G) | € {0, 1}*: 3(ac), |[{(ac)| < |[{G)| and A({G), {ac)) = 1}
Therefore, ALMOST-CLIQUE is in NP.
To prove ALMOST-CLIQUE is NP-Hard, we reduce CLIQUE to ALMOST-CLIQUE.

1. Consider a graph G with a clique of size t.

2. Addtwo new vertices to G: v,+1 and vn+2. Connect them to all the other n vertices, but not each
other. Hence, this graph, G’ will contain an almost clique of size t + 2.

3. For G’ to have at + 2 almost clique, there are 3 possibilities:

a. The almost clique contains the two new vertices {Vnt+1, Vas2}. This implies that the
missing edge must be the one between these two vertices, and the remaining vertices
form a t-size clique

b. The almost contains one of the vertices {Vn+1, Vnt2}. This implies that the missing edge
must be inside G, say e = {u, v} € G. If we remove u and vn4+1 then the other t vertices
in G must form a t-size clique.

c. The almost clique does not contain any of the vertices {Vn+1, Vas2}. This implies that G
must contain a t-size clique.



Hence, since CLIQUE is reduced to ALMOST-CLIQUE in polynomial time, and CLIQUE is in NP,
ALMOST-CLIQUE is NP-Hard.

Since ALMOST-CLIQUE is in NP and is also NP-Hard, it is NP Complete.



Q2. Show 0-1-2 integer programming is NP-complete where 0-1-2 integer programming is the
problem: Given a list of mlinear inequalities with rational coefficients over nvariables w, ..., u, (i.e., m
inequalities of the form auy + & w2 + -+ + a,u, < bwhere the a;and bare fraction p/gfor some integers
pand g), decide if there is an assignment of the numbers 0, 1, or 2 to the variables that satisfies all the
inequalities.

We first prove that BinLP (0-1 integer programming) is NP-complete. We then use this result to prove
0-1-2 integer programming is NP-complete.

Let us represent the m linear inequalities in matrix form as:
AU < B, where

A is a m X n matrix of coefficients a; to a, for the m inequalities
U is an n X 1 matrix of variables u; to un

Bis an m X 1 matrix for b in the m inequalities

Hence, witness U will be of length n. With matrix multiplication, we can verify the witness in
polynomial time. Hence, the BinLP is in NP.

Now, we prove BinLP is NP-Hard by reducing 3SAT to BinLP:

Let the variables in the 3SAT formula be x4, X2, ..., Xn. We will have corresponding variables uy, uy, ...,
U, in our BinLP program. First, we constraint each variable to be 0 or 1:

Vi, zi € {0, 1}

Assigning u; = 1 in BinLP is equivalent to setting x; = true in 3SAT; u;= 0 is equivalent to x; = false.
For each clause such as (x1 OR not(xz) OR not(x3)), we introduce the constraint:
w+(1-uw)+A1-uw)<1

To satisfy this inequality we must set at two among uy, Uz, uz as 1, and correspondingly, two among
X1, X2, and x3 as true.

This can be implemented in the above matrix equation by adding a row of 1’s to the bottom of A to
make it a m+1 X n matrix (hence, B becomes an m+1 X 1 matrix).

If the given instance I outputs true for 3SAT then f(I) is true for BinLP. Just take a satisfying
assignment A to the variables x; and set each u; to 0 or 1 accordingly. Since A satisfied at least one
literal in each clause, this means the associated sum is < 1. In the other direction, any solution to the
BinLP must set at least one of the associated literals to 1, since each is an integer 0 or 1.

Hence, 3SAT is reduced to BinLP, proving BinLP to be NP-Hard. Since BinLP is in NP and is NP-Hard,
BinLP is NP-complete.

Now, we prove 0-1-2 integer programming is NP complete using the above results.

0-1-2 integer programming is in NP following the same logic as for BinLP above.



To the above proof, we add the constraint that no individual variable can be greater than 1. This can
be implemented in the matrix equation by appending an n X n identity matrix below A and n 1's
below B.

This proves that any solution to 0-1-2 programming can also be a solution to BinLP. Since, BinLP is
NP-Hard, this makes 0-1-2 programming NP-hard.

Since 0-1-2 programming is in NP and is NP-Hard, it is NP-Complete.



Q3. A neural net gate NM(x, ..., Xo, W, W4, ..., Wy) outputs 1 if wp + Y wix; > 0 and 0 otherwise. Here x;’
are viewed as the inputs and w;” are called weights. We imagine weights are fixed after some training
process. A neural network is a directed acyclic graph where the nodes are labeled with NV gates. The
output of such a network is computed in the natural way by evaluating gates which are immediately
connected to the inputs, followed by gates all of whose inputs now have values, and so on. Define the
neural network understanding (NNU) problem to be given a neural network /N and a setting for its
weights w”, decide if there is a setting of its inputs x” which makes it output 1. Show the NNUproblem
is NP-complete.

NNU is in NP as for a given NN, we can in polynomial time verify that wp + ), wix; > 0 for each node in
the NN.

We reduce CIRCUIT-SAT to NNU to prove the that NNU is NP-Hard.

The intuition for this is that an NN itself can be considered a circuit, as shown in the following
example:

Further, an NN node can be used to simulate an AND gate if we give binary inputs and keep the
weights as 1 for the activation functions (wp + Y, wix; > 0) provided above:




Similarly, an NN node can be used to simulate an OR gate if we keep the weights as 1 and employ the
bias wo with the given activation function, as follows:

Finally, it can also be used to simulate a NOT gate:

Hence, we see that CIRCUIT-SAT can be simulated as an NNU problem with AND, OR, and NOT gates.
Any solution to the NNU problem will yield a solution to CIRCUIT-SAT. Since, each gate in a circuit
can be translated to an NN node, the reduction of CIRCUIT-SAT to NNU can be done polynomially
with respect to the number of nodes. And since CIRCUIT-SAT is NP-Hard, this implies that NNU is also

NP-Hard.

Since, NNU is in NP and is NP-Hard, NNU is NP-Complete.





