CS 255 Homework 1

1. Suppose we have access to a C function with prototype:
bool p random ();

which returns 1 with probability p and 0 with probability 1-p. Writea C
function
int dice random () ;

which is allowed to call the function p_random that returns a number
between 1 to 6 at random each with equal likelihood. dice_random should
be your only source of randomness in your code.

Solution:
int dice_random ()
{
bool a, b;
int bits [3], diceValue;

for (inti=0;i<3;i++) {
a = p_random ();
b =p_random ();

if@+b==1){
bits[i] = a;
}else {

return dice_random ();

¥
¥

diceValue = 4*bits [0] + 2*Dbits [1] + bits [2] + 1;
if (diceValue > 6) {

return dice_random ();
}

return diceValue;

2. Consider the variation of the Hiring problem where we have two employees
rather than one. As we interview candidates, if we find a candidate that is
better than either of our two current employees, we fire the weaker of the
current employees and hire the candidate. Determine how many candidates
we would hire on average in this situation.

Solution:

Let Xibe an indicator random variable which represents if i candidate is
hired.

E[Xi] = Pr (Xi = 1) as Xiis indicator random variable expectation is same as
probability.

Probability of i'" candidate getting hired
So, we can think of this probability in the following method.
If we sort the first i candidates based on their score of best (say descending
order) then i candidate gets hired if he is in either 1%t or 2" position.
So Pr (Xi=1)=(2*@-1)1) /(i)
=2/i

Using Linearity of expectation
E[XL, Xi] =X E[X{]

=2in PrX;j=1)

i=1 !

= 2log(n) + constant (using integral bound)
In average we need to hire O(log(n)) candidates

3. Suppose we toss balls into one of n bins. Assume each bin is equally likely.
Calculate with work the expected number of balls you would need to toss
until there are two bins with at least two balls.

Solution:

Let X represent a random variable for number of ball tosses for at least two
balls in two bins.
Xij represent an indicator random variable for at least two balls in bins
(i, J).
n
X= Xl]
i=1
E[Xi] = Pr (Xij=1)
Probability that we toss a ball in a bin (say bin i) is %

The probability that a bin has at least two balls = 1 — Pr (bin has either 1 or 0
balls)

k -k
Probability that a bin has exactly k balls = (rlr;) (%) (1 — %)m > with m
being the number of balls tossed.

(0=)Y

B ()
21-(1+7)(1-3)
>1 - (1 +%) (1 —%) (assumption n >> m)

Ai= Event that bin i has at least 2 balls
Pr (Ain Aj) = Pr (Ai) nPr(Aj) (since a ball toss to bin i is independent to a
ball tossed to bin j)

So Pr (Xij=1) =Pr (Ain A))
2

. m m?
“nz n?
m4-
"ot
So, we have (rzl)ways to choose two bins from n bins and using linearity of

expectation

The expected number of tosses E[X] = (;)E[Xu]
_ (N m\ 4
=(2) (%)
_m*
~ 2n2

1
The expected number of tosses m = (2n?)3

Programming Assignment — Plot

Explanation for log(N) bits:

We are generating random numbers for assigning IDs to computers. For each round the
random numbers are generated in the range 1 to round®. Using the proof of unique
numbers generation for Permute_By_Sorting, we can say that we have more probability
of getting unique numbers when the range is 1 to n®.

So, we can assure that we generate unique I1Ds with high probability at most at round
n (n — no of computers).

The max ID can be n® and requires log(n®) = 3*log(n) bits.

Bits

Murmnber of Computers

30

25

204

15

108

Mumber of Bits

0
5 5
10 7
20 9
50 10
100 i2
500 18
1000 18
2000 21
5000 23
20000 26
50000 29
100000 3
20k 40k 60k 80k

Number of computers

100k

