
CS 255 Homework 1

1. Suppose we have access to a C function with prototype:
bool p_random ();

which returns 1 with probability p and 0 with probability 1−p. Write a C

function
int dice_random ();

which is allowed to call the function p_random that returns a number

between 1 to 6 at random each with equal likelihood. dice_random should

be your only source of randomness in your code.

Solution:

int dice_random ()

{

bool a, b;

int bits [3], diceValue;

for (int i = 0; i < 3; i++) {

 a = p_random ();

 b = p_random ();

if (a + b == 1) {

 bits[i] = a;

} else {

 return dice_random ();

}

}

 diceValue = 4*bits [0] + 2*bits [1] + bits [2] + 1;

 if (diceValue > 6) {

 return dice_random ();

 }

 return diceValue;

}

2. Consider the variation of the Hiring problem where we have two employees

rather than one. As we interview candidates, if we find a candidate that is

better than either of our two current employees, we fire the weaker of the

current employees and hire the candidate. Determine how many candidates

we would hire on average in this situation.

Solution:

Let Xi be an indicator random variable which represents if ith candidate is

hired.

 E[Xi] = Pr (Xi = 1) as Xi is indicator random variable expectation is same as

probability.

Probability of ith candidate getting hired

So, we can think of this probability in the following method.

If we sort the first i candidates based on their score of best (say descending

order) then ith candidate gets hired if he is in either 1st or 2nd position.

So Pr (Xi = 1) = (2*(i-1)!) / (i!)

= 2/i

 Using Linearity of expectation

 E[∑ Xi
n
i=1] = ∑ E[Xi]

n
i=1

 = ∑ Pn
i=1 r(Xi = 1)

 = ∑
𝟐

𝐢

𝐧

𝐢=𝟏

 = 2log(n) + constant (using integral bound)

 In average we need to hire O(log(n)) candidates

3. Suppose we toss balls into one of n bins. Assume each bin is equally likely.

Calculate with work the expected number of balls you would need to toss

until there are two bins with at least two balls.

Solution:

Let X represent a random variable for number of ball tosses for at least two

balls in two bins.

Xij represent an indicator random variable for at least two balls in bins

(i, j).

 X = ∑ Xij

n

i=1

E[Xij] = Pr (Xij = 1)

Probability that we toss a ball in a bin (say bin i) is
1

n

The probability that a bin has at least two balls = 1 – Pr (bin has either 1 or 0

balls)

Probability that a bin has exactly k balls = (
m
k

) (
1

n
)

k

(1 −
1

n
)

m−k

; with m

being the number of balls tossed.

= 1 - (
m
1

)
1

n
(1 −

1

n
)

m−1

- (
m
0

) (1 −
1

n
)

m

= 1 -
m

n
(1 −

1

n
)

m−1

− (1 −
1

n
)

m

≥ 1 -
m

n
(1 −

1

n
)

m

− (1 −
1

n
)

m

≥ 1 - (1 +
m

n
) (1 −

1

n
)

m

≥ 1 - (1 +
m

n
) (1 −

m

n
) (assumption n >> m)

≥ 1 - (1 −
m2

n2) =
m2

n2

Ai = Event that bin i has at least 2 balls

Pr (Ai ∩ Aj) = Pr (Ai) ∩ Pr(Aj) (since a ball toss to bin i is independent to a

ball tossed to bin j)

So Pr (Xij = 1) = Pr (Ai ∩ Aj)

 =
m2

n2 ∗
m2

n2

 =
m4

n4

So, we have (
n
2

)ways to choose two bins from n bins and using linearity of

expectation

The expected number of tosses E[X] = (
n
2

)E[Xij]

 = (
n
2

) (
m

n
)

4

 =
𝐦𝟒

𝟐𝐧𝟐

The expected number of tosses m = (𝟐𝐧𝟐)
𝟏

𝟑

Programming Assignment – Plot

Explanation for log(N) bits:

We are generating random numbers for assigning IDs to computers. For each round the

random numbers are generated in the range 1 to round3. Using the proof of unique

numbers generation for Permute_By_Sorting, we can say that we have more probability

of getting unique numbers when the range is 1 to n3.

So, we can assure that we generate unique IDs with high probability at most at round

n (n – no of computers).

The max ID can be n3 and requires log(n3) = 3*log(n) bits.

