More NP-completeness

CS255
Chris Pollett
Apr. 26, 2006.

Outline

More on languages
Polynomial-time verification
NP-completeness and Reducibility
Cook’s Theorem

NP-complete problems

More on Languages

We want to connect algorithms with languages.
We say an algorithm A accepts a string x if A run on x outputs 1.
If it outputs O it rejects the string.

We say an algorithm A accepts a language L if the only strings it
accepts are in L.

We say a language is decided by A if A accepts the language and
strings not in the language are rejected.

A complexity class is a set of languages membership in which is
determined by some complexity measure, for instance, runtime.

For example, P is the complexity class of languages decided in
polynomial time.

It is also equivalently formulated as the class of languages accepted in
polynomial time. (Just run polynomially many steps if it hasn’t
accepted yet, reject.)

Polynomial-Time Verification

We now look at algorithms which can verify membership in
languages.

As an example...

Call an undirected graph G hamiltonian if it contains a hamiltonian
cycle; that is, a simple cycle which contain each vertex of G.

Let HAM-CYCLE = {<G> | G 1s a hamiltonian graph}

How might one decide this problem? One could try each possible
permutation of vertices. Let m be the number of vertices of the graph.
Typically, m = €(sqrt(I<G>l)). There are m! many permutations. So
this algorithm would have exponential runtime.

On the other hand, consider the language

H = {<G, P> P is a hamiltonian cycle in G}.

This language has a polynomial time decision algorithm. Further, the
size of P is polynomial in the size of G, so we could rewrite HAM-
CYCLE as:

{<G>13dP, |Pl <Gl and <G, P> &€ H}
H can be viewed as verifying HAM-CYCLE in polynomial time.

The complexity class NP

We are now ready to define the complexity class NP.

We say a language L belongs to NP if there exists a two input
polynomial-time algorithm A and a constant ¢ such that
L={x&€{0,1}": 3y, lyl= O(xl¢) and A(x,y) = 1}

1.e., it is the class of languages that have polynomial time verification
algorithms. So HAM-CYCLE & NP.

It is not hard to see PCNP, but it is unknown if P=NP.

In fact, there is a million dollar prize to anyone who can solve this
problem.

Given a complexity class C, let co-C denote the class of languages
whose complement is in C.

One can see PCNPNco-NP, but it is unknown if equality holds.

Polynomial-Time Reducibility

e There is some evidence to show that P=NP is unlikely.
e Further many problems have been shown to be in NP.

e Soitis useful to be able to classify which NP problem are easy and
which are hard.

e To do this, we say a language L, is polynomial-time reducible to
language L,, written L, <, L, if there exists a polynomial time
computable function f:{0,1}" --> {0,1}" such that for all x € {0,1}",

x €L, iff fix) eL,.

Lemma. If L,, L, are languages such that L, <, L, and L, is in P, then L, is
in P.

Proof. Let A(y) decide L, in time O(p(lyl)). Let f(x) be a O(g(Ixl))-time
reduction from L, to L,. Here p and g are polynomials. Then B(x)
which first computes f(x) then runs A(f(x)), runs in O(p(g(lxl))-time and
decides L,. So B run in polynomial time.

NP-completeness

 The p-time languages in NP are the easy languages.
e In contrast, a language L 1is called NP-complete if

I. Lisin NP, and

2. L'<pLforevery L' in NP.
e A language which satisfies (2) but not necessarily (1) 1s

called NP-hard.

e Let NPC denote the class of NP-complete languages.
Theorem. If any NP-complete language is in P, then P=NP.
Proof. This follows from the lemma on the last slide.

A first NP-complete problem

. Let CIRCUIT-SAT be the language:

{<C>1C1s a AND, OR, NOT circuit computing a 0-1 function which on some
truth assignment to its input variables outputs 1}

Theorem. CIRCUIT-SAT is in NP.

Proof. Consider the algorithm following algorithm A(<C>, <a>). First, A checks
<C> is in the format of a circuit and <a> is in the format for an assignment;
if not, it rejects. A then labels each of the inputs to <C> with their value
according to their values in <a>. Then it loops over the combinational
elements in <C>, until there is no change doing the following:

1. Check if the current element is not assigned a value but its children have
been assigned a value.

2. Calculate the value of the node based on its gate type and its children.

By the ith iteration the nodes of depth i will have values. Each iteration
involves less than quadratic work. So in O((I<C>l)3) this algorithm
labels the root of the circuit with its output value on this assignment.
Finally, CIRCUIT-SAT is the language {<C> & {0,1}" : 3<a>, I<a> < ICl
and A(<C><a>)=1}.

Cook’s Theorem

Theorem. CIRCUIT-SAT is NP-hard.

Proof. Let L be a language in NP, let A(x,y) verify the language in time O(IxI°).
The algorithm A runs on some kind of computational hardware. If that
hardware is in a given configuration c; then its control determines in the next
time step what its next configuration c¢,, ;. We assume that this mapping can
be computed by some AND, OR, NOT circuit M implementing the computer
hardware. Using this circuit M. We build an AND, OR, NOT circuit <C(y)>
which is split into main layers which have the properties.:

1. The output of C at main layer 1 codes, ¢, , a configuration of M at the
start of the computation of A(x,y). Here the values of x are hard-coded
based on the instance x which we are trying to check is in L. y is not
hard-coded and boolean variables are used to represent it.

2. For each i, the output of C at main layer i + 1, corresponds to the
configuration obtained from main layer i by computing according to M.

3. The output of C is the value extracted from the final configuration of A
after O(IxI¢) steps.

Since there are polynomially many main layers each separated by polynomial
sized circuits, this whole circuit will be polynomial size. If there is some

setting of the boolean variables for y which makes the circuit true, then
A(x,y) holds and x will be in L as desired.

NP-completeness Proots

* In general, most NP-completeness proof
will make use of the following lemma:

Lemma. If some NP-complete language

reduces to a language L, then L 1s NP-hard.
It L 1s further in NP then L will be NP-
complete.

Proof. Just compose the reductions.

Some NP-complete Problems

e [et SAT={<F>| <F> 1s a satisfiable boolean
formula}

e [et 3SAT={<F>| <F> 1s a satisfiable CNF

formula where each clause has at most three
literal }.

Theorem. Both SAT and 3SAT are NP-
complete.

