
More NP-completeness

CS255
Chris Pollett

Apr. 26, 2006.

Outline

• More on languages
• Polynomial-time verification
• NP-completeness and Reducibility
• Cook’s Theorem
• NP-complete problems

More on Languages

• We want to connect algorithms with languages.
• We say an algorithm A accepts a string x if A run on x outputs 1.
• If it outputs 0 it rejects the string.
• We say an algorithm A accepts a language L if the only strings it

accepts are in L.
• We say a language is decided by A if A accepts the language and

strings not in the language are rejected.
• A complexity class is a set of languages membership in which is

determined by some complexity measure, for instance, runtime.
• For example, P is the complexity class of languages decided in

polynomial time.
• It is also equivalently formulated as the class of languages accepted in

polynomial time. (Just run polynomially many steps if it hasn’t
accepted yet, reject.)

Polynomial-Time Verification
• We now look at algorithms which can verify membership in

languages.
• As an example…
• Call an undirected graph G hamiltonian if it contains a hamiltonian

cycle; that is, a simple cycle which contain each vertex of G.
• Let HAM-CYCLE = {<G> | G is a hamiltonian graph}
• How might one decide this problem? One could try each possible

permutation of vertices. Let m be the number of vertices of the graph.
Typically, m = Ω(sqrt(|<G>|)). There are m! many permutations. So
this algorithm would have exponential runtime.

• On the other hand, consider the language
H = {<G, P> | P is a hamiltonian cycle in G}.
This language has a polynomial time decision algorithm. Further, the
size of P is polynomial in the size of G, so we could rewrite HAM-
CYCLE as:
{<G> | ∃P, |P| ≤ |G| and <G, P> ∈ Η}

• H can be viewed as verifying HAM-CYCLE in polynomial time.

The complexity class NP

• We are now ready to define the complexity class NP.
• We say a language L belongs to NP if there exists a two input

polynomial-time algorithm A and a constant c such that
L = {x ∈ {0,1}* : ∃y, |y| = O(|x|c) and A(x,y) = 1}

• i.e., it is the class of languages that have polynomial time verification
algorithms. So HAM-CYCLE ∈ NP.

• It is not hard to see P⊆NP, but it is unknown if P=NP.
• In fact, there is a million dollar prize to anyone who can solve this

problem.
• Given a complexity class C, let co-C denote the class of languages

whose complement is in C.
• One can see P⊆NP∩co-NP, but it is unknown if equality holds.

Polynomial-Time Reducibility

• There is some evidence to show that P=NP is unlikely.
• Further many problems have been shown to be in NP.
• So it is useful to be able to classify which NP problem are easy and

which are hard.
• To do this, we say a language L1 is polynomial-time reducible to

language L2, written L1 ≤P L2 if there exists a polynomial time
computable function f:{0,1}* --> {0,1}* such that for all x ∈ {0,1}*,
x ∈ L1 iff f(x) ∈ L2.

Lemma. If L1, L2 are languages such that L1 ≤P L2 and L2 is in P, then L1 is
in P.

Proof. Let A(y) decide L2 in time O(p(|y|)). Let f(x) be a O(q(|x|))-time
reduction from L1 to L2. Here p and q are polynomials. Then B(x)
which first computes f(x) then runs A(f(x)), runs in O(p(q(|x|))-time and
decides L1. So B run in polynomial time.

NP-completeness

• The p-time languages in NP are the easy languages.
• In contrast, a language L is called NP-complete if

1. L is in NP, and
2. L′ ≤P L for every L′ in NP.

• A language which satisfies (2) but not necessarily (1) is
called NP-hard.

• Let NPC denote the class of NP-complete languages.
Theorem. If any NP-complete language is in P, then P=NP.
Proof. This follows from the lemma on the last slide.

A first NP-complete problem
• Let CIRCUIT-SAT be the language:
{<C> | C is a AND, OR, NOT circuit computing a 0-1 function which on some

truth assignment to its input variables outputs 1}
Theorem. CIRCUIT-SAT is in NP.
Proof. Consider the algorithm following algorithm A(<C>, <a>). First, A checks

<C> is in the format of a circuit and <a> is in the format for an assignment;
if not, it rejects. A then labels each of the inputs to <C> with their value
according to their values in <a>. Then it loops over the combinational
elements in <C>, until there is no change doing the following:

1. Check if the current element is not assigned a value but its children have
been assigned a value.

2. Calculate the value of the node based on its gate type and its children.
By the ith iteration the nodes of depth i will have values. Each iteration

involves less than quadratic work. So in O((|<C>|)3) this algorithm
labels the root of the circuit with its output value on this assignment.
Finally, CIRCUIT-SAT is the language {<C> ∈ {0,1}* : ∃<a>, |<a>| ≤ |C|
and A(<C>,<a>) = 1}.

Cook’s Theorem
Theorem. CIRCUIT-SAT is NP-hard.
Proof. Let L be a language in NP, let A(x,y) verify the language in time O(|x|c).

The algorithm A runs on some kind of computational hardware. If that
hardware is in a given configuration ci

 then its control determines in the next
time step what its next configuration ci+1. We assume that this mapping can
be computed by some AND, OR, NOT circuit M implementing the computer
hardware. Using this circuit M. We build an AND, OR, NOT circuit <C(y)>
which is split into main layers which have the properties.:

1. The output of C at main layer 1 codes, c0 , a configuration of M at the
start of the computation of A(x,y). Here the values of x are hard-coded
based on the instance x which we are trying to check is in L. y is not
hard-coded and boolean variables are used to represent it.

2. For each i, the output of C at main layer i + 1, corresponds to the
configuration obtained from main layer i by computing according to M.

3. The output of C is the value extracted from the final configuration of A
after O(|x|c) steps.

Since there are polynomially many main layers each separated by polynomial
sized circuits, this whole circuit will be polynomial size. If there is some
setting of the boolean variables for y which makes the circuit true, then
A(x,y) holds and x will be in L as desired.

NP-completeness Proofs

• In general, most NP-completeness proof
will make use of the following lemma:

Lemma. If some NP-complete language
reduces to a language L, then L is NP-hard.
If L is further in NP then L will be NP-
complete.

Proof. Just compose the reductions.

Some NP-complete Problems

• Let SAT={<F>| <F> is a satisfiable boolean
formula}

• Let 3SAT={<F>| <F> is a satisfiable CNF
formula where each clause has at most three
literal}.

Theorem. Both SAT and 3SAT are NP-
complete.

