
Beginning NP-completeness

CS255
Chris Pollett

Apr. 24, 2006.

Outline

• Finishing up Rabin-Miller Correctness
• Preliminaries for NP-completeness Chapter

Finishing up Error Rate Analysis
of Miller Rabin

• Last Day, we began to show that if n is an odd
composite number, then the number of witnesses
to the compositeness is at least (n-1)/2.

• We did this by first showing any nonwitness must
be in Z*

n and these elements form a subgroup of
Z*

n.
• We then wanted to show that they form a proper

subgroup to give the result.
• The case where there was an x such that

xn-1 ≡ 1 (mod n) was handled last day.
• Suppose for all x in Z*

n , xn-1≡ 1 (mod n).

More Miller-Rabin
• Then n is a Carmichael number.
• First, notice n can’t be a prime power. To see this suppose n = pe.

Since n is odd, p must also be odd, so Z*
n will be cyclic, so has a

generator g and by assumption we have gn-1= 1 mod n. On the other
hand, ord(g) = φ(n) = (p-1)pe-1 and the discrete logarithm theorem
implies n-1 ≡ 0 (mod φ(n)). i.e., (p-1)pe-1 | pe- 1, which is impossible.

• So suppose n is odd, not a prime power and composite. We can then
decompose it as n =n1n2 where n1 and n2 have different prime factors.

• Recall, t and u are defined so that n-1 = 2tu and u is odd.
• Recall Witness computes the sequence

X=<au, a2u, a(2^2)u, .., a(2^t)u> (all mod n)
• Call a pair (v, j) acceptable if v is in Z*

n and v(2^j)u ≡ −1 (mod n).
• For example, v = n-1 and j=0 is acceptable.
• Pick an acceptable pair (v, j) with the largest possible value j ≤ t.
• Can show B = {x ∈ Z*

n | x(2^j)u ≡ ±1 (mod n)} is a subgroup of Z*
n.

Even More Miller Rabin

• Every nonwitness must be a member of B, since the sequence X
produced by a nonwitness must be all 1’s or else have a -1 no later
than the jth position, by the maximality of j.

• We now use the existence of v such that v(2^j)u ≡ −1 (mod n) to show
there exists a w in Z*

n– B.
• Since v(2^j)u ≡ −1 (mod n) we have v(2^j)u ≡ −1 (mod n1).
• So we can find by the Chinese Remainder Theorem a w such that w ≡ v

(mod n1) and w ≡ 1 (mod n2).
• In which case, w(2^j)u ≡ −1 (mod n1) and w(2^j)u ≡ 1 (mod n2).
• So using Chinese Remainder theorem, we get w(2^j)u is not congruent to

±1 (mod n).
• So w is not in B. Nevertheless, one can show its gcd(w, n) =1 using the

Chinese Remainder Theorem together with the fact that v is in Z*
n . So

w is in Z*
n completing the proof.

Introduction to NP-Completeness

• Most algorithms we have studied run in polynomial time
or some randomized variant.

• That is on all inputs of length n, the algorithms we’ve
considered run in time at more O(nk) for some fixed k.

• We’ll start looking today at some problems for which it is
unknown if such efficient algorithms exist.

• First we make formal what it is we mean by polynomial
times, then we’ll consider variant which might be harder.

Abstract Problems

• We need a framework for describing problems and reasoning about
their runtimes.

• We define an abstract problem Q to consist of a set of instances I
and a set of solutions S.

• For example, for SHORTEST-PATH the instances might be triples
consisting of graph and two vertices. A solution might be a sequence
of vertices for a path between those two points in the graph of shortest
distance.

• We will be interested in a subclass of problems called decision
problems, where the answers are always yes or no.

• For example, does there exists a shortest path of size at most k?
• It is usually straightforward to binary search from a way to solve the

decision problem to solve the associated optimization problem.
• Here optimization problems are where we want to find a largest or

smallest value.

Encodings

• An encoding of a set S of abstract object is a mapping from S to binary strings.
• For example one can encode the natural numbers {0, 1, 2, ..} as strings {0, 1,

10,..}.
• One can encode legal English sentences using ASCII, etc.
• A computer algorithm “solves” some abstract decision problem by going from

an encoding of a problem instance as an input to 0 or 1 as output.
• We call a problem whose instance set is the set of binary strings a concrete

problem.
• We say an algorithm solve the problem in O(T(n)) time if when provided a

problem instance i of length n = |i|, the algorithm can produce the solution
using O(T(n)) steps.

• A concrete problem is called polynomial time decidable if there is an
algorithm that solves it which runs in time O(nk) for some fixed k.

• We write P for the class of all such decision problems.
• Similarly, we can define the class of polynomial computed functions f:{0,1}*--

>{0,1}*.

Formal Languages

• In order to study decision problems its useful to
have an understanding of formal languages.

• An alphabet ∑ is a finite set of symbols.
• A language is a set of strings over the symbols in

an alphabet.
• Some common ways to create new languages from

old ones is via unions, concatenation, and star.

NP Languages

