Beginning NP-completeness

CS255
Chris Pollett
Apr. 24, 2006.

Outline

- Finishing up Rabin-Miller Correctness
- Preliminaries for NP-completeness Chapter

Finishing up Error Rate Analysis of Miller Rabin

- Last Day, we began to show that if n is an odd composite number, then the number of witnesses to the compositeness is at least $(n-1) / 2$.
- We did this by first showing any nonwitness must be in $\mathbf{Z}_{\mathrm{n}}^{*}$ and these elements form a subgroup of $\mathbf{Z}_{\mathrm{n}}{ }^{\text {. }}$
- We then wanted to show that they form a proper subgroup to give the result.
- The case where there was an x such that $x^{n-1} \equiv 1(\bmod n)$ was handled last day.
- Suppose for all x in $\mathbf{Z}_{\mathrm{n}}^{*}, x^{n-1} \equiv 1(\bmod n)$.

More Miller-Rabin

- Then n is a Carmichael number.
- First, notice n can't be a prime power. To see this suppose $n=p^{e}$. Since n is odd, p must also be odd, so \mathbf{Z}^{*} will be cyclic, so has a generator g and by assumption we have $g^{n-1}=1 \bmod n$. On the other hand, $\operatorname{ord}(g)=\phi(n)=(p-1) p^{e-1}$ and the discrete logarithm theorem implies $n-1 \equiv 0(\bmod \phi(n))$. i.e., $(p-1) p^{e-1} \mid p^{e}-1$, which is impossible.
- So suppose n is odd, not a prime power and composite. We can then decompose it as $n=n_{1} n_{2}$ where n_{1} and n_{2} have different prime factors.
- Recall, t and u are defined so that $n-1=2^{t} u$ and u is odd.
- Recall Witness computes the sequence $\mathrm{X}=<a^{u}, a^{2 u}, \mathrm{a}^{\left(2^{\wedge} 2\right) u}, . ., a^{\left(2^{\wedge} t\right)}>($ all $\bmod n)$
- Call a pair (v, j) acceptable if v is in $\mathbf{Z}_{\mathrm{n}}^{*}$ and $v^{\left(2^{\wedge} j\right) u} \equiv-1(\bmod n)$.
- For example, $v=n-1$ and $j=0$ is acceptable.
- Pick an acceptable pair (v, j) with the largest possible value $j \leq t$.
- Can show $B=\left\{x \in \mathbf{Z}_{\mathrm{n}}^{*} \mid x^{\left(2^{\wedge}\right) u} \equiv \pm 1(\bmod n)\right\}$ is a subgroup of $\mathbf{Z}_{\mathrm{n}}^{*}$.

Even More Miller Rabin

- Every nonwitness must be a member of B, since the sequence X produced by a nonwitness must be all 1 's or else have a -1 no later than the j th position, by the maximality of j.
- We now use the existence of v such that $v^{(2 \wedge j) u} \equiv-1(\bmod n)$ to show there exists a w in $\mathbf{Z}_{\mathrm{n}}^{*}-\mathrm{B}$.
- Since $v^{\left(2^{\wedge} j\right) u} \equiv-1(\bmod n)$ we have $v^{\left(2^{\wedge} j\right) u} \equiv-1\left(\bmod n_{l}\right)$.
- So we can find by the Chinese Remainder Theorem a w such that $w \equiv v$ $\left(\bmod n_{1}\right)$ and $w \equiv 1\left(\bmod n_{2}\right)$.
- In which case, $w^{\left(2^{\wedge} j\right) u} \equiv-1\left(\bmod n_{l}\right)$ and $w^{\left(2^{\wedge} j\right) u} \equiv 1\left(\bmod n_{2}\right)$.
- So using Chinese Remainder theorem, we get $w^{\left(2^{\wedge}\right) u}$ is not congruent to $\pm 1(\bmod n)$.
- So w is not in B. Nevertheless, one can show its $\operatorname{gcd}(w, n)=1$ using the Chinese Remainder Theorem together with the fact that v is in $\mathbf{Z}_{\mathrm{n}}^{*}$. So w is in $\mathbf{Z}_{\mathrm{n}}^{*}$ completing the proof.

Introduction to NP-Completeness

- Most algorithms we have studied run in polynomial time or some randomized variant.
- That is on all inputs of length n, the algorithms we've considered run in time at more $\mathrm{O}\left(n^{k}\right)$ for some fixed k.
- We'll start looking today at some problems for which it is unknown if such efficient algorithms exist.
- First we make formal what it is we mean by polynomial times, then we'll consider variant which might be harder.

Abstract Problems

- We need a framework for describing problems and reasoning about their runtimes.
- We define an abstract problem Q to consist of a set of instances I and a set of solutions S.
- For example, for SHORTEST-PATH the instances might be triples consisting of graph and two vertices. A solution might be a sequence of vertices for a path between those two points in the graph of shortest distance.
- We will be interested in a subclass of problems called decision problems, where the answers are always yes or no.
- For example, does there exists a shortest path of size at most k ?
- It is usually straightforward to binary search from a way to solve the decision problem to solve the associated optimization problem.
- Here optimization problems are where we want to find a largest or smallest value.

Encodings

- An encoding of a set S of abstract object is a mapping from S to binary strings.
- For example one can encode the natural numbers $\{0,1,2, .$.$\} as strings \{0,1$, 10,..\}.
- One can encode legal English sentences using ASCII, etc.
- A computer algorithm "solves" some abstract decision problem by going from an encoding of a problem instance as an input to 0 or 1 as output.
- We call a problem whose instance set is the set of binary strings a concrete problem.
- We say an algorithm solve the problem in $O(T(n))$ time if when provided a problem instance i of length $n=|i|$, the algorithm can produce the solution using $O(T(n))$ steps.
- A concrete problem is called polynomial time decidable if there is an algorithm that solves it which runs in time $O\left(n^{k}\right)$ for some fixed k.
- We write \mathbf{P} for the class of all such decision problems.
- Similarly, we can define the class of polynomial computed functions f: $\{0,1\}^{*}$-$>\{0,1\}^{*}$.

Formal Languages

- In order to study decision problems its useful to have an understanding of formal languages.
- An alphabet \sum is a finite set of symbols.
- A language is a set of strings over the symbols in an alphabet.
- Some common ways to create new languages from old ones is via unions, concatenation, and star.

NP Languages

