Beginning NP-completeness

CS255
Chris Pollett
Apr. 24, 2006.

Outline

e Finishing up Rabin-Miller Correctness

e Preliminaries for NP-completeness Chapter

Finishing up Error Rate Analysis
of Miller Rabin

e Last Day, we began to show that if n 1s an odd
composite number, then the number of witnesses
to the compositeness 1s at least (n-1)/2.

 We did this by first showing any nonwitness must
be in Z*_ and these elements form a subgroup of

/AN

We then wanted to show that they form a proper
subgroup to give the result.

The case where there was an x such that

x1£ 1 (mod n) was handled last day.

Suppose for all x in Z~*_ , x!'= 1 (mod n).

More Miller-Rabin

Then n 1s a Carmichael number.

First, notice n can’t be a prime power. To see this suppose n = p©.
Since n is odd, p must also be odd, so Z*_ will be cyclic, so has a
generator g and by assumption we have g”!'= 1 mod n. On the other
hand, ord(g) = ¢(n) = (p-1)p¢! and the discrete logarithm theorem
implies n-1 = 0 (mod ¢(n)). i.e., (p-1)p'| p¢- 1, which is impossible.

So suppose n 1s odd, not a prime power and composite. We can then
decompose it as n =n,;n, where n, and n, have different prime factors.
Recall, r and u are defined so that n-1 = 2y and u 1s odd.

Recall Witness computes the sequence
X=<a", a*, a®"u . a?"""> (all mod n)

Call a pair (v, j) acceptable if v is in Z* and v®V* = -1 (mod n).
For example, v = n-1 and j=0 is acceptable.

Pick an acceptable pair (v, j) with the largest possible value j < t.
Can show B={x &€ Z" | x?"" = +1 (mod n)} is a subgroup of Z" .

Even More Miller Rabin

Every nonwitness must be a member of B, since the sequence X
produced by a nonwitness must be all 1’s or else have a -1 no later
than the jth position, by the maximality of .

We now use the existence of v such that v®* = -1 (mod n) to show
there exists a w in Z* — B.

Since v®V* = -1 (mod n) we have v = -1 (mod n,).

So we can find by the Chinese Remainder Theorem a w such that w = v
(mod n,) and w = 1 (mod n,).

In which case, w®V* = -1 (mod n,) and w?" = 1 (mod n,).

So using Chinese Remainder theorem, we get w*"“ is not congruent to
+1 (mod n).

So w is not in B. Nevertheless, one can show its gcd(w, n) =1 using the
Chinese Remainder Theorem together with the fact that v is in Z* . So
w is in Z*_ completing the proof.

Introduction to NP-Completeness

Most algorithms we have studied run in polynomial time
or some randomized variant.

That 1s on all inputs of length n, the algorithms we’ve
considered run in time at more O(n¥) for some fixed k.

We’ll start looking today at some problems for which it 1s
unknown if such efficient algorithms exist.

First we make formal what it is we mean by polynomial
times, then we’ll consider variant which might be harder.

Abstract Problems

We need a framework for describing problems and reasoning about
their runtimes.

We define an abstract problem Q to consist of a set of instances /
and a set of solutions S.

For example, for SHORTEST-PATH the instances might be triples
consisting of graph and two vertices. A solution might be a sequence
of vertices for a path between those two points in the graph of shortest
distance.

We will be interested in a subclass of problems called decision
problems, where the answers are always yes or no.

For example, does there exists a shortest path of size at most k?

It is usually straightforward to binary search from a way to solve the
decision problem to solve the associated optimization problem.

Here optimization problems are where we want to find a largest or
smallest value.

Encodings

An encoding of a set S of abstract object is a mapping from S to binary strings.

For example one can encode the natural numbers {0, 1, 2, ..} as strings {0, 1,
10,..}.

One can encode legal English sentences using ASCII, etc.

A computer algorithm “solves” some abstract decision problem by going from
an encoding of a problem instance as an input to O or 1 as output.

We call a problem whose instance set is the set of binary strings a concrete
problem.

We say an algorithm solve the problem in O(7T(n)) time if when provided a
problem instance i of length n = lil, the algorithm can produce the solution
using O(T(n)) steps.

A concrete problem is called polynomial time decidable if there is an
algorithm that solves it which runs in time O(n¥) for some fixed k.

We write P for the class of all such decision problems.

Similarly, we can define the class of polynomial computed functions f:{0,1}"--
>{0,1}".

Formal Languages

In order to study decision problems its useful to
have an understanding of formal languages.

An alphabet Y is a finite set of symbols.

A language 1s a set of strings over the symbols 1n
an alphabet.

Some common ways to create new languages from
old ones 1s via unions, concatenation, and star.

NP Languages

