Number Theoretic Algorithms

CS255
Chris Pollett
Mar. 22, 2006.

Outline

- Introduction
- Elementary Number Theory Concepts

Introduction

- Number Theory plays an important role in many cryptographic algorithms used to securely communicate over the web.
- Our goal over the next couple of weeks is to look at some of these algorithms.
- In order to do that we will need to review/ learn for the first time some number theory.
- Throughout we will be interested in large integers. This means integers which cannot be stored in one, two, or even constantly many memory locations.
- So we will be interested in the time complexity of even simple operations like,$+ *$ as a function of the number of bits in the input.
- We will assume that any operation our computer does acts on a constant number of bits at a time, say $32,64,128$, or 256 bits.
- For example, to add two n-bit numbers takes $O(n)$ of such operations. To multiply two n bit numbers take $\mathrm{O}\left(\mathrm{n}^{2}\right)$ operations using the grade school algorithm.

Elementary Number Theory Concepts

- $\mathbf{Z}=$ integers $=\{. .,-2,-1,0,1,2 \ldots\}$
- $\mathbf{N}=$ natural numbers $=\{0,1,2, .$.
- We write $\mathrm{d} \mid$ a to mean divides a . That is, there is some integer c , such that $\mathrm{cd}=\mathrm{a}$.
- Notice every integer divides 0 and if $a>0$, if $\mathrm{d} \mid$ a then $|\mathrm{al}>=| \mathrm{dl}$.
- We might also say a is a multiple of d or d is a divisor of a.
- If d la does not hold, then we write $d \not \backslash a$

More Number Concepts

- A prime number is a number which is divisible by only 1 and itself. $2,3,5,7,11, \ldots$
- The number 1 is called a unit since $1^{*} a=a * 1=a$ for any a.
- Other non-primes are called composite numbers.
- The division theorem says: For any integer a and any positive integer n , there are unique numbers q and $0<=\mathrm{r}<\mathrm{n}$ such that $\mathrm{a}=\mathrm{qn}+\mathrm{r}$.
- We $q=\lfloor a / n\rfloor$ the the quotient and r the remainder or residue of the division.
- We write $[\mathrm{a}]_{\mathrm{n}}$ for $\{\mathrm{a}+\mathrm{kn}: \mathrm{k}$ is in $\mathbf{Z}\}$, the equivalence class of a mod n . For example $[-3]_{7}=\{. .-10,-3,4,11 .$.$\} .$
- We $\mathbf{Z}_{n}=\left\{[a]_{\mathrm{n}}: 0<=\mathrm{a}<=\mathrm{a}-1\right\}$. Notice this is a field where + and $*$ come from the integers.

Greatest Common Divisor

- If d la and d lb then d is a common divisor of a and b .
- Notice if d is a common divisor of a and b, then $\mathrm{dl}(\mathrm{a}+\mathrm{b})$ and $\mathrm{dl}(\mathrm{a}-\mathrm{b})$ and more generally $\mathrm{dl}(\mathrm{ax}+\mathrm{by})$
- The largest common divisor of a and b is called the greatest common divisor of a and b and is denoted $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$. ex: $\operatorname{gcd}(250,150)=50$
- Notice $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a}) ; \operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(-\mathrm{a}, \mathrm{b})$; $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(|\mathrm{al}, \mathrm{lb}|) ; \operatorname{gcd}(\mathrm{a}, 0)=\operatorname{lal} ;$ and $\operatorname{gcd}(a, k a)=\mid a l$.

Some simple theorems

Theorem If a and b are integers, not both zero, then $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ is the smallest positive element of the set $\{a x+$ by :x,y in $\mathbf{Z}\}$.
Proof Let s be the smallest positive linear combination of a and b, and let $s=a x+b y$ for some x, y. Let $q=\lfloor a / s\rfloor$. Then
$a \bmod s=a-q s$

$$
\begin{aligned}
& =a-q(a x+b y) \\
& =a(1-q x)+b(-q y),
\end{aligned}
$$

and so a mod s is a linear combination of a and b as well. But since $0<=\mathrm{a}$ $\bmod \mathrm{s}<=\mathrm{s}$, we have $\bmod \mathrm{s}=0$, because s was supposed to be the smallest positve such linear combination. Therefore s l a and by similar reasoning slb . So $\operatorname{gcd}(\mathrm{a}, \mathrm{b})>=\mathrm{s}$. As $\operatorname{gcd}(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}$ and $\operatorname{gcd}(\mathrm{a}, \mathrm{b}) \mid \mathrm{b}$, by the last slide we know $\operatorname{gcd}(\mathrm{a}, \mathrm{b}) \mid \mathrm{s} . \operatorname{So} \operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{s}$.
Corollary For any a and b, if dla and dlb, then $\mathrm{d} \mid \operatorname{gcd}(\mathrm{a}, \mathrm{b})$
Corollary For all integers a and b and any integer $n, \operatorname{gcd}(a n, b n)=n \operatorname{gcd}(a, b)$.
Corollary For all positive integers n, a, and b if nlab and $\operatorname{gcd}(a, n)=1$ then $n l b$.

