
Byzantine Agreement

CS255
Chris Pollett

Mar. 20, 2006.

Outline

• Byzantine Agreement Problem

Byzantine Agreement Problem

• Similar to Choice Coordination Problem.
• We want to agree on one of two possible values

(say, heads or tails [0,1]).
• We have n processors t of which may be faulty.
• We require that the decision reached by a

protocol should have:
1. All good processors finish with the same decision.
2. If all the good processors begin with the same value

v, then they should all finish with same value v.

More on the set up of the
Byzantine Problem

• The set of faulty processors is fixed before the computation begins.
• The good processors do not know which processors are faulty.
• During a round, each processor may send one message to each other

processor.
• Each processor receives a vote from each of the remaining processors,

before the following round begins.
• A processor is allowed to send different messages to different

processors.
• Good processors will be assumed to follow our algorithm exactly.
• It is known any deterministic algorithm for this problem needs at least

t+1 rounds.
• We will present a randomized algorithm with O(1) expected runtime.

Some More Remarks before we
Begin

• Last day, our solution to the choice coordination problem was only for two
processors choosing between two values.

• Neither of these processors was faulty.
• The algorithm we present today works for n processors choosing between two

values, so is already more general, ignoring the allowance for faulty
processors.

• The original choice coordination problem was for n processors to choose
among m choices.

• Notice by repeating the Byzantine procedure log2 m times we can have our
processors agree on a first bit of the number between 1 to m, then a second bit
of the number between 1 to m, etc.

• If each such single bit agreement can be done in constant time as a function of
n. Then, agreeing on a number between 1 and m can be done in O(log m) time.
Notice this does not depend on the number of processors.

Randomized Algorithm for
Byzantine Agreement

• We will assume that at the start of each round a
trusted third party flips a fair coin.

• Any of the processors have access to this coin.
• We will assume that the number of faulty

processors is a number t < n/8.
• Each round a good processor sends the same vote

to all the other processors.
• A faulty processor may send arbitrary or even

inconsistent votes to each other processor.
• Let L = (5n/8) +1, H = (3n/4) + 1, and G= 7n/8.

What the ith Processor does
during a round (if it is good).

Input: A value for bi.
Output: A decision di.
1. vote = bi.
2. For each round, do

3. Broadcast vote;
4. Receive votes from all the other processors.
5. Set maj = majority (0 or 1) value among the votes cast
6. Set tally = the number of votes that maj received.
7. if coin = heads then set threshold = L; else set threshold = H
8. if tally >= treshold then set vote = maj; else vote = 0
9. if tally >= G then set di=maj permanently.

Analysis
• First, if all processors begin the round with the same vote, then 9 will apply

and so this value will be the value eventually settled upon.
• Suppose the processors begin the round with different values for the vote.
• If two processors compute different values for maj in step 5, then tally does

not exceed threshold regardless of whether L or H was chosen as threshold. So
all good processors would set their votes to 0 and an agreement would be
reached.

• We say a faulty processor foils a threshold x in {L,H} in a round if, by sending
different messages to the good processors, they cause tally to exceed x for at
least one good processor, an to be no more than x for at least one good
processor.

• Since the difference between the two possible thresholds is at least t, the faulty
processor can foil at most one threshold in a round.

• Since the threshold is chosen with equal probability from {L,H}, it is foiled
with probability at most 1/2.

• Thus, the expected number of rounds before we have an unfoiled threshold is
at most 2. If the threshold is not foiled then all good processors compute the
same value v in step 8.

