Byzantine Agreement

CS255

Chris Pollett
Mar. 20, 2006.

Outline

- Byzantine Agreement Problem

Byzantine Agreement Problem

- Similar to Choice Coordination Problem.
- We want to agree on one of two possible values (say, heads or tails $[0,1]$).
- We have n processors t of which may be faulty.
- We require that the decision reached by a protocol should have:

1. All good processors finish with the same decision.
2. If all the good processors begin with the same value v , then they should all finish with same value v .

More on the set up of the Byzantine Problem

- The set of faulty processors is fixed before the computation begins.
- The good processors do not know which processors are faulty.
- During a round, each processor may send one message to each other processor.
- Each processor receives a vote from each of the remaining processors, before the following round begins.
- A processor is allowed to send different messages to different processors.
- Good processors will be assumed to follow our algorithm exactly.
- It is known any deterministic algorithm for this problem needs at least $\mathrm{t}+1$ rounds.
- We will present a randomized algorithm with $\mathrm{O}(1)$ expected runtime.

Some More Remarks before we Begin

- Last day, our solution to the choice coordination problem was only for two processors choosing between two values.
- Neither of these processors was faulty.
- The algorithm we present today works for n processors choosing between two values, so is already more general, ignoring the allowance for faulty processors.
- The original choice coordination problem was for n processors to choose among m choices.
- Notice by repeating the Byzantine procedure $\log _{2} \mathrm{~m}$ times we can have our processors agree on a first bit of the number between 1 to m , then a second bit of the number between 1 to m , etc.
- If each such single bit agreement can be done in constant time as a function of n . Then, agreeing on a number between 1 and m can be done in $\mathrm{O}(\log \mathrm{m})$ time. Notice this does not depend on the number of processors.

Randomized Algorithm for Byzantine Agreement

- We will assume that at the start of each round a trusted third party flips a fair coin.
- Any of the processors have access to this coin.
- We will assume that the number of faulty processors is a number $\mathrm{t}<\mathrm{n} / 8$.
- Each round a good processor sends the same vote to all the other processors.
- A faulty processor may send arbitrary or even inconsistent votes to each other processor.
- Let $\mathrm{L}=(5 \mathrm{n} / 8)+1, \mathrm{H}=(3 \mathrm{n} / 4)+1$, and $\mathrm{G}=7 \mathrm{n} / 8$.

What the i th Processor does during a round (if it is good).

Input: A value for b_{i}.
Output: A decision d_{i}.

1. \quad vote $=b_{i}$.
2. For each round, do
3. Broadcast vote;
4. Receive votes from all the other processors.
5. Set maj $=$ majority $(0$ or 1$)$ value among the votes cast
6. Set tally $=$ the number of votes that maj received.
7. \quad if coin $=$ heads then set threshold $=\mathrm{L}$; else set threshold $=\mathrm{H}$
8. if tally $>=$ treshold then set vote $=$ maj; else vote $=0$
9. if tally $>=G$ then set $d_{i}=$ maj permanently.

Analysis

- First, if all processors begin the round with the same vote, then 9 will apply and so this value will be the value eventually settled upon.
- Suppose the processors begin the round with different values for the vote.
- If two processors compute different values for maj in step 5, then tally does not exceed threshold regardless of whether L or H was chosen as threshold. So all good processors would set their votes to 0 and an agreement would be reached.
- We say a faulty processor foils a threshold x in $\{L, H\}$ in a round if, by sending different messages to the good processors, they cause tally to exceed x for at least one good processor, an to be no more than x for at least one good processor.
- Since the difference between the two possible thresholds is at least t , the faulty processor can foil at most one threshold in a round.
- Since the threshold is chosen with equal probability from $\{\mathrm{L}, \mathrm{H}\}$, it is foiled with probability at most $1 / 2$.
- Thus, the expected number of rounds before we have an unfoiled threshold is at most 2. If the threshold is not foiled then all good processors compute the same value v in step 8 .

