RSA and Primes

CS255
Chris Pollett
Apr. 19, 2006.

Outline

- Modular Exponentiation
- The RSA Public-key Cryptosystem

Powers of an Element

- Two useful theorems which are corollaries of earlier results:
Theorem. For any integer $\mathrm{n}>1$, $a^{\phi(n)} \equiv 1(\bmod n)$ for all a in $\mathbf{Z}_{\mathrm{n}}{ }^{*}$.
Theorem. If p is primes, then $a^{p-1} \equiv 1(\bmod p)$ for all a in $\mathbf{Z}_{\mathrm{n}}{ }^{*}$.
- The next theorem tells us the values of n for which $\mathbf{Z}_{\mathrm{n}}{ }^{*}$ is cyclic.
Theorem (\#). The values of $\mathrm{n}>1$ for which $\mathbf{Z}_{\mathrm{n}}{ }^{*}$ is cyclic (that is, generated by one element) are $2,4, p^{e}$, and $2 p^{e}$, for all primes $p>2$ and all positive integers e.

More Powers of an Element

- g is a primitive root or generator of $\mathbf{Z}_{\mathrm{n}}{ }^{*}$ if $\langle\mathrm{g}\rangle=\mathbf{Z}_{\mathrm{n}}{ }^{*}$.
- If g is a primitive root then the equation $g^{x} \equiv a \bmod n$ has a solution called the discrete logarithm or index of $a \bmod n$, which we write as $\operatorname{ind}_{n, g}(a)$.
- The next theorem concerns the discrete logarithm problem which is connected to factoring which is the basis of RSA.
Theorem (\#\#). If g is a primitive root of $\mathbf{Z}_{\mathrm{n}}{ }^{*}$, then the equation $g^{x} \equiv g^{y}$ $(\bmod n)$ holds if and only if the equation $x \equiv y(\bmod \phi(n))$ holds.
Proof. Suppose $x \equiv y(\bmod \phi(n))$ holds. Then $x=y+k \phi(n)$ for some k. So $g^{x} \equiv g^{y+k \phi(n)} \equiv g^{y} \mathrm{~g}^{k \phi(n)} \equiv g^{y} 1^{k} \equiv g^{y}(\bmod n)$ Conversely, suppose $g^{x} \equiv g^{y}(\bmod n)$ holds. Since g is a generator, $|<g\rangle \mid=\phi(n)$. So we know g is periodic with period $\phi(n)$. Therefore, if $g^{x} \equiv g^{y}(\bmod n)$ we must have $x \equiv y(\bmod \phi(n))$.

Square Roots

Theorem. If p is an odd prime, and $e \geq 1$, then the equation $x^{2} \equiv 1\left(\bmod p^{e}\right)$
has only two solutions, $x=1$ and $x=-1$.
Proof. Let $n=p^{e}$. Theorem (\#) implies $\mathbf{Z}_{\mathrm{n}}{ }^{*}$ has a generator g. So the above equation can be rewritten as $\left(g^{i n d(x)}\right)^{2} \equiv g^{\text {ind }(1)}(\bmod n)$. Note $\operatorname{ind}(1)=0$, so Theorem (\#\#) implies this is equation is equivalent to $2 \cdot \operatorname{ind}(x) \equiv 0$ $(\bmod \phi(n))$, a modular linear equation we can solve. We know $\phi(n)=$ $p^{e}(1-1 / p)=(p-1) p^{e-1}$. If d is $\operatorname{gcd}(2, \phi(n))$, then $d=2$ (as if p is odd divides $p-1$) and $d \mid 0$, we know this equation has 2 solutions, which we can compute using our algorithm or by inspection as 1 and -1 .

- A number x is a nontrivial square root of 1 , modulo n, if it is a square root but not equivalent to $\pm 1 \bmod n$. For example $6 \bmod 35$.
Corollary. If there exists a nontrivial square root of 1 , modulo n, then n is composite.

Modular Exponentiation

- We next give an algorithm based on repeated squaring to compute a^{b} $\bmod n$ where a and b are nonnegative integers and $\mathrm{n}>0$.
- We assume the number are written in binary and we use a subscript to denote the i th bit of a number. For example, b_{i} for the i th bit of b.
Modular-Exponentiation (a, b, n)

1. $d=1$
2. for $i=k$ downto 0
3. $\quad d=(d \cdot d) \bmod n$
4. if $b_{i}=1$ then $\{d=(d \cdot a) \bmod n\}$
5. return d

Public Key Cryptosystems

- We now apply what we've learned to public key cryptography.
- In public key cryptography, we have two participants Alice and Bob (i.e., A and B) who want to exchange messages securely.
- Each has a public key $\mathrm{P}_{\mathrm{A}}, \mathrm{P}_{\mathrm{B}}$ which they let everyone know.
- They also each have a private key $\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{B}}$ which only they know.
- Each of these keys is a permutation in some space of strings and the public keys are inverses of the private keys. That is, $M=P_{A}\left(S_{A}(M)\right)=S_{A}\left(P_{A}(M)\right)$. Here M is the message.
- If Alice want to send Bob a message M. She computes some hash function of $\mathrm{M}, \mathrm{h}(\mathrm{M})$ and signs this with her private key to make $\mathrm{S}_{\mathrm{A}}(\mathrm{h}(\mathrm{M})$). She concatenates this to M to make $<\mathrm{M}, \mathrm{S}_{\mathrm{A}}(\mathrm{h}(\mathrm{M}))>$. Then she sends $\mathrm{P}_{\mathrm{B}}(<\mathrm{M}$, $\mathrm{S}_{\mathrm{A}}(\mathrm{h}(\mathrm{M}))>$) to Bob.
- To decode, Bob applies his private key to get $\mathrm{S}_{\mathrm{B}}\left(\mathrm{P}_{\mathrm{B}}\left(<\mathrm{M}, \mathrm{S}_{\mathrm{A}}(\mathrm{h}(\mathrm{M}))>\right)\right)=<\mathrm{M}$, $S_{A}(h(M))>$.
- To check this is from Alice, he applies her public key to the end $P_{A}\left(S_{A}(h(M))\right)$ $=h(M)$ then he computes the hash of the message received and verifies it equal $h(M)$.

RSA

- RSA (for the paper by Rivest, Shamir, and Adleman) is a particular public key cryptoscheme.
- It creates public keys and private keys as follows:

1. \quad Select two large prime numbers p and q such that $p \neq q$. (For instance, the primes might be 512 bits each.)
2. Compute $n=p q$.
3. Select a small odd integer e that is relatively prime to $\phi(n)=(p-$ 1) $(q-1)$.
4. Compute the multiplicative inverse d of $e \bmod \phi(n)$.
5. Publish the pair $P=(e, n)$ as the RSA public key.
6. Keep secret the pair $S=(d, n)$ as the RSA secret key.

- To apply a key to a message $0 \leq \mathrm{M}<\mathrm{n}$, we compute either $P(M)=M^{e}(\bmod n)$ or $S(C)=C^{d}(\bmod n)$. Here C is suppose to mean ciphertext.

Correctness of RSA

Theorem. The RSA function P and S on the last slide define inverse transformations.
Proof. $P(S(M))=S(P(M))=M^{e d}(\bmod n)$. Since e and d are multiplicative inverses modulo $\phi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)$,

$$
e d=1+k(p-1)(q-1)
$$

for some k. If $M \equiv 0(\bmod n)$, then $M^{e d} \equiv 0(\bmod n)$ so we are done. If M is not congruent to $0(\bmod \mathrm{p})$, we have

$$
\begin{array}{rlrl}
M^{e d} & \equiv M\left(M^{p-1}\right) k(q-1) & (\bmod p) \\
& \equiv M(1)^{k(q-1)} & (\bmod p) \\
& \equiv M & & (\bmod p)
\end{array}
$$

and a similar result holds mod q. By the chinese remainder theorem, this implies $M^{\text {ed }} \equiv M(\bmod n)$.

Testing for Primes.

- One key component of RSA is to use large primes chosen at random.
- It turns out that primes are not to rare since it is known that $\pi(n)=$ the number of primes less than n grows as $n / \log n$.
- However, we still need a way to check if a odd number is prime.
- One brute force approach is to try to divide each number up to $\operatorname{sqrt}(n)$. This is exponential in the number of bits of n.
- Recall if n is prime then $a^{n-l} \equiv 1(\bmod n)$.
- A number is pseudo-prime for a, if it is composite but $a^{n-1} \equiv 1(\bmod$ n).
- It turns out pseudo-primes are rare, so we could almost check for primality by checking this equation for different values for a.
- Unfortunately, there are even rarer numbers called Carmichael numbers which are composite, but such that this equation holds for all a. Rare since can show a Carmichael numbers needs to have at least 3 primes in it.
- For example, 561.

Miller Rabin Primality Testing

- Idea: (1) Try several randomly chosen values for a. (2) While computing each modular exponentiation we check, if we ever see a nontrivial square root of $1 \bmod \mathrm{n}$. If so, we know for sure the number is composite.
- The Non-Trivial Square root testing is done in the following routine:
Witness(a,n)

1. let $n-1=2^{t} u$, where $t \geq 1$ and u is odd
2. $\mathrm{x}_{0}=\operatorname{Modular}-\operatorname{Exponentiation}(\mathrm{a}, \mathrm{u}, \mathrm{n})$
3. for $\mathrm{i}=1$ to t
a) $\quad \operatorname{do~}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}-1}\right)^{2} \bmod n$
I. if $\mathrm{x}_{\mathrm{i}}=1$ and $\mathrm{x}_{\mathrm{i}-1} \neq 1$ and $\mathrm{x}_{\mathrm{i}-1} \neq \mathrm{n}-1$ then return true
4. if $x_{t} \neq 1$ then return true
5. return false

Miller Rabin (cont'd)

Miller-Rabin(n,s)

1. for $j=1$ to s
a) \quad do $a=\operatorname{Random}(1, n-1)$
I. if Witness(a, n) then return Composite (a, n)
2. return prime.

Error Rate

- If Miller-Rabin says composite, we know the number is composite. If it says prime, there is some error rate given by the next theorem:
Theorem. If n is composite, the the number of witnesses to compositeness is at least $(\mathrm{n}-1) / 2$.
Proof. We show the number of nonwitnesses is at most ($\mathrm{n}-1$)/2. First, any nonwitness must be in \mathbf{Z}_{n}^{*} as it must satisfy $\mathrm{a}^{\mathrm{n}-1} \equiv 1(\bmod \mathrm{n})$, i.e., $a \cdot a^{n-2} \equiv 1(\bmod n)$; thus, it has an inverse. So we know $\operatorname{gcd}(\mathrm{a}, \mathrm{n}) \mid 1$ and hence $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$. Next we show that all nonwitnessed are contained in a proper subgroup of $\mathbf{Z}_{\mathbf{n}}^{*}$. This implies the Theorem. There two cases:

1. There is an x such that $x^{n-1} \neq 1(\bmod n)$. Then we show all the b such that $\mathrm{b}^{\mathrm{n}-1} \equiv 1(\bmod \mathrm{n})$ form a group and we're done.
2. The number n is Carmichael number $\mathrm{x}^{\mathrm{n}-1} \equiv 1(\bmod \mathrm{n})$ for all x . We' 11 describe this case next day.
