RSA and Primes

CS255 Chris Pollett Apr. 19, 2006.

Outline

- Modular Exponentiation
- The RSA Public-key Cryptosystem

Powers of an Element

• Two useful theorems which are corollaries of earlier results:

Theorem. For any integer n > 1,

 $a^{\phi(n)} \equiv 1 \pmod{n}$ for all a in \mathbf{Z}_n^* .

Theorem. If p is primes, then

 $a^{p-1} \equiv 1 \pmod{p}$ for all a in \mathbf{Z}_n^* .

- The next theorem tells us the values of n for which \mathbf{Z}_n^* is cyclic.
- **Theorem (#).** The values of n> 1 for which \mathbb{Z}_n^* is cyclic (that is, generated by one element) are 2, 4, p^e , and $2p^e$, for all primes p > 2 and all positive integers e.

More Powers of an Element

- *g* is a **primitive root** or **generator** of \mathbf{Z}_n^* if $\langle g \rangle = \mathbf{Z}_n^*$.
- If g is a primitive root then the equation $g^x \equiv a \mod n$ has a solution called the **discrete logarithm** or **index** of $a \mod n$, which we write as $\operatorname{ind}_{n, g}(a)$.
- The next theorem concerns the discrete logarithm problem which is connected to factoring which is the basis of RSA.
- **Theorem (##).** If g is a primitive root of \mathbf{Z}_n^* , then the equation $g^x \equiv g^y \pmod{n}$ holds if and only if the equation $x \equiv y \pmod{\phi(n)}$ holds.

Proof. Suppose $x \equiv y \pmod{\phi(n)}$ holds. Then $x = y + k\phi(n)$ for some k. So $g^x \equiv g^{y+k\phi(n)} \equiv g^y g^{k\phi(n)} \equiv g^y 1^k \equiv g^y \pmod{n}$ Conversely, suppose $g^x \equiv g^y \pmod{n}$ holds. Since g is a generator, $|\langle g \rangle| = \phi(n)$. So we know g is periodic with period $\phi(n)$. Therefore, if $g^x \equiv g^y \pmod{n}$ we must have $x \equiv y \pmod{\phi(n)}$.

Square Roots

Theorem. If *p* is an odd prime, and $e \ge 1$, then the equation $x^2 \equiv 1 \pmod{p^e}$ has only two solutions, x = 1 and x = -1.

- **Proof.** Let $n = p^e$. Theorem (#) implies \mathbb{Z}_n^* has a generator g. So the above equation can be rewritten as $(g^{ind(x)})^2 \equiv g^{ind(1)} \pmod{n}$. Note ind(1) = 0, so Theorem (##) implies this is equation is equivalent to $2 \cdot ind(x) \equiv 0 \pmod{\phi(n)}$, a modular linear equation we can solve. We know $\phi(n) = p^e(1-1/p) = (p-1)p^{e-1}$. If d is $gcd(2, \phi(n))$, then d=2 (as if p is odd divides p-1) and $d \mid 0$, we know this equation has 2 solutions, which we can compute using our algorithm or by inspection as 1 and -1.
- A number x is a **nontrivial square root of 1, modulo n**, if it is a square root but not equivalent to $\pm 1 \mod n$. For example 6 mod 35.
- **Corollary.** If there exists a nontrivial square root of 1, modulo *n*, then *n* is composite.

Modular Exponentiation

- We next give an algorithm based on repeated squaring to compute a^b mod *n* where *a* and *b* are nonnegative integers and n>0.
- We assume the number are written in binary and we use a subscript to denote the *i*th bit of a number. For example, b_i for the *i*th bit of *b*.

Modular-Exponentiation(*a*, *b*, *n*)

```
1. d = 1
```

- 2. for i = k downto 0
- 3. $d = (d \cdot d) \mod n$

4. if
$$b_i = 1$$
 then $\{d = (d \cdot a) \mod n\}$

```
5. return d
```

Public Key Cryptosystems

- We now apply what we've learned to **public key cryptography**.
- In public key cryptography, we have two participants Alice and Bob (i.e., A and B) who want to exchange messages securely.
- Each has a **public key** P_A , P_B which they let everyone know.
- They also each have a **private key** S_A , S_B which only they know.
- Each of these keys is a permutation in some space of strings and the public keys are inverses of the private keys. That is, $M = P_A(S_A(M)) = S_A(P_A(M))$. Here M is the message.
- If Alice want to send Bob a message M. She computes some hash function of M, h(M) and signs this with her private key to make S_A(h(M)). She concatenates this to M to make <M, S_A(h(M))>. Then she sends P_B(<M, S_A(h(M))>) to Bob.
- To decode, Bob applies his private key to get $S_B(P_B(\langle M, S_A(h(M)) \rangle)) = \langle M, S_A(h(M)) \rangle$.
- To check this is from Alice, he applies her public key to the end P_A(S_A(h(M))) = h(M) then he computes the hash of the message received and verifies it equal h(M).

RSA

- RSA (for the paper by Rivest, Shamir, and Adleman) is a particular public key cryptoscheme.
- It creates public keys and private keys as follows:
 - 1. Select two large prime numbers p and q such that $p \neq q$. (For instance, the primes might be 512 bits each.)
 - 2. Compute n=pq.
 - 3. Select a small odd integer *e* that is relatively prime to $\phi(n) = (p-1)(q-1)$.
 - 4. Compute the multiplicative inverse *d* of *e* mod $\phi(n)$.
 - 5. Publish the pair P=(e, n) as the **RSA public key**.
 - 6. Keep secret the pair S=(d, n) as the **RSA secret key**.
- To apply a key to a message $0 \le M < n$, we compute either $P(M) = M^e \pmod{n}$ or $S(C) = C^d \pmod{n}$. Here C is suppose to mean ciphertext.

Correctness of RSA

Theorem. The RSA function *P* and *S* on the last slide define inverse transformations.

Proof. $P(S(M)) = S(P(M)) = M^{ed} \pmod{n}$. Since *e* and *d* are multiplicative inverses modulo $\phi(n) = (p-1)(q-1)$,

ed = 1 + k(p-1)(q-1)for some k. If $M \equiv 0 \pmod{n}$, then $M^{ed} \equiv 0 \pmod{n}$ so we are done. If M is not congruent to 0 (mod p), we have $M^{ed} \equiv M(M^{p-1})^{k(q-1)} \pmod{p}$ $\equiv M(1)^{k(q-1)} \pmod{p}$ $\equiv M \pmod{p}$

and a similar result holds mod q. By the chinese remainder theorem, this implies $M^{\text{ed}} \equiv M \pmod{n}$.

Testing for Primes.

- One key component of RSA is to use large primes chosen at random.
- It turns out that primes are not to rare since it is known that $\pi(n)$ = the number of primes less than *n* grows as $n/\log n$.
- However, we still need a way to check if a odd number is prime.
- One brute force approach is to try to divide each number up to sqrt(*n*). This is exponential in the number of bits of *n*.
- Recall if *n* is prime then $a^{n-1} \equiv 1 \pmod{n}$.
- A number is **pseudo-prime** for *a*, if it is composite but $a^{n-1} \equiv 1 \pmod{n}$.
- It turns out pseudo-primes are rare, so we could almost check for primality by checking this equation for different values for *a*.
- Unfortunately, there are even rarer numbers called **Carmichael numbers** which are composite, but such that this equation holds for all a. Rare since can show a Carmichael numbers needs to have at least 3 primes in it.
- For example, 561.

Miller Rabin Primality Testing

- Idea: (1) Try several randomly chosen values for *a*. (2) While computing each modular exponentiation we check, if we ever see a nontrivial square root of 1 mod n. If so, we know for sure the number is composite.
- The Non-Trivial Square root testing is done in the following routine:

Witness(a,n)

- 1. let $n-1 = 2^t u$, where $t \ge 1$ and u is odd
- 2. $x_0 = Modular-Exponentiation(a,u, n)$
- 3. for i = 1 to t
 - a) do $x_i = (x_{i-1})^2 \mod n$
 - I. if $x_i = 1$ and $x_{i-1} \neq 1$ and $x_{i-1} \neq n-1$ then return true
- 4. if $x_t \neq 1$ then return true
- 5. return false

Miller Rabin (cont'd)

Miller-Rabin(n,s)

1. for j = 1 to s

a) do
$$a = \text{Random}(1, n-1)$$

I. if Witness(a, n) then return Composite(a,n)

2. return prime.

Error Rate

- If Miller-Rabin says composite, we know the number is composite. If it says prime, there is some error rate given by the next theorem:
- **Theorem.** If n is composite, the number of witnesses to compositeness is at least (n-1)/2.
- **Proof.** We show the number of nonwitnesses is at most (n-1)/2. First, any nonwitness must be in \mathbb{Z}_{n}^{*} as it must satisfy $a^{n-1} \equiv 1 \pmod{n}$, i.e., $a \cdot a^{n-2} \equiv 1 \pmod{n}$; thus, it has an inverse. So we know $gcd(a,n) \mid 1$ and hence gcd(a,n) = 1. Next we show that all nonwitnessed are contained in a proper subgroup of \mathbb{Z}_{n}^{*} . This implies the Theorem. There two cases:
 - 1. There is an x such that $x^{n-1} \neq 1 \pmod{n}$. Then we show all the b such that $b^{n-1} \equiv 1 \pmod{n}$ form a group and we're done.
 - The number n is Carmichael number xⁿ⁻¹= 1 (mod n) for all x. We'll describe this case next day.