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Powers of an Element
• Two useful theorems which are corollaries of earlier

results:
Theorem. For any integer n > 1,
aφ(n) ≡ 1 (mod n) for all a in Zn

*.
Theorem.  If p is primes, then
ap−1 ≡ 1 (mod p) for all a in Zn

*.
• The next theorem tells us the values of n for which Zn

* is
cyclic.

Theorem (#).  The values of n> 1 for which  Zn
* is cyclic

(that is, generated by one element) are 2, 4, pe, and 2pe, for
all primes p > 2 and all positive integers e.



More Powers of an Element
• g is a primitive root or generator of Zn

* if <g> = Zn
*.

• If g is a primitive root then the equation gx≡ a mod n has a solution
called the discrete logarithm or index of a mod n, which we write as
indn, g(a).

• The next theorem concerns the discrete logarithm problem which is
connected to factoring which is the basis of RSA.

Theorem (##).  If g is a primitive root of Zn
*, then the equation gx≡ gy

(mod n) holds if and only if the equation x ≡ y (mod φ(n)) holds.
Proof. Suppose x ≡ y (mod φ(n)) holds. Then x= y + kφ(n) for some k. So

 gx≡ gy+kφ(n) ≡ gy gkφ(n) ≡ gy 1k ≡ gy (mod n)
Conversely, suppose  gx≡ gy (mod n) holds. Since g is a generator,
|<g>|=φ(n). So we know g is periodic with period φ(n). Therefore, if
gx≡ gy (mod n) we must have x ≡ y (mod φ(n)).



Square Roots

Theorem.  If p is an odd prime, and e≥1, then the equation
x2 ≡ 1 (mod pe)
has only two solutions, x = 1 and x = -1.

Proof. Let n = pe. Theorem (#) implies Zn
* has a generator g. So the above

equation can be rewritten as (gind(x))2 ≡ gind(1) (mod n). Note ind(1) = 0,
so Theorem (##) implies this is equation is equivalent to 2·ind(x) ≡ 0
(mod φ(n)), a modular linear equation we can solve. We know φ(n) =
pe(1- 1/p) = (p-1)pe-1. If d is gcd(2, φ(n)), then d=2 (as if p is odd
divides p-1) and d | 0, we know this equation has 2 solutions, which
we can compute using our algorithm or by inspection as 1 and -1.

• A number x is a  nontrivial square root of 1, modulo n, if it is a
square root but not equivalent to ±1 mod n. For example 6 mod 35.

Corollary. If there exists a nontrivial square root of 1, modulo n, then n is
composite.



Modular Exponentiation
• We next give an algorithm based on repeated squaring to compute ab

mod n where a and b are nonnegative integers and n>0.
• We assume the number are written in binary and we use a subscript

to denote the ith bit of a number. For example, bi for the ith bit of b.
Modular-Exponentiation(a, b, n)
1.  d = 1
2. for i = k downto 0
3.         d = ( d·d ) mod n
4.         if bi = 1 then {d = (d·a) mod n}
5. return d



Public Key Cryptosystems
• We now apply what we’ve learned to public key cryptography.
• In public key cryptography, we have two participants Alice and Bob (i.e., A

and B) who want to exchange messages securely.
• Each has a public key PA, PB which they let everyone know.
• They also each have a private key SA, SB which only they know.
• Each of these keys is a permutation in some space of strings and the public

keys are inverses of the private keys. That is, M = PA(SA(M)) =  SA(PA(M)).
Here M is the message.

• If Alice want to send Bob a message M. She computes some hash function of
M, h(M) and signs this with her private key to make SA(h(M)).  She
concatenates this to M to make <M, SA(h(M))>. Then she sends PB(<M,
SA(h(M))>) to Bob.

• To decode, Bob applies his private key to get SB(PB(<M, SA(h(M))>)) = <M,
SA(h(M))>.

• To check this is from Alice, he applies her public key to the end PA( SA(h(M)))
= h(M) then he computes the hash of the message received and verifies it equal
h(M).



RSA
• RSA (for the paper by Rivest, Shamir, and Adleman) is a

particular public key cryptoscheme.
• It creates public keys and private keys as follows:

1. Select two large prime numbers p and q such that p≠q. (For
instance, the primes might be 512 bits each.)

2. Compute n=pq.
3. Select a small odd integer e that is relatively prime to φ(n) = (p-

1)(q-1).
4. Compute the multiplicative inverse d of e mod φ(n).
5. Publish the pair P=(e, n) as the RSA public key.
6. Keep secret the pair S=(d, n) as the RSA secret key.

• To apply a key to a message 0 ≤ M < n, we compute
either P(M) = Me (mod n) or S(C) = Cd (mod n). Here C
is suppose to mean ciphertext.



Correctness of RSA

Theorem. The RSA function P and S on the last slide define
inverse transformations.

Proof. P(S(M))= S(P(M))= Med (mod n). Since e and d are
multiplicative inverses modulo φ(n) = (p-1)(q-1),

ed = 1+k(p-1)(q-1)
for some k. If M ≡ 0 (mod n), then Med ≡ 0 (mod n) so we
are done. If M is not congruent to 0 (mod p), we have
Med ≡ M(Mp-1)k(q-1) (mod p)

≡ M(1)k(q-1)  (mod p)
≡ M (mod p)

and a similar result holds mod q. By the chinese remainder
theorem, this implies Med ≡ M (mod n).



Testing for Primes.
• One key component of RSA is to use large primes chosen at random.
• It turns out that primes are not to rare since it is known that π(n) = the

number of primes less than n grows as n/log n.
• However, we still need a way to check if a odd number is prime.
• One brute force approach is to try to divide each number up to sqrt(n).

This is exponential in the number of bits of n.
• Recall if n is prime then an-1 ≡  1 (mod n).
• A number is pseudo-prime for a, if it is composite but an-1 ≡  1 (mod

n).
• It turns out pseudo-primes are rare, so we could almost check for

primality by checking this equation for different values for a.
• Unfortunately, there are even rarer numbers called Carmichael

numbers which are composite, but such that this equation holds for all
a. Rare since can show a Carmichael numbers needs to have at least 3
primes in it.

• For example, 561.



Miller Rabin Primality Testing

• Idea: (1) Try several randomly chosen values for a. (2) While
computing each modular exponentiation we check, if we ever see a
nontrivial square root of 1 mod n. If so, we know for sure the
number is composite.

• The Non-Trivial Square root testing is done in the following
routine:

Witness(a,n)
1. let n-1 =2tu, where t≥1 and u is odd
2. x0 = Modular-Exponentiation(a,u, n)
3. for i = 1 to t

a) do xi = (xi-1)2 mod n
I. if xi = 1 and xi-1≠ 1 and xi-1≠ n-1 then return true

4. if xt ≠ 1 then return true
5. return false



  Miller Rabin (cont’d)

Miller-Rabin(n,s)
1. for j = 1 to s

a) do a = Random(1, n-1)
I. if Witness(a, n) then return Composite(a,n)

2. return prime.



Error Rate
• If Miller-Rabin says composite, we know the number is composite.

If it says prime, there is some error rate given by the next theorem:
Theorem. If n is composite, the the number of witnesses to compositeness

is at least (n-1)/2.
Proof. We show the number of nonwitnesses is at most (n-1)/2. First, any

nonwitness must be in Z*
n as it must satisfy an-1≡ 1 (mod n),

i.e., a·an-2≡ 1 (mod n); thus, it has an inverse. So we know
gcd(a,n) | 1 and hence gcd(a,n) =1. Next we show that all
nonwitnessed are contained in a proper subgroup of Z*

n . This
implies the Theorem. There two cases:

1. There is an x such that xn-1 ≠ 1 (mod n). Then we show all the b
such that bn-1≡ 1 (mod n) form a group and we’re done.

2. The number n is Carmichael number xn-1≡ 1 (mod n) for all x. We’ll
describe this case next day.


