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 Modular Exponentiation
e The RSA Public-key Cryptosystem



Powers of an Element

e Two useful theorems which are corollaries of earlier
results:

Theorem. For any integer n > 1,

a’ =1 (modn) forallainZ_".

Theorem. If p is primes, then

a’T=1(modp)forallainZ_".

e The next theorem tells us the values of n for which Z_" is
cyclic.

Theorem (#). The values of n> 1 for which Z ™ is cyclic

(that 1s, generated by one element) are 2, 4, p¢, and 2p¢, for
all primes p > 2 and all positive integers e.



More Powers of an Element

e gis aprimitive root or generator of Z “if <g>=17 ".

e If g is a primitive root then the equation g*= a mod » has a solution
called the discrete logarithm or index of @ mod n, which we write as
ind, ,(a).

e The next theorem concerns the discrete logarithm problem which is
connected to factoring which is the basis of RSA.

Theorem (##). If g is a primitive root of Z_°, then the equation g*= g”
(mod n) holds if and only if the equation x = y (mod ¢(n)) holds.

Proof. Suppose x = y (mod ¢(n)) holds. Then x=y + k¢(n) for some k. So
ng g)""k(i)(”l) = g)’ gk¢(n) = g)’ 1k = g)’ (mod n)
Conversely, suppose g*= g” (mod n) holds. Since g is a generator,
l<g>l=¢(n). So we know g is periodic with period ¢(n). Therefore, if
g*= g¥ (mod n) we must have x = y (mod ¢(n)).



Square Roots

Theorem. If p is an odd prime, and e=1, then the equation
x?> =1 (mod p°)
has only two solutions, x = 1 and x = -1.

Proof. Let n = p¢. Theorem (#) implies Z_" has a generator g. So the above
equation can be rewritten as (g"4¥)? = gind(!) (mod n). Note ind(1) = 0,
so Theorem (##) implies this is equation is equivalent to 2-ind(x) = 0
(mod ¢(n)), a modular linear equation we can solve. We know ¢(n) =
pe(1- 1/p) = (p-Dpe!l. If d is ged(2, ¢(n)), then d=2 (as if p is odd
divides p-1) and d | 0, we know this equation has 2 solutions, which
we can compute using our algorithm or by inspection as 1 and -1.

e A number x is a nontrivial square root of 1, modulo n, if it is a
square root but not equivalent to £1 mod n. For example 6 mod 35.

Corollary. If there exists a nontrivial square root of 1, modulo 7, then n is
composite.



Modular Exponentiation

. We next give an algorithm based on repeated squaring to compute a”
mod n where a and b are nonnegative integers and n>0.

e  We assume the number are written in binary and we use a subscript
to denote the ith bit of a number. For example, b, for the ith bit of b.

Modular-Exponentiation(a, b, n)

1. d=1

2. fori=kdownto O

3. d=(dd)modn

4, if b, =1 then {d = (d-a) mod n}
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return d



Public Key Cryptosystems

We now apply what we’ve learned to public key cryptography.

In public key cryptography, we have two participants Alice and Bob (i.e., A
and B) who want to exchange messages securely.

Each has a public key P,, P, which they let everyone know.
They also each have a private key S, S; which only they know.

Each of these keys is a permutation in some space of strings and the public
keys are inverses of the private keys. That is, M =P,(S,(M)) = S,(P,(M)).
Here M is the message.

If Alice want to send Bob a message M. She computes some hash function of
M, h(M) and signs this with her private key to make S, (h(M)). She
concatenates this to M to make <M, S, (h(M))>. Then she sends P;(<M,

S ,(h(M))>) to Bob.

To decode, Bob applies his private key to get Sp(Pg(<M, S, (h(M))>)) = <M,

S ,(h(M))>.

To check this 1s from Alice, he applies her public key to the end P, ( S ,(h(M)))

= h(M) then he computes the hash of the message received and verifies it equal
h(M).



RSA

e RSA (for the paper by Rivest, Shamir, and Adleman) 1s a
particular public key cryptoscheme.

e It creates public keys and private keys as follows:

1. Select two large prime numbers p and g such that p#q. (For
instance, the primes might be 512 bits each.)

2.  Compute n=pgq.

3. Select a small odd integer e that is relatively prime to ¢(n) = (p-
D(g-D.
4.  Compute the multiplicative inverse d of e mod ¢(n).

5. Publish the pair P=(e, n) as the RSA public key.
6. Keep secret the pair S=(d, n) as the RSA secret key.

e Toapply akey to a message 0 <M < n, we compute
either P(M) = M¢ (mod n) or S(C) = C? (mod n). Here C
1S suppose to mean ciphertext.



Correctness of RSA

Theorem. The RSA function P and S on the last slide define
inverse transformations.

Proof. P(S(M))= S(P(M))= M¢¢ (mod n). Since e and d are
multiplicative inverses modulo ¢(n) = (p-1)(g-1),
ed = 1+k(p-1)(g-1)

for some k. If M = 0 (mod n), then M¢? =0 (mod n) so we
are done. If M 1s not congruent to 0 (mod p), we have
Med = M(Mp-1a-D (mod p)

= M(1y¢D)  (mod p)

=M (mod p)
and a similar result holds mod g. By the chinese remainder
theorem, this implies M¢d= M (mod n).



Testing for Primes.

One key component of RSA is to use large primes chosen at random.

It turns out that primes are not to rare since it is known that m(n) = the
number of primes less than n grows as n/log n.

However, we still need a way to check if a odd number is prime.

One brute force approach is to try to divide each number up to sqrt(n).
This is exponential in the number of bits of n.

Recall if n is prime then a”/ = 1 (mod n).

A number is pseudo-prime for a, if it is composite but a*/ = 1 (mod
n).

It turns out pseudo-primes are rare, so we could almost check for
primality by checking this equation for different values for a.

Unfortunately, there are even rarer numbers called Carmichael
numbers which are composite, but such that this equation holds for all
a. Rare since can show a Carmichael numbers needs to have at least 3
primes 1in it.

For example, 561.



Miller Rabin Primality Testing

Idea: (1) Try several randomly chosen values for a. (2) While
computing each modular exponentiation we check, if we ever see a
nontrivial square root of 1 mod n. If so, we know for sure the
number 1s composite.

The Non-Trivial Square root testing is done in the following
routine:

Witness(a,n)
1. let n-1 =2'u, where t=1 and u 1s odd
2. X, = Modular-Exponentiation(a,u, n)
3. fori=1tot
a) dox,=(x_;)*modn
I. ifx,=1andx_# 1 and x, ;# n-1 then return true
4. if x,# 1 then return true

return false



Miller Rabin (cont’d)

Miller-Rabin(n,s)
1. forj=1tos
a) doa=Random(l1, n-1)

I.  1f Witness(a, n) then return Composite(a,n)

2. return prime.



Error Rate

e If Miller-Rabin says composite, we know the number is composite.
If it says prime, there is some error rate given by the next theorem:

Theorem. If n is composite, the the number of witnesses to compositeness
1s at least (n-1)/2.

Proof. We show the number of nonwitnesses is at most (n-1)/2. First, any
nonwitness must be in Z~ as it must satisfy a™'= 1 (mod n),
i.e., a-a™?= 1 (mod n); thus, it has an inverse. So we know
gcd(a,n) | 1 and hence gcd(a,n) =1. Next we show that all
nonwitnessed are contained in a proper subgroup of Z*_ . This
implies the Theorem. There two cases:

1. There is an x such that x™! = 1 (mod n). Then we show all the b
such that b™'= 1 (mod n) form a group and we’re done.

2.  The number n is Carmichael number x™!= 1 (mod n) for all x. We’ll
describe this case next day.



