Chinese Remaindering

CS255
Chris Pollett
Apr. 17, 2006.

Outline

- Algorithms for Modular Linear Equations
- The Chinese Remainder Theorem

Some Theorems

- Before giving our Modular-Linear-Equation-Solver algorithm we need to give a last couple theorems
- The first shows such equations have a solution:

Theorem. Let $d=\operatorname{gcd}(a, n)$ and suppose $d=a x^{\prime}+n y^{\prime}$ for some integers x^{\prime} and y^{\prime}. If $d \mid b$, then the equation $a x \equiv b(\bmod n)$ has as one of its solutions the value x_{0} where $x_{0}=x^{\prime}(b / d)$ $\bmod n$.
Proof: Suppose $x_{0}=x^{\prime}(b / d) \bmod n$. Then

$$
\begin{array}{rlr}
a x_{0} & \equiv a x^{\prime}(b / d) & (\bmod n) \\
& \equiv d(b / d) & (\bmod n) \\
& \equiv b & (\bmod n)
\end{array}
$$

The Second Theorem

- The second theorem gives the number of solutions Theorem. Suppose $a x \equiv b(\bmod n)$ is solvable and that x_{0} is a solution. Then this equation has exactly d solutions given by $x_{i}=x_{0}+i(n / d)$, for $\mathrm{i}=0,1, .$.
Proof. Since $n / d>0$ and $0 \leq i(n / d)<n$, the values x_{0}, $x_{l}, . ., x_{d}$ are all distinct. Each will be a solution since
$\left.a x_{i} \equiv a\left(x_{0}+i(n / d)\right) \equiv a x_{0}+a i(n / d)\right) \equiv a x_{0} \equiv b(\bmod \mathrm{n})$ From our corollary of last day, the equation either has d solutions or no solutions so we must have all of them.

Modular Linear Equation Algorithm

- Given the above theorems we are now in position to give an algorithm for solving modular equations:
Modular-Linear-Equation-Solver (a, b, n)

1. $\left(d, x^{\prime}, y\right)=\operatorname{Extended}-\operatorname{Euclid}(a, n)$
2. if $d \mid b$
a) then $x_{0}=x^{\prime}(b / d) \bmod n$
b) for $i=0$ to $d-1$
c) $\quad \operatorname{do} \operatorname{print}\left(x_{0}+(i \cdot(n / d)) \bmod \mathrm{n}\right.$
d) else print "no solutions"

About The Chinese Remainder Theorem

- This theorem goes back to Chinese text of at least 100A.D.
- It has two main uses:

1. It tells us if n is the product of pairwise relatively prime numbers $n_{0}, . ., n_{k}$ then the structure of \mathbf{Z}_{n} behaves as that of the Cartesian product $\mathbf{Z}_{n_{0}} \times \mathbf{Z}_{n} \times \ldots$ $\times \mathbf{Z}_{n_{k}}$
2. It gives us efficient/parallel algorithms for certain operations like multiplication/division by allowing us to work modulo n_{i} rather than modulo n.

The Chinese Remainder Theorem

Theorem. Let $n=n_{l} n_{2} \cdots n_{k}$, where the n_{i} are pairwise relatively prime. Consider the correspondence $a \Leftrightarrow\left(a_{l}, . ., a_{k}\right)$ where $a_{i}=a \bmod n_{i}$. Then this is a bijection and preserves addition and product.
Proof. The preservation of plus and times is easy to check. Computing the a_{i} 's from a is also easy. To compute a from $\left(a_{l}, . ., a_{k}\right)$, let $m_{i}=n / n_{i}$, so $\operatorname{gcd}\left(m_{i}\right.$, $\left.n_{i}\right)=1$. Compute $t_{i}=m_{i}^{-1} \bmod n_{i}$ using the extended Euclidean Algorithm. Let $c_{i}=m_{i} t_{i}$. Finally, compute a as $\left(a_{0} c_{0}+. .+a_{k} c_{k}\right)$. Notice $a \equiv a_{i} c_{i} \equiv a_{i} m_{i} t_{i} \equiv a_{i}\left(\bmod \mathrm{n}_{\mathrm{i}}\right)$

