Chinese Remaindering

CS255 Chris Pollett Apr. 17, 2006.

Outline

- Algorithms for Modular Linear Equations
- The Chinese Remainder Theorem

Some Theorems

- Before giving our Modular-Linear-Equation-Solver algorithm we need to give a last couple theorems
- The first shows such equations have a solution:
- **Theorem.** Let $d=\gcd(a,n)$ and suppose d=ax' +ny' for some integers x' and y'. If $d \mid b$, then the equation $ax \equiv b \pmod{n}$ has as one of its solutions the value x_0 where $x_0 = x'(b/d) \mod{n}$.

Proof: Suppose $x_0 = x'(b/d) \mod n$. Then

 $ax_0 \equiv ax'(b/d) \pmod{n}$ $\equiv d(b/d) \pmod{n}$ $\equiv b \pmod{n}$

The Second Theorem

- The second theorem gives the number of solutions **Theorem.** Suppose $ax \equiv b \pmod{n}$ is solvable and that x_0 is a solution. Then this equation has exactly *d* solutions given by $x_i = x_0 + i(n/d)$, for i=0,1,...
- **Proof.** Since n/d > 0 and $0 \le i(n/d) < n$, the values x_0 , $x_1, ..., x_d$ are all distinct. Each will be a solution since

 $ax_i \equiv a(x_0 + i(n/d)) \equiv ax_0 + ai(n/d)) \equiv ax_0 \equiv b \pmod{n}$ From our corollary of last day, the equation either has *d* solutions or no solutions so we must have all of them.

Modular Linear Equation Algorithm

• Given the above theorems we are now in position to give an algorithm for solving modular equations:

Modular-Linear-Equation-Solver(*a*, *b*, *n*)

- 1. (d, x', y') = Extended-Euclid(a, n)
- 2. if $d \mid b$
 - a) then $x_0 = x'(b/d) \mod n$
 - b) for i = 0 to d 1
 - c) do print $(x_0 + (i \cdot (n/d)) \mod n$
 - d) else print "no solutions"

About The Chinese Remainder Theorem

- This theorem goes back to Chinese text of at least 100A.D.
- It has two main uses:
 - 1. It tells us if *n* is the product of pairwise relatively prime numbers $n_0, ..., n_k$ then the structure of \mathbf{Z}_n behaves as that of the Cartesian product $\mathbf{Z}_{n_0} \times \mathbf{Z}_{n_1} \times ...$ $\times \mathbf{Z}_{n_k}$
 - 2. It gives us efficient/parallel algorithms for certain operations like multiplication/division by allowing us to work modulo n_i rather than modulo n.

The Chinese Remainder Theorem

Theorem. Let $n = n_1 n_2 \cdots n_k$, where the n_i are pairwise relatively prime. Consider the correspondence $a \Leftrightarrow (a_1, ..., a_k)$ where $a_i = a \mod n_i$. Then this is a bijection and preserves addition and product.

Proof. The preservation of plus and times is easy to check. Computing the a_i 's from a is also easy. To compute a from $(a_1,..,a_k)$, let $m_i = n/n_i$, so $gcd(m_i, n_i)=1$. Compute $t_i = m_i^{-1} \mod n_i$ using the extended Euclidean Algorithm. Let $c_i = m_i t_i$. Finally, compute a as $(a_0c_0 + ..+ a_kc_k)$. Notice $a = a_ic_i = a_i m_i t_i = a_i \pmod{n_i}$