
Distributed Algorithms

CS255
Chris Pollett

Mar. 15, 2006.

Outline

• Our Distributed Model
• The Choice Coordination Problem

Our Distributed Model
• In the PRAM model all of the processors used the same

clock so all the processors computation steps were in sync.
• We will now consider the situation where we have n

processors each with its own clock. So a step on one
processor might be longer or shorter than some other
processor.

• There is a global memory consisting of m registers.
• As several processors might attempt to simultaneously

read/modify a register, we will assume before a processor
accesses a global register it must first get a lock for it.

• While it has the lock of a register, no other processor can
access that register and must wait.

• When the lock is released, all waiting processors are
notified and can contend for the lock again.

The Choice Coordination
Problem

• Motivating story:
– Have mites which survive by making colonies in the ears of moths.
– If they infect both ears of the same moth, the moth can’t hear bat

sonar calls, and it and the mite colonies will be eaten.
– How can the mites agree on only one ear to infect?

• We will be interested in a computer science variation on this problem
called the Choice Coordination Problem.

• We will have n processors in our distributed setting.
• We want them to agree on a value between 1 and m.
• We will know an agreement has been met at the point when exactly

one of the registers our processors have access to contains a special
symbol #.

• An Ω(n1/3) time deterministic lower bound is known for this problem
in the distributed model.

• We will show there is a expected constant time randomized algorithm.

Warm-Up Algorithm
• We first consider the simplified case of only two processor which are synchronized.
• Let Pi denote the processor and Ci denote its choice.
• Finally, let Bi be a value which is local to processor Pi only.

Synch-CCP:
Input: Registers C0 and C1 initialized to 0.
Output: Exactly one of the register has the value #.
0. Pi is initially scanning the register Ci and has its local variable Bi initialized to 0.
1. Read the current register and obtain a bit Ri.
2. Select one of three cases:

1. case [Ri = #]: halt;
2. case [Ri = 0, Bi = 1]: write # into the current register and halt;
3. case [otherwise]: assign an unbiased random bit to Bi and write Bi into the current register.

3. Pi exchanges its current register with P1-i and returns to step 1.

Analysis
• Let’s look at the correctness of Synch-CCP:

– First notice, at most one register can ever have # written into it.
Why? If both registers get the same value # then by 2.1 they must
have both written # in the same iteration. Suppose this happens on
the kth iteration. Let Bi(k) and Ri(k) denote the values use by Pi
just after step 1 of the kth iteration. The previous wound must have
used case 2.3, so we know R0(k) = B1(k) and R1(k) = B0(k). The
only way a # could be written is if Ri = 0 and Bi=1; but then R1-i =
1 and B1-i=0, so P1-i can’t write 0 in that iteration.

• Notice during each iteration, the probability that both Bi have the same
value is a 1/2. If the two bits are ever different then within two stages
the algorithm stops. So after k steps the odds the algorithm has not
stop is O(1/2k).

• So with odds 1-O(1/2k) the algorithm terminate in k steps.

The Asynchronous Problem

• We now assume the two processors may be executing at varying
speeds and cannot exchange the registers after each iteration.

• We no longer assume that the two processors begin by scanning
different registers.

• We assume that each processor chooses its starting processor at
random.

• The two processors could be in a conflict at the very first step so
locking needs to used.

• To do coordination we want to use time-stamps.
• We will assume a read on Ci will yield a pair <ti, Ri> where ti is the

timestamp and Ri is the register.

Asynchronous-CCP

Input: Registers C0 and C1 initialized to <0,0>.
Output: Exactly one of the two registers has value #.

0. Pi is initially scanning a randomly chosen register. Thereafter, it changes its
current register at the end of each iteration. The local variables Ti and Bi are
initialized to 0.

1. Pi obtains a lock on the current register and reads <ti,Ri>.
2. Pi selects one of five cases:

1. case [Ri = #]: halt;
2. case [Ti < ti]: set Ti = ti and Bi = Ri
3. case [Ti > ti]: write # into the current register and halt;
4. case [Ti = ti, Ri = 0, Bi = 1]: write # into the current register and halt
5. case [otherwise]: Set Ti = Ti,+1 and ti = ti,+1 assign a random bit-value

to Bi , and write <ti , Bi> to the current register.
3. Pi releases the lock on its current register, moves to the other register, and

returns to step 1.

Analysis
Theorem For any c>0, Asynchronous-CPP has total cost

exceeding c with probability at most 2-Ω(c).
Proof: The main difference between this and the synchronous

case is in step 2.2 and 2.3. Case 2.2 is supposed to handle
where the processor is playing catch up with the other
processor; Case 2.3 handles where the processor is ahead
of the other processor. To prove correctness of the
protocol, we consider the two cases (2.3, 2.4) where a
processor can write a # to its current cell. At the end of an
iteration, a processor Ti will equal that of the current
register ti . Further # cannot be written in the first iteration
by either processor. …

More Proof
Suppose Pi has just entered case 2.3, with some timestamp T*i, and its

current cell is Ci with timestamp t*i < Ti,. The only possible problem is
that P1-i might write # into register C1-i . Suppose this error occurs, and
let t*1-i and T*1-i be the timestamp during the iteration for the other
processor.

As Pi comes to Ci with a timestamp of T*i , it must have left C1-i with a
timestamp before P1-i could write # into it. Since timestamps don’t
decrease t*1-i >= T*i. Further P1-i cannot have its timestamp T*1-i
exceed t*i since it must go to C1-i from Ci and the timestamp of that
register never exceeds ti. So we have T1-i <= t*i < Ti, <= t*1-i. This
means P1-i must enter case 2.2 as T1-i < t*1-i. This contradicts it being
able to write a #.

We can analyze the case Pi has just entered case 2.4 in a similar way,
except we would reach the conclusion that T1-i <= t*i = Ti, <= t*1-i and
so it is possible that T1-i = t*1-i. But if this even happens, we are in the
synchronous situation so our earlier correctness argument works.
Thus,we established correctness of the algorithm.

Runtime

• We now just need to analyze the runtime of our above
algorithm.

• The cost is proportional to the largest timestamp.
• Only case 2.5 increase the timestamp of a register, and

this only happens if case 2.4 does not apply.
• Furthermore, the processor that raises the timestamp must

have its current Bi value chosen during a visit to the other
register. So the analysis of the synchronous case applies.

