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Outline

• Finish analysis of Parallel MIS



More Analysis of Parallel MIS
Lemma* Let v in V be a good vertex with degree d(v) >0. Then, the

probability that some vertex w in Γ(v) gets marks is at least
1- exp(-1/6).
Proof Each vertex w in Γ(v) is marked independently with probability

1/2d(w). Since v is good, there exist d(v)/3 vertices in Γ(v) with degree
at most d(v).  Each of these is marked with probability at least 1/2d(v).
Thus, the probability none of these neighbors is marked is at most:

Here we are using that (1-a/n)n <= ea and that the remaining neighbors
of v can only help increase the probability under consideration.



Yet More Analysis
Lemma** During any iteration, if a vertex w is marked then it is selected

to be in S with probability at least 1/2.
Proof The only reason a marked vertex w becomes unmarked and hence

not selected for S, is if one of its neighbors of degree at least d(w) is
also marked. Each such neighbor is marked with probability at most
1/2d(w), and the number of such neighbors is at most d(w). Hence, we
get the probability that a marked vertex is selected to be in S is at least:



Even More Analysis

Lemma# The probability that a good vertex belongs
to S∪Γ(S) is at least (1- exp(-1/6))/2.

Proof Let v be a good vertex with d(v) >0, and
consider the event E that some vertex in Γ(v) does
indeed get marked. Let w be the lowest numbered
marked vertex in Γ(v). By Lemma **, w is in S
with probability at least 1/2. But if w is in S, then
v belongs S∪Γ(S) as v is a neighbor of w. By
Lemma *, the event E happens with probability 1-
exp(-1/6). So the probability v is in S∪Γ(S) is thus
(1- exp(-1/6))/2.



Still More Analysis
Lemma## In a graph G=(V,E), the number of good edges is at least |E|/2.
Proof Our original graph was undirected. Direct the edges in E from the

lower degree-point to the higher degree endpoint, breaking ties
arbitrarily. Let di(v) be in indegree of v and do(v) be the out-degree.
From the definition of goodness, we have for each bad vertex:

For all S, T contained in V, define the subset of the edges E(S,T) as
those edges driected from vertices in S to vertices in T; further, let
e(S,T) = |E(S,T)|. Let VG and VB be the sets of good and bad vertices
respectively. The total degree of the bad vertices is given by:



More Proof of Lemma ##

The first and last expressions in this sequence of
inequalities imply that e(VB,VB) <= e(VB,VG) +
e(VG,VB). Since every bad edge contributes edge
contributes to the left side, and only good edges to
the right side, the result follows.



Finishing Up The Analysis
Theorem The Parallel MIS algorithm has an EREW PRAM

implementation running in expected time O(log2 n) using O(n+m)
processors.

Proof Its not hard to see each round is O(log n) time on O(n+m)
processors. Since a constant fraction of the edges are incident on good
vertices and good vertices get eliminated with a constant probability, it
follows that the expected number of edges eliminated during an
iteration is a constant fraction of the current set of edges. So after
O(log n) iteration we will have gotten down to the empty set.

• By using pairwise independence rather than full
independence in the above analysis one can show
only O(log n) random bits are needed for the
algorithm. From this one can derandomize the
above algorithm to get an NC algorithm.


