More Maximal Independent Sets

CS255
Chris Pollett
Mar. 13, 2006.

Outline

- Finish analysis of Parallel MIS

More Analysis of Parallel MIS

Lemma* Let v in V be a good vertex with degree $\mathrm{d}(\mathrm{v})>0$. Then, the probability that some vertex w in $\Gamma(\mathrm{v})$ gets marks is at least

1- $\exp (-1 / 6)$.
Proof Each vertex w in $\Gamma(\mathrm{v})$ is marked independently with probability $1 / 2 d(w)$. Since v is good, there exist $d(v) / 3$ vertices in $\Gamma(v)$ with degree at most $\mathrm{d}(\mathrm{v})$. Each of these is marked with probability at least $1 / 2 \mathrm{~d}(\mathrm{v})$. Thus, the probability none of these neighbors is marked is at most:

$$
\left(1-\frac{1}{2 d(v)}\right)^{d(v) / 3} \leq e^{-1 / 6}
$$

Here we are using that $(1-\mathrm{a} / \mathrm{n})^{\mathrm{n}}<=\mathrm{e}^{\mathrm{a}}$ and that the remaining neighbors of v can only help increase the probability under consideration.

Yet More Analysis

Lemma** During any iteration, if a vertex w is marked then it is selected to be in S with probability at least $1 / 2$.
Proof The only reason a marked vertex w becomes unmarked and hence not selected for S, is if one of its neighbors of degree at least $d(w)$ is also marked. Each such neighbor is marked with probability at most $1 / 2 d(w)$, and the number of such neighbors is at most $d(w)$. Hence, we get the probability that a marked vertex is selected to be in S is at least:
$1-\operatorname{Pr}[\exists x \in \Gamma(w)$ such that $d(x) \geq d(w)$ and x is marked $]$
$\geq 1-|\{x \in \Gamma(w) \mid d(x) \geq d(w)\}| \times \frac{1}{2 d(w)}$
$\geq 1-\sum_{x \in \Gamma(w)} \frac{1}{2 d(w)}$
$=1-d(w) \times \frac{1}{2 d(w)}$
$=1 / 2$

Even More Analysis

Lemma\# The probability that a good vertex belongs to $\mathrm{S} \cup \Gamma(\mathrm{S})$ is at least $(1-\exp (-1 / 6)) / 2$.
Proof Let v be a good vertex with $\mathrm{d}(\mathrm{v})>0$, and consider the event E that some vertex in $\Gamma(\mathrm{v})$ does indeed get marked. Let w be the lowest numbered marked vertex in $\Gamma(\mathrm{v})$. By Lemma **, w is in S with probability at least $1 / 2$. But if w is in S, then v belongs $S \cup \Gamma(S)$ as v is a neighbor of w. By Lemma *, the event E happens with probability 1$\exp (-1 / 6)$. So the probability v is in $\mathrm{S} \cup \Gamma(\mathrm{S})$ is thus $(1-\exp (-1 / 6)) / 2$.

Still More Analysis

Lemma\#\# In a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, the number of good edges is at least $\mid \mathrm{El} / 2$.
Proof Our original graph was undirected. Direct the edges in E from the lower degree-point to the higher degree endpoint, breaking ties arbitrarily. Let $\mathrm{d}_{\mathrm{i}}(\mathrm{v})$ be in indegree of v and $\mathrm{d}_{\mathrm{o}}(\mathrm{v})$ be the out-degree. From the definition of goodness, we have for each bad vertex:

$$
d_{o}(v)-d_{i}(v) \geq d(v) / 3=\frac{d_{o}(v)+d_{i}(v)}{3}
$$

For all S, T contained in V, define the subset of the edges $E(S, T)$ as those edges driected from vertices in S to vertices in T ; further, let $e(S, T)=|E(S, T)|$. Let V_{G} and V_{B} be the sets of good and bad vertices respectively. The total degree of the bad vertices is given by:

$$
\begin{aligned}
2 e\left(V_{B}, V_{B}\right) & +e\left(V_{B}, V_{G}\right)+e\left(V_{G}, V_{B}\right) \\
& =\sum_{v \in V_{B}}\left(d_{o}(v)+d_{i}(v)\right) \\
& \leq 3 \sum_{v \in V_{B}}\left(d_{o}(v)-d_{i}(v)\right)
\end{aligned}
$$

More Proof of Lemma \#\#

$$
\begin{aligned}
& =3 \sum_{v \in V_{G}}\left(d_{i}(v)-d_{o}(v)\right) \\
& =3\left[\left(e\left(V_{B}, V_{G}\right)+e\left(V_{G}, V_{G}\right)\right)-\left(e\left(V_{G}, V_{B}\right)+e\left(V_{G}, V_{G}\right)\right)\right] \\
& =3\left[e\left(V_{B}, V_{G}\right)-e\left(V_{G}, V_{B}\right)\right] \\
& \leq 3\left[e\left(V_{B}, V_{G}\right)+e\left(V_{G}, V_{B}\right)\right]
\end{aligned}
$$

The first and last expressions in this sequence of inequalities imply that $\mathrm{e}\left(\mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{B}}\right)<=\mathrm{e}\left(\mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{G}}\right)+$ $e\left(V_{G}, V_{B}\right)$. Since every bad edge contributes edge contributes to the left side, and only good edges to the right side, the result follows.

Finishing Up The Analysis

Theorem The Parallel MIS algorithm has an EREW PRAM implementation running in expected time $O\left(\log ^{2} n\right)$ using $\mathrm{O}(\mathrm{n}+\mathrm{m})$ processors.
Proof Its not hard to see each round is $\mathrm{O}(\log n)$ time on $\mathrm{O}(\mathrm{n}+\mathrm{m})$ processors. Since a constant fraction of the edges are incident on good vertices and good vertices get eliminated with a constant probability, it follows that the expected number of edges eliminated during an iteration is a constant fraction of the current set of edges. So after $\mathrm{O}(\log n)$ iteration we will have gotten down to the empty set.

- By using pairwise independence rather than full independence in the above analysis one can show only $\mathrm{O}(\log \mathrm{n})$ random bits are needed for the algorithm. From this one can derandomize the above algorithm to get an NC algorithm.

