# Approximation Algorithms 

CS255
Chris Pollett
May 8, 2006.

## Outline

- Performance Ratios
- The Vertex-Cover Problem
- The Traveling Salesman Problem


## Performance Ratios

- Since it seems hard to find exact solutions to the optimization problems associated with a given NP-complete problem, it is natural to ask if one can get approximate solutions in polynomial time?
- We say an algorithm for a problem has an approximation ratio of $r(n)$, if for any input of size $n$, the cost $C$ of the solution produced by the algorithm is within a factor of $r(n)$ of the $\operatorname{cost} C^{*}$ of the optimal solution. That is, $\max \left(C / C^{*}, C^{*} / C\right) \leq r(n)$.
- We call an algorithm that achieves an $r(n)$ approximation-ratio an $\boldsymbol{r}(\boldsymbol{n})$ approximation algorithm.
- Some NP-complete problems have a trade-off between the approximation ratio and the runtime.
- An approximation scheme for an optimization problem is an algorithm that take both an instance of the problem as well as a constant $\varepsilon$ and then runs a $(1+\varepsilon)$-approximation on the instance.
- If for any $\varepsilon$, approximation scheme run in p-time, then it is called a polynomial time approximation scheme.
- We say that an approximation scheme is a fully p-time approximation scheme if it is an approximation scheme and its run time is p-time in both $1 / \varepsilon$ and the instance size $n$.


## The Vertex Cover Problem

- The optimization problem associated with VERTEX-COVER is to find the least vertex cover of a instance graph $G$.
- The following algorithm takes a graph $G$ and outputs a vertex cover within twice the optimal.
APPROX-VERTEX-COVER $(G)$

1. $C=\varnothing$
2. $E^{\prime}=E[G]$
3. while $E^{\prime} \neq \varnothing$
4. do let $(u, v)$ be an arbitrary edge of $\mathrm{E}^{\prime}$
5. $C=C \cup\{u, v\}$
6. Remove from $E^{\prime}$ every edge incident with either $u$ or $v$
7. return $C$.

## Analysis

Theorem. APPROX-VERTEX-COVER is a p-time 2approximation algorithm
Proof. First, the algorithm runs in time $\mathrm{O}(|V|+|E|)$, as we delete two vertices and at least one edge each time through the loop.

The set $C$ returned by the algorithm is a vertex cover, since each edge that is removed is covered by some vertex in $C$. And the loop continues till no edges left.

To see that the cover returned is at most twice the optimal, let $A$ denote the set of edges which were picked in line 3.1. In order to cover the edges in $A$, any vertex cover (including the optimal $C^{*}$ ) -must include at least one endpoint of each edge in $A$. No two edges in $A$ share an endpoint, so no two edge from $A$ are covered by the same vertex from $C^{*}$. So $\left|C^{*}\right| \geq|A|$. On the other hand $|C|=2|A|$.

## The Traveling-Salesman Problem

- The optimization problem associated with TSP is to find a tour of least cost.
- Here is a 2-approximation algorithm for this problem when the triangle inequality holds
APPROX-TSP-TOUR $(G, c)$

1. select a vertex $r$ to be a root vertex
2. compute the minimal spanning tree for $G$ from root $r$ using Prim's algorithm
3. let $L$ be the list of vertices visited in a preorder tree walk of $T$
4. return the hamiltonian cycle $H$ that visits the vertices in order $L$.

## Analysis

Theorem. APPROX-TSP-TOUR is a p-time 2 approximation algorithm for TSP with triangle-inequality holding on the cost function.
Proof. The minimal spanning tree algorithm runs in time $\mathrm{O}\left(|V|^{2}\right)$. The remaining step take at most $\mathrm{O}(|G|)$ time.

Let $H^{*}$ denote the optimal tour of the vertices.Since we can obtain a spanning tree from any tour by deleting an edge, we have $\mathrm{c}(T) \leq \mathrm{c}\left(H^{*}\right)$ where $T$ is our minimal spanning tree. A full walk $F$ of $T$ lists the vertices when they are first visited and also whenever they are returned to after a visit to a subtree. $\operatorname{Soc}(F)=2 \mathrm{c}(T) \leq 2 \mathrm{c}\left(H^{*}\right)$. On the other, the $H$ returned by the algorithm satisfies $\mathrm{c}(H) \leq \mathrm{c}(F)$, since it is obtains by deleting vertices from the full walk and since the triangle inequality holds. Thus, the theorem holds.

