
Sorting, Maximal Independent
Set

CS255
Chris Pollett
Mar. 8, 2006.

Outline

• Finish Sorting
• Maximal Independent Set

More on Sorting
• We finish the analysis of the BoxSort algorithm that we began presenting last

day.
• To do this, we represent the execution of the algorithm as a tree.

– The root is a node with all of the elements to be sorted in it
– Internal nodes consist of sublists of nodes to be sorted. We will call these

boxes.
– Children of a given box represent sublists that need to be sorted after

partitioning according to the splitter.
– Each leaf has at most log n elements.

• We want to analyze root-leaf paths in this tree and bound the number of
PRAMS steps along such a path.

• Recall based on the HW problem, doing splitting should take O(log the size of
box we need to split).

• In a perfect world, at each level the expected size of the box goes down by a
square root, so we get the sum O(log n + log n1/2 +log n1/4 +…) =O(log n
+1/2log n +1/4logn +…) = O((log n)*(1/2+1/4+ …)) = O(log n)

• We will argue even in a non perfect world that with high probability the sum
of the log of the sizes of the boxes along any path is O(log n), so the runtime
will be O(log n).

Yet More on Sorting
• To see this partition the interval [1,n] into sub-intervals I0, I1, … We

will then bound the probability that a box whose size is in Ik has a
child whose size is also in Ik.

• Fix γ and d such that 1/2 < γ < 1 and 1 <d <1/ γ. For positive integers
k, let τk=dk, ρk= nγ^k. Define Ik=[ρk+1, ρk].

• n = (log n)^{log n loglog n2}. So if γk > 1/ log n loglog n2, then ρk= nγ^k <
log n. This will happen for some k< c log log n.

• So we will only be interested in O(log log n) many intervals Ik.
• For a box B in the tree, we let α(B) = k if |B| is in Ik.
• In terms of our notation, the time to split Box B is O(log ρα(B)) .
• For a root-leaf path P = (B1, …, Bt), the runtime is given by
• The total runtime of the algorithm will be O of this plus log n (to sort

the leaves).
• Define the event EP to be that the sequence α(B1), … α(Bt) does not

contain the value k more than τk times for 1<= k <= c log log n.
• If EP holds then the number of PRAM steps on path P will be

The End of Sorting

• Since τk=dk and dγ <1, this sums to O(log n).
• So it suffices to show EP happens with high probability.
Lemma There is a constant b>1 such that EP holds with

probability 1- exp(-logb n).
Proof uses Chernoff bounds and is omitted. (Chernoff

Bounds: If X is the sum of independent random variables
which outputs either 0 and 1, the latter with probability p,
then for a 0<=θ<=1, prob{X>= (1+θ)pn} < e-θ^2pn/3)

• From this we can conclude:
Theorem There is a constant b >1such that probability at

least 1-exp(- logb n), the algorithm BoxSort terminates in
O(log n) steps.

• So the algorithm is an ZNC algorithm.

Maximal Independent Set
• Let G(V,E) be an undirected graph with n vertices and m = Ω(n) edges. A

subset I of V is said to be independent in G if no edge in E has both ends in
I.

• Equivalently, if Γ(v) is the set of vertices connected to v, then I is
independent if for all v in I, Γ(v)∩I = ∅.

• An independent set is maximal if it is not a proper subset of another
independent set in G.

• The red nodes and the blues nodes in the graph above are two different
maximal independent sets in the same graph. Notice the blue set has more
nodes.

• The problem of finding a maximum independent set (the independent set
with the most nodes) is NP-hard.

• In contrast the finding a maximal independent set is O(m) time:
Greedy MIS:
Input: Graph G(V,E) with V = {1,..,n}
Output A maximal I contained in V.
1. I <-- ∅
2. For v=1 to n do If Γ(v)∩I = ∅ then I <-- I ∪ {v}.

1 2

3
4

5

6

More on Maximal Independent Set

• Greedy-MIS is very sequential in nature.
• For the graph on the last slide the algorithm outputs the Maximal

Independent Set (MIS) {1,3,6}.
• Notice the two other independent we had previously drawn are {1,5}

and {3,4, 6}. According to dictionary (lexicographical) order {1, 3, 6}
is before {1,5} is before {3, 4, 6}.

• It turns out Greedy-MIS always outputs the lexicographically first MIS
(LFMIS).

• LFMIS is a P-complete problem (with respect to log-time poly-
porcessor PRAM reductions).

• So it is known that an NC algorithm for LFMIS would imply P=NC.
(An open problem).

• We will describe an RNC algorithm for MIS and later show how to
derandomize it to an NC algorithm.

• The maximal set we output won’t be the lexicographically first one.

Yet More on Greedy MIS
• Consider the following variant of Greedy MIS:

1. I <-- ∅
2. Pick any vertex v, add v to I, delete v and Γ(v) from the graph.

• Choosing v to be the lowest numbered vertex present in the graph leads to
the same outcome as Greedy MIS.

• The basic idea of our parallel algorithm is to general this to find an
independent set S, add S to I and delete S and Γ(S).

• We want to choose an independent set such that S ∪ Γ(S) is large to keep
the number of iterations small.

• To do this we ensure the number of edges incident to S ∪ Γ(S) is a large
fraction of the total remaining edges.

• To find such an S, we pick a large random set of vertices R contained in V.
R won’t usually be independent. If we bias the sampling in favor of vertices
with low degree, we can hope that few will have both endpoints in R. For
those edges which have both endpoints in R, we delete the one of lower
degree. This gives an independent set.

Parallel MIS
Input: G=(V,E)
Output: A maximal independent set I contained in V

1. I <-- ∅
2. Repeat

a) For all v in V do in parallel
If d(v) = 0 then add v to I and delete v from V.
else mark v with probability 1/2d(v).

b) For all (u,v) in E do in parallel
if both u and v are marked
then unmark the lower degree vertex.

c) For all v in V do in parallel
if v is marked then add v to S

d) I <-- I ∪ S
3. Delete S ∪ Γ(S) from V and all incident edges from E
4. Until V is empty.

Analysis

• Each iteration of the above takes O(log n) time on an EREW PRAM
with O(n+m) processors.

• We want to bound the number of iterations we do.
• Call a vertex v good if it has at least d(v)/3 neighbors of degree no

more the d(v); otherwise, the vertex is bad. An edge is good if one of
its endpoints is good and is bad otherwise.

• A good vertex is quite likely to have one of its lower degree neighbors
in S and so is likely to be deleted from V.

• We will argue next day the number of good edges is large, and since
good edges are likely to be deleted, a large number of edges will be
deleted each iteration.

