Sorting Networks

CS255
Chris Pollett
Feb. 8, 2006.

Outline

- Comparison networks
- The zero-one principle
- A bitonic sorting network

Comparison networks

- Today, we look at the first of three parallel computation models we'll consider this semester: Sorting networks.
- The basic building blocks of our networks will be comparators:

- We'll often draw such comparators more simply as:

Some Definitions

- A wire transmits a value from place to place. A wire may connect to a comparator and a wire may lead from a comparator.
- Wire can have labels like a_{i}, or x_{i}.
- We'll assume our networks consists of n input wires $a_{1}, \ldots, a_{\mathrm{n}}$. These wires don't connect from any comparators, but instead connect from vertices consisting of an input sequence of values which we'll also write as $a_{1}, \ldots, a_{\mathrm{n}}$.
- We'll also assume our networks consist of n output wires b_{1}, \ldots, b_{n}. These wires don't connect to any comparators, but instead connect to a set of vertices which will receive an output sequence of values which we'll also write as $b_{1}, \ldots, b_{\mathrm{n}}$. This sequence is supposed to be the result of performing the comparisons in the networks to the input sequence.

Example Comparison Network

A, B are depth 1
C,D are depth 2
E is depth 3

- We require that our networks be acyclic.
- The depth of an input wire is 0 . The depth of a wire leading out of a comparator is 1 plus the depth of its inputs. The depth of a comparison network or a comparator is the maximum depth of its inputs.
- In computing the values of the wire in a network one start at the values of the wires of depth 0 (the inputs), then all the values of depth 1 are computed simultaneously using the values of the depth 0 wires and the relevant comparators., then those of depth 2, etc.
- A sorting network is a comparison network for which the output sequence is nondecreasing. i.e., $\mathrm{b}_{1}<=\mathrm{b}_{2}<=\ldots \mathrm{b}_{\mathrm{n}}$.

The zero-one principle

- The zero-one principle says that if a sorting network works correctly when each input is drawn from the set $\{0,1\}$, then it works on arbitrary numbers.
- We'll now try to argue this principle is true.

Lemma 27.1

Lemma: If a comparison network transforms the input sequence $a=\left\langle a_{1}, ., a_{\mathrm{n}}>\right.$ into the output sequence $b=<b_{1}, . ., b_{\mathrm{n}}>$, then for any nondecreasing function f , the network transforms the input sequence $f(a)=\left\langle f\left(a_{1}\right), \ldots, f\left(a_{n}\right)>\right.$ into $f(b)=\left\langle f\left(b_{1}\right), \ldots f\left(b_{n}\right)\right\rangle$.
Proof: We first prove the claim for a single comparator and then prove the result by induction. Since f is nondecreasing $x<=y$ implies $f(x)<=f(y)$, so $\min (f(x)$, $f(y))=f(\min (x, y))$. Similarly, $\max (f(x), f(y))=f(\max (x, y))$. So this proves the claim for a comparator. We now prove it true for a network by induction on its depth. When the depth is 0 we have no comparators in our network and the result is trivial. Now assume that for all networks of depth strictly less than d $>=1$, that if an output wire assumes the value a_{i} when the input a is applied, then if assume the value $f\left(a_{i}\right)$ when $f(a)$ is applied. Suppose we have an output wire a_{k} of depth d in a network of depth d. It must be the result of a comparator whose inputs must be wires a_{i} and a_{j} of depth strictly less than d. i.e., it must be either $\min \left(a_{i} a_{j}\right)$ or $\max \left(a_{i}, a_{j}\right)$. By the induction hypothesis, we know on input $f(a)$ these wires carry value $f\left(a_{i}\right)$ and $f\left(a_{j}\right)$. By our result about comparators, the outputs of the comparator on these two values is $f\left(\min \left(a_{i}, a_{j}\right)\right)$ and $f\left(\max \left(a_{i}, a_{j}\right)\right)$. So the induction holds. q.e.d.

Bitonic Sequences

- In order to develop our sorting networks we will first consider sorters that can sort bitonic sequences.
- A bitonic sequence is a sequence which consists of a nondecreasing sequence followed by a nonincreasing sequence. We also call cyclic shifts of bitonic sequence, bitonic sequences.
- For example, $<1,1,2,3,3,5,2>,<0,0,1,1,1,1,0\rangle$, $<6,9,4,2,3,5>$ (The last is an example with a cyclic shift of 3).
- Zero-one bitonic sequences have the form $0^{\mathrm{i}} 10^{\mathrm{j}}$ or $1^{\mathrm{i}} \mathrm{j}^{\mathrm{j}} \mathrm{k}^{\mathrm{k}}$ for nonnegative $\mathrm{i}, \mathrm{j}, \mathrm{k}$.

