Still More Fun Indicator Random Variables

CS255

Chris Pollett
Feb. 6, 2006.

Outline

- Finishing up the Birthday Paradox
- Balls and Bins
- Streaks
- The On-Line Hiring Problem

Finishing up the Birthday Paradox

- Last day we used probabilities to answer the question how many people need to be in the same room for the odds of two people to share a birthday to exceed 50% ?
- Today, we analyze the problem in terms of indicator variables.
- As indicator variables provide a convenient way to convert from probabilities to expectations, we will ask how many people need to be in the room before the expected number of shared birthdays exceeds 1 ?

Birthday Paradox continued

$$
\begin{aligned}
& \begin{aligned}
& \mathrm{X}_{\mathrm{ij}}=\mathrm{I}\{\text { person } \mathrm{i} \text { and person } \mathrm{j} \text { have the same birthday }\} \\
&=1 \text { if person } \mathrm{i} \text { and person } \mathrm{j} \text { have the same birthday; } \\
&=0 \text { otherwise. } \\
& \begin{aligned}
\mathrm{E}\left[\mathrm{X}_{\mathrm{ij}}\right] & =\operatorname{Pr}\{\text { person } \mathrm{i} \text { and person } \mathrm{j} \text { have the same birthday }\}=1 / \mathrm{n}
\end{aligned} \\
& \text { Let } \mathrm{X}=\sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{i j} \\
& \text { So } \mathrm{E}[\mathrm{X}]=E\left[\sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{i j}\right] \quad \begin{array}{l}
\text { Using linearity of } \\
\text { expectations. }
\end{array} \\
&=\sum_{i=1}^{k} \sum_{j=i+1}^{k} E\left[X_{i, j}\right] \\
&=\binom{k}{2} \frac{1}{n}=\frac{k(k-1)}{2 n} \quad \text { When } \mathrm{n}=365, \text { this is }>1 \text { if } \\
& \mathrm{k}=28
\end{aligned}
\end{aligned}
$$

Balls and Bins

- Consider the process of tossing identical balls into b bins.
- Tosses will be assumed to be independent and any ball is equally likely to end up in any bin.
- The odds of ending up in a particular bin are thus $1 / b$.
- Successfully, landing in a given bin can be viewed as a so-called Bernoulli trial. A Bernoulli trial is an experiment with two possible outcomes.
- Balls and bins arguments are useful for modeling a variety of processes in computer science such as hashing.

More Balls and Bins

- We can ask a variety of question about the ball tossing process:
- How many balls fall in a given bin?
- Since ball tossing into a given bin is a Bernoulli trial, the odds of k successes given n tosses follows the binomial distribution $b(k ; n$, $\left.x_{\text {in_bin }}\right)$, where $x_{\text {in_bin }}=\operatorname{Pr}\{$ ball in $\operatorname{bin}\}=1 / b . \mathrm{x}_{\text {not_in_bin }}=\operatorname{Pr}\{$ ball not in $\operatorname{bin}\}=1-1 / b$.
- The sample space for the binomial distribution is $\{1,2, \ldots\}$ the possible values for k.
- The probability of a given event can be determined by considering $\left(x_{\text {in_bin }}+x_{\text {not_in_bin }}\right)^{n}=(1 / b+(1-1 / b))^{n}=1$. Expanding this, the term
- Let X be a random variable whose value is the number of tosses to fall in the bin. Then $\mathrm{E}[X]=$

$$
\sum_{k=1}^{n} k \cdot\binom{n}{k}\left(\frac{1}{b}\right)^{k} \cdot\left(1-\frac{1}{b}\right)^{n-k}=n\left(\frac{1}{b}\right) \sum_{k=1}^{n}\binom{n-1}{k-1}\left(\frac{1}{b}\right)^{k-1} \cdot\left(1-\frac{1}{b}\right)^{n-k}=\frac{n}{b} \sum_{k=0}^{n-1}\binom{n-1}{k}\left(\frac{1}{b}\right)^{k} \cdot\left(1-\frac{1}{b}\right)^{(n-1)-k}=\frac{n}{b}
$$

Yet More Balls and Bins

- How many balls must one toss on average, until a given bin contains a ball?
- We can have as our sample space $\{1,2, .$.$\} where an event k$ is supposed to indicate that the first time one got into bin was the k th toss. If X is the number of trials to succeed $\operatorname{Pr}\{X=k\}=(1-$ $1 / b)^{k-1 *} 1 / b$. This is a geometric distribution.

$$
E[X]=\sum_{k=1}^{\infty} k(1-1 / b)^{k-1} \cdot(1 / b)
$$

$$
\begin{aligned}
& \begin{aligned}
& \sum_{k=0}^{\infty} q^{k}=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} q^{k} \\
&=\lim _{n \rightarrow \infty} \frac{1-q^{n}}{1-q} \\
&=\frac{1}{1-q} \\
& \text { As }(1-q) \sum_{k=0}^{n} q^{k}=1-q^{n}
\end{aligned}=(1 / b) \sum_{k=1}^{\infty} k(1-1 / b)^{k-1}, \text { let } q=1-1 / b \\
&=(1 / b) \frac{d}{d q} \sum_{k=0}^{\infty} q^{k}=(1 / b) \frac{d}{d q} \frac{1}{1-q}=(1 / b) \frac{1}{(1-q)^{2}} \\
&=(1-(1-1 / b))^{2}
\end{aligned}=b^{2} / b=b
$$

Even More Balls and Bins

- How many balls must one toss on average, until every bin contains at least one ball?
- Call a toss into an empty bin a hit.
- We want to know the expected number n of tosses to get b hits.
- Can partition the n tosses into stages where the ith stage is the number of tosses after the ($i-1$)st hit until the i th hit. The first stage is thus just the first toss.
- The probability of there being a hit for a given toss in stage i is (b $i+1) / b$
- Let n_{i} denote the number of tosses in stage i. So the number of tosses to get b hits is $n=\sum_{i=1}^{b} n_{i}$
- Each random variable n_{i} follows a geometric distribution with probability of success $(b-i+1) / b$. Using the same kind of calculation as the last slide $\mathrm{E}\left[n_{i}\right]=b /(b-i+1)$.

This sum can be bounded by the integral of $1 / \mathrm{i}$.

- Using linearity of expectation: $\mathrm{E}[\mathrm{n}]=$

$$
E\left[\sum_{i=1}^{b} n_{i}\right]=\sum_{i=1}^{b} E\left[n_{i}\right]=\sum_{i=1}^{b} \frac{b}{b-i+1}=b \sum_{i=1}^{b} \frac{1}{i}=b(\ln b+O(1))
$$

- This problem is also called the coupon collector's problem.

Streaks

- Suppose you flip a fair coin n times. What is the longest streak of consecutive heads you expect to see?
- The book gives a nice argument which we will skip that the answer is $\Theta(\log n)$ which we'll skip.

The On-Line Hiring Problem

- Suppose we don't want to interview everyone in the hiring problem to find the best candidate.
- Suppose further we only want to hire once.
- So we follow the following algorithm:

On-Line-Maximum (k, n)

1. bestscore $=$-infinity
2. for $i<-1$ to k
3. do if $\operatorname{score}(i)>$ bestscore
4. then bestscore <-- score(i)
5. for $i<--k+1$ to n
6. do if $\operatorname{score}(i)>$ bestscore then return i
7. return n

- We want to determine the odds of getting the best candidate as a function of k.

More on the On-line Hiring Problem

- Let $M(j)=\max _{1<=i<=j}\{\operatorname{score}(i)\}$
- Let S be the event of choosing the best qualified applicant.
- Let S_{i} be the event the the i th applicant is the best qualified. So the S_{i} 's are disjoint events.
- Note we never succeed in choosing the best candidate if $i=1, . ., \mathrm{k}$. So $\operatorname{Pr}\left\{S_{i}\right\}=0$ for these i.

$$
\operatorname{Pr}\{S\}=\sum_{i=k+1}^{n} \operatorname{Pr}\left\{S_{i}\right\}
$$

- To succeed at the best qualified applicant must be in location i. Call this event $B_{i .}$ The algorithm also can't select any candidate from among $k+1$ through $i-1$, which happens only if, for j in this range $\operatorname{score}(j)<$ bestscore. So $\operatorname{score}(k+1), . ., \operatorname{score}(i-1)<M(k)$. Let O_{i} denote this second event.

Still More on the On-Line hiring Problem

- O_{i} only depends on the relative order of the values in the positions 1 through i 1.
- B_{i} depends only on whether the value at position i is greater than all other positions.
- This turn out to imply B_{i} and O_{i} are independent.
- So $\operatorname{Pr}\left\{S_{i}\right\}=\operatorname{Pr}\left\{B_{i} \cap O_{i}\right\}=\operatorname{Pr}\left\{B_{i}\right\} \operatorname{Pr}\left\{O_{i}\right\}=1 / n^{*} k /(i-1)$.
$-\operatorname{Pr}\left\{B_{i}\right\}=1 / n$ since the best value is equally likely to be in any position
$-\operatorname{Pr}\left\{O_{i}\right\}=k / i-1$ as the maximum value in position $1 . . i-1$ is equally likely to be in any position. So the odds its in the among k, is $k / i-1$.
- Thus we $\operatorname{Pr}\{\mathrm{S}\}=\sum_{i=k+1}^{n} \operatorname{Pr}\left\{S_{i}\right\}=\sum_{i=k+1}^{n} \frac{k}{n(i-1)}=\frac{k}{n} \sum_{i=k+1}^{n} \frac{1}{i-1}=\frac{k}{n} \sum_{i=k}^{n-1} \frac{1}{i}$
- Bounding the sum in terms of the integral for $1 / \mathrm{i}$. We get

$$
\frac{k}{n}(\ln n-\ln k) \leq \operatorname{Pr}\{S\} \leq \frac{k}{n}(\ln (n-1)-\ln (k-1))
$$

- Differentiating with respect to k and setting to 0 one can show this is maximized when $k=n / e$.

