
Still More Fun Indicator Random
Variables

CS255
Chris Pollett
Feb. 6, 2006.

Outline

• Finishing up the Birthday Paradox
• Balls and Bins
• Streaks
• The On-Line Hiring Problem

Finishing up the Birthday
Paradox

• Last day we used probabilities to answer the
question how many people need to be in the same
room for the odds of two people to share a
birthday to exceed 50%?

• Today, we analyze the problem in terms of
indicator variables.

• As indicator variables provide a convenient way to
convert from probabilities to expectations, we will
ask how many people need to be in the room
before the expected number of shared birthdays
exceeds 1?

Birthday Paradox continued
Xij = I{person i and person j have the same birthday}
 = 1 if person i and person j have the same birthday;
 = 0 otherwise.
E[Xij] = Pr{person i and person j have the same birthday} = 1/n

Let X=

So E[X]

When n=365, this is >1 if
k=28

Using linearity of
expectations.

Balls and Bins
• Consider the process of tossing identical balls into

b bins.
• Tosses will be assumed to be independent and any

ball is equally likely to end up in any bin.
• The odds of ending up in a particular bin are thus

1/b.
• Successfully, landing in a given bin can be viewed

as a so-called Bernoulli trial. A Bernoulli trial is
an experiment with two possible outcomes.

• Balls and bins arguments are useful for modeling
a variety of processes in computer science such as
hashing.

More Balls and Bins
• We can ask a variety of question about the ball tossing process:

– How many balls fall in a given bin?
• Since ball tossing into a given bin is a Bernoulli trial, the odds of k

successes given n tosses follows the binomial distribution b(k;n,
xin_bin), where xin_bin=Pr{ball in bin} = 1/b. xnot_in_bin= Pr{ball not in
bin}= 1-1/b.

• The sample space for the binomial distribution is {1,2,…} the
possible values for k.

• The probability of a given event can be determined by considering
(xin_bin + xnot_in_bin)n=(1/b +(1-1/b))n=1. Expanding this, the term

represents the probability of getting k balls after n tosses.
• Let X be a random variable whose value is the number of

tosses to fall in the bin. Then E[X]=

k (xin_bin + xnot_in_bin)
n-1

Yet More Balls and Bins

– How many balls must one toss on average, until a given bin
contains a ball?

• We can have as our sample space {1, 2, ..} where an event k is
supposed to indicate that the first time one got into bin was the
kth toss. If X is the number of trials to succeed Pr{X=k} = (1-
1/b)k-1*1/b. This is a geometric distribution.

Even More Balls and Bins

– How many balls must one toss on average, until every bin contains at least
one ball?

• Call a toss into an empty bin a hit.
• We want to know the expected number n of tosses to get b hits.
• Can partition the n tosses into stages where the ith stage is the number

of tosses after the (i-1)st hit until the ith hit. The first stage is thus just
the first toss.

• The probability of there being a hit for a given toss in stage i is (b-
i+1)/b

• Let ni denote the number of tosses in stage i. So the number of tosses
to get b hits is

• Each random variable ni follows a geometric distribution with
probability of success (b-i+1)/b. Using the same kind of calculation
as the last slide E[ni]=b/(b-i+1).

• Using linearity of expectation: E[n] =

• This problem is also called the coupon collector’s problem.

This sum can be bounded by the integral of 1/i.

Streaks

• Suppose you flip a fair coin n times. What
is the longest streak of consecutive heads
you expect to see?
– The book gives a nice argument which we will

skip that the answer is Θ(log n) which we’ll
skip.

The On-Line Hiring Problem
• Suppose we don’t want to interview everyone in the hiring problem

to find the best candidate.
• Suppose further we only want to hire once.
• So we follow the following algorithm:

On-Line-Maximum(k,n)
1. bestscore = -infinity
2. for i <-- 1 to k
3. do if score(i) > bestscore
4. then bestscore <-- score(i)
5. for i <-- k+1 to n
6. do if score(i) > bestscore then return i
7. return n

• We want to determine the odds of getting the best candidate as a
function of k.

 More on the On-line Hiring Problem

• Let M(j) = max1<=i<=j{score(i)}
• Let S be the event of choosing the best qualified applicant.
• Let Si be the event the the ith applicant is the best qualified. So the Si’s

are disjoint events.
• Note we never succeed in choosing the best candidate if i=1,..,k. So

Pr{Si}=0 for these i.

• To succeed at the best qualified applicant must be in location i. Call
this event Bi. The algorithm also can’t select any candidate from among
k+1 through i-1, which happens only if, for j in this range score(j) <
bestscore. So score(k+1),..,score(i-1) < M(k). Let Oi denote this
second event.

Still More on the On-Line hiring
Problem

• Oi only depends on the relative order of the values in the positions 1 through i-
1.

• Bi depends only on whether the value at position i is greater than all other
positions.

• This turn out to imply Bi and Oi are independent.
• So Pr{Si} = Pr{Bi∩ Oi}=Pr{Bi}Pr{Oi} = 1/n*k/(i-1).

– Pr{Bi} =1/n since the best value is equally likely to be in any position
– Pr{Oi} =k/i-1 as the maximum value in position 1.. i-1 is equally likely to

be in any position. So the odds its in the among k, is k/i-1.
• Thus we Pr{S} =

• Bounding the sum in terms of the integral for 1/i. We get

• Differentiating with respect to k and setting to 0 one can show this is
maximized when k= n/e.

