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Outline

• More Modular Arithmetic



More on Groups Defined by Modular
Arithmetic

• We often are lazy and write b for the element [b]n.
• We further write b-1 for the inverse of b mod n. For example, -2  = (5)-1 mod

11.
• The size of Zn

* is denoted by φ(n), called Euler’s phi function.
• It satisfies the equation

• If (S, ⊕), then a subset S’ of S that is also a group under ⊕, is called a
subgroup of S.

Theorem. If  (S, ⊕) is a finite group and S’ is any nonempty set of S closed under
⊕, then (S’, ⊕) is a subgroup of (S’, ⊕).

Theorem. (Lagrange) If (S, ⊕) is a finite group and (S’, ⊕) is a subgroup, then |S’|
is a divisor of |S|.



Subgroups Generated By an Element

• Given a subset X of a group G. Let <X> be the closure of X under the
group operation.

• Where G is finite <X> is a finite group called the group generated by X.
• In the case where X={b} is a single element, then we write <b>.
• So <b> = {b(k) : k>=1} where b(k) means b⊕b …⊕b  (k times).
• For example in Z6, <2>={0,2,4}; in Z*

7, <2> = {1, 2, 4}.
• The order of a in S, denoted by ord(a), is defined as the smallest positive

integer t such that a(t)=e.
Theorem. For any finite group (S, ⊕) and any a∈S, ord(a) = |<a>|.
Proof. Let t=ord(a). Since a(t) = e and a(t+k)= a(t) ⊕a(k)=a(k)

 for k ≥1, if i>t, then
a(i)=a(j) for some j <t. Thus, no elements ar�e seen after a (t). So <a> ={a(1),
a(2),…a(t)} and |<a>|≤t. To see |<a>| ≥ t, suppose a(i)=a(j) for some i,j,
satisfying 1≤ i < j ≤ t. Then,  a(i+k)=a(j+k) for k>=0. But this implies a(i+(t-
j))=a(j+(t-j))=e, a contradiction as i+(t-j) <t. So all of of a(i) are distinct.



Some Corollaries

Corollary. The sequence a(1), a(2), .. is periodic with
period ord(a).

Corollary. If (S, ⊕) is a finite group with identity e,
then for all a in S, a(|s|)=e.



Solving Modular Linear Equations

• We now look at the problem of finding solutions to the equation
ax ≡ b (mod n)
where a>0 and n>0.

• This is used in one of the steps in the RSA algorithm.
• Let’s start with Zn.
Theorem (%%). For any positive integers a and n, if d=gcd(a,n) then
<a> = <d> in Zn. Thus, |<a>| =n/d.
Proof. We begin by showing that d is <a>. Recall that Extended-Euclid(a,n)

produces integers x’ and y’ such that ax’+ny’ =d. Thus ax’ ≡ d (mod n), so d is
in <a>. Since d is in <a> it follows that every multiple of d is in <a>. So <d> is
contained in <a>. But now if m∈<a>, then m = ax mod n. So m = ax+ny.
Since d | a and d | n, d | m; so m∈<d>. Therefore <a>⊆<d>.

Corollary. The equation ax ≡ b (mod n) is solvable for the unknown x iff gcd(a,n)
| b.



More on Solving Linear Equations

Corollary.  The equation ax ≡ b (mod n) either has d
distinct solutions modulo n, where d = gcd(a,n), or
it has not solutions.

Proof. If ax ≡ b (mod n) has a solution, then b ∈
<a>. As ord(a)=|<a>|, by Theorem (%%), the
sequence Seq ={ai mod n | i= 0, 1,…,} is periodic
with period |<a>| = n/d. So if b ∈ <a>, then b
appears exactly d times in Seq.


