Modular Arithmetic

CS255
Chris Pollett
Apr. 5, 2006.

Outline

- More Modular Arithmetic

More on Groups Defined by Modular Arithmetic

- We often are lazy and write b for the element $[b]_{n}$.
- We further write b^{-1} for the inverse of $b \bmod n$. For example, $-2=(5)^{-1} \bmod$ 11.
- The size of $\mathrm{Z}_{\mathrm{n}}{ }^{*}$ is denoted by $\phi(\mathrm{n})$, called Euler's phi function.
- It satisfies the equation

$$
\phi(n)=n \prod_{p \mid n}(1-1 / p)
$$

- If (S, \oplus), then a subset S^{\prime} of S^{\prime} that is also a group under \oplus, is called a subgroup of S.

Theorem. If (S, \oplus) is a finite group and S^{\prime} is any nonempty set of S closed under \oplus, then $\left(\mathrm{S}^{\prime}, \oplus\right)$ is a subgroup of $\left(\mathrm{S}^{\prime}, \oplus\right)$.
Theorem. (Lagrange) If (S, \oplus) is a finite group and $\left(S^{\prime}, \oplus\right)$ is a subgroup, then $\left|S^{\prime}\right|$ is a divisor of ISI.

Subgroups Generated By an Element

- Given a subset X of a group G. Let $<\mathrm{X}>$ be the closure of X under the group operation.
- Where G is finite $\langle\mathrm{X}\rangle$ is a finite group called the group generated by X .
- In the case where $X=\{b\}$ is a single element, then we write $\langle b\rangle$.
- \quad So $\langle b\rangle=\left\{b^{(k)}: k>=1\right\}$ where $b^{(k)}$ means $b \oplus b \ldots \oplus b$ (k times).
- For example in $\mathrm{Z}_{6},<2>=\{0,2,4\}$; in $\mathrm{Z}^{*}{ }_{7},<2>=\{1,2,4\}$.
- The order of a in S , denoted by ord(a), is defined as the smallest positive integer t such that $\mathrm{a}^{(\mathrm{t})}=\mathrm{e}$.
Theorem. For any finite group (S, \oplus) and any $\mathrm{a} \in \mathrm{S}$, ord $(\mathrm{a})=\mid<\mathrm{a}>1$.
Proof. Let $t=o r d(a)$. Since $a^{(t)}=e$ and $a^{(t+k)}=a^{(t)} \oplus a^{(k)}=a^{(k)}$ for $k \geq 1$, if $i>t$, then $a^{(i)}=a^{(j)}$ for some $j<t$. Thus, no elements are seen after $a^{(t)}$. So $<a>=\left\{a^{(1)}\right.$, $\left.a^{(2)}, \ldots a^{(t)}\right\}$ and $|<a>| \leq t$. To see $|<a>| \geq t$, suppose $a^{(i)}=a^{(j)}$ for some i, j, satisfying $1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{t}$. Then, $\mathrm{a}^{(\mathrm{i}+\mathrm{k})}=\mathrm{a}^{(\mathrm{j}+\mathrm{k})}$ for $\mathrm{k}>=0$. But this implies $\mathrm{a}^{(\mathrm{i}+(\mathrm{t}-}$ $j)=a^{(j+(t-j))}=e$, a contradiction as $i+(t-j)<t$. So all of of $a^{(i)}$ are distinct.

Some Corollaries

Corollary. The sequence $a^{(1)}, a^{(2)}, .$. is periodic with period ord(a).

Corollary. If (S, \oplus) is a finite group with identity e, then for all a in S, $\mathrm{a}^{(\mathrm{ss})}=\mathrm{e}$.

Solving Modular Linear Equations

- We now look at the problem of finding solutions to the equation $\mathrm{ax} \equiv \mathrm{b}(\bmod \mathrm{n})$ where $\mathrm{a}>0$ and $\mathrm{n}>0$.
- This is used in one of the steps in the RSA algorithm.
- Let's start with Z_{n}.

Theorem (\% \%). For any positive integers a and n, if $d=\operatorname{gcd}(a, n)$ then $<\mathrm{a}>=<\mathrm{d}>$ in Z_{n}. Thus, $|<\mathrm{a}>|=\mathrm{n} / \mathrm{d}$.
Proof. We begin by showing that d is $\langle\mathrm{a}\rangle$. Recall that Extended-Euclid(a,n)
produces integers x^{\prime} and y^{\prime} such that ax' + ny' $=$ d. Thus $a x$ ' $\equiv d(\bmod n)$, so d is in <a>. Since d is in <a> it follows that every multiple of d is in $\langle a\rangle$. So $\langle d\rangle$ is contained in $\langle\mathrm{a}\rangle$. But now if $\mathrm{m} \in<\mathrm{a}\rangle$, then $\mathrm{m}=a x \bmod \mathrm{n}$. So $m=a x+n y$.
Since $\mathrm{d} \mid \mathrm{a}$ and $\mathrm{d}|\mathrm{n}, \mathrm{d}| \mathrm{m}$; so $\mathrm{m} \in<\mathrm{d}\rangle$. Therefore $<\mathrm{a}\rangle \underline{\text { C }}<\mathrm{d}>$.
Corollary. The equation $\mathrm{ax} \equiv \mathrm{b}(\bmod \mathrm{n})$ is solvable for the unknown x iff $\operatorname{gcd}(\mathrm{a}, \mathrm{n})$ Ib.

More on Solving Linear Equations

Corollary. The equation $a x \equiv b(\bmod n)$ either has d distinct solutions modulo n, where $d=\operatorname{gcd}(a, n)$, or it has not solutions.

Proof. If $a x \equiv b(\bmod n)$ has a solution, then $b \in$ $<a\rangle$. As ord $(a)=|<a\rangle$, by Theorem (\%\%), the sequence $\operatorname{Seq}=\{a i \bmod n \mid i=0,1, \ldots$,$\} is periodic$ with period $|<a>|=n / d$. So if $b \in<\mathrm{a}>$, then b appears exactly d times in Seq.

