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e More Modular Arithmetic



More on Groups Detfined by Modular
Arithmetic

* We often are lazy and write b for the element [b] .

e We further write b-! for the inverse of b mod n. For example, -2 = (5)! mod
11.

e The size of Z_"is denoted by ¢(n), called Euler’s phi function.
e [t satisfies the equation .
1 ¢(n)=n]](1-1/p)

oin

o If (S, ®), then a subset S’ ot S that 1s also a group under @, is called a
subgroup of S.

Theorem. If (S, @) is a finite group and S’ is any nonempty set of S closed under
@, then (S°, @) is a subgroup of (S’, ®).

Theorem. (Lagrange) If (S, @) is a finite group and (S’, ®) is a subgroup, then IS’
is a divisor of ISI.



Subgroups Generated By an Element

. Given a subset X of a group G. Let <X> be the closure of X under the
group operation.

. Where G is finite <X> is a finite group called the group generated by X.

. In the case where X={b} is a single element, then we write <b>.

. So <b> = {b® : k>=1} where b® means b®b ...®b (k times).

. For example in Z, <2>={0,2,4}; in Z*,, <2>={1, 2, 4}.

. The order of a in S, denoted by ord(a), is defined as the smallest positive
integer t such that a=e.

Theorem. For any finite group (S, ®) and any aES, ord(a) = I<a>l.

Proof. Let t=ord(a). Since a® = e and a™*0= a® @a®=a® for k >1, if i>t, then
a=al) for some j <t. Thus, no elements arElseen after a ®. So <a>={aV),
a?,...a®} and I<a>I<t. To see I<a>| > t, suppose aV=al for some 1i,j,
satisfying 1<i < j <t. Then, ai*©0=a0+k for k>=0. But this implies al+®
M=al+tD)=¢, a contradiction as i+(t-j) <t. So all of of a) are distinct.



Some Corollaries

Corollary. The sequence a‘l), a®, .. is periodic with
period ord(a).

Corollary. If (S, @) is a finite group with identity e,
then for all ain S, a(sh=e,



Solving Modular Linear Equations

e We now look at the problem of finding solutions to the equation
ax =b (mod n)
where a>0 and n>0.
e This is used in one of the steps in the RSA algorithm.
* Let’s start with Z .
Theorem (% % ). For any positive integers a and n, if d=gcd(a,n) then
<a>=<d>in Z . Thus, I<a>l =n/d.

Proof. We begin by showing that d is <a>. Recall that Extended-Euclid(a,n)
produces integers x’ and y’ such that ax’+ny’ =d. Thus ax’ = d (mod n), so d is
in <a>. Since d is in <a> it follows that every multiple of d is in <a>. So <d> is
contained in <a>. But now if m&<a>, then m = ax mod n. So m = ax+ny.
Since dlaand d | n, d | m; so m&<d>. Therefore <a>C<d>.

Corollary. The equation ax = b (mod n) is solvable for the unknown x iff gcd(a,n)
| b.



More on Solving Linear Equations

Corollary. The equation ax = b (mod n) either has d
distinct solutions modulo »n, where d = gcd(a,n), or
1t has not solutions.

Proof. If ax = b (mod n) has a solution, then b €
<a>. As ord(a)=l<a>l, by Theorem (% %), the
sequence Seq ={ai mod n 1 i=0, 1,...,} 1s periodic
with period |<a>l = n/d. So if b € <a>, then b
appears exactly d times in Seq.



