Modular Arithmetic

CS255 Chris Pollett Apr. 5, 2006.

Outline

• More Modular Arithmetic

More on Groups Defined by Modular Arithmetic

• We often are lazy and write b for the element $[b]_n$.

It satisfies the equation

٠

- We further write b^{-1} for the inverse of b mod n. For example, $-2 = (5)^{-1} \mod 11$.
- The size of Z_n^* is denoted by $\phi(n)$, called Euler's phi function.

$$\phi(n) = n \prod_{i=1}^{n} (1 - 1/p)$$

- If (S, ⊕), then a subset S' of S that is also a group under ⊕, is called a subgroup of S.
- **Theorem.** If (S, \oplus) is a finite group and S' is any nonempty set of S closed under \oplus , then (S', \oplus) is a subgroup of (S', \oplus) .
- **Theorem**. (Lagrange) If (S, \oplus) is a finite group and (S', \oplus) is a subgroup, then |S'| is a divisor of |S|.

Subgroups Generated By an Element

- Given a subset X of a group G. Let <X> be the closure of X under the group operation.
- Where G is finite $\langle X \rangle$ is a finite group called the group generated by X.
- In the case where $X=\{b\}$ is a single element, then we write $\langle b \rangle$.
- So $\langle b \rangle = \{b^{(k)} : k \rangle = 1\}$ where $b^{(k)}$ means $b \oplus b \dots \oplus b$ (k times).
- For example in Z_6 , <2>={0,2,4}; in Z_7^* , <2> = {1, 2, 4}.
- The **order** of a in S, denoted by ord(a), is defined as the smallest positive integer t such that a^(t)=e.

Theorem. For any finite group (S, \oplus) and any $a \in S$, $ord(a) = |\langle a \rangle|$.

Proof. Let t=ord(a). Since $a^{(t)} = e$ and $a^{(t+k)} = a^{(t)} \oplus a^{(k)} = a^{(k)}$ for $k \ge 1$, if i>t, then $a^{(i)} = a^{(j)}$ for some j <t. Thus, no elements are seen after a ^(t). So <a> ={a⁽¹⁾, $a^{(2)}, \ldots a^{(t)}$ } and $|<a>|\le t$. To see $|<a>| \ge t$, suppose $a^{(i)} = a^{(j)}$ for some i,j, satisfying $1 \le i < j \le t$. Then, $a^{(i+k)} = a^{(j+k)}$ for k>=0. But this implies $a^{(i+(t-j))} = a^{(j+(t-j))} = e$, a contradiction as i+(t-j) <t. So all of a are distinct.

Some Corollaries

Corollary. The sequence $a^{(1)}$, $a^{(2)}$, ... is periodic with period ord(a).

Corollary. If (S, \oplus) is a finite group with identity e, then for all a in S, $a^{(|s|)}=e$.

Solving Modular Linear Equations

 We now look at the problem of finding solutions to the equation ax = b (mod n)

where a>0 and n>0.

- This is used in one of the steps in the RSA algorithm.
- Let's start with Z_n .

Theorem (%%). For any positive integers a and n, if d=gcd(a,n) then

 $\langle a \rangle = \langle d \rangle$ in Z_n . Thus, $|\langle a \rangle| = n/d$.

- **Proof.** We begin by showing that d is <a>. Recall that Extended-Euclid(a,n) produces integers x' and y' such that ax'+ny' =d. Thus ax' = d (mod n), so d is in <a>. Since d is in <a> it follows that every multiple of d is in <a>. So <d> is contained in <a>. But now if m \in <a>, then m = ax mod n. So m = ax+ny. Since d | a and d | n, d | m; so m \in <d>. Therefore <a> \subseteq <d>.
- **Corollary.** The equation ax = b (mod n) is solvable for the unknown x iff gcd(a,n) | b.

More on Solving Linear Equations

- **Corollary.** The equation $ax \equiv b \pmod{n}$ either has d distinct solutions modulo *n*, where $d = \gcd(a,n)$, or it has not solutions.
- **Proof.** If $ax \equiv b \pmod{n}$ has a solution, then $b \in \langle a \rangle$. As $\operatorname{ord}(a) = |\langle a \rangle|$, by Theorem (%%), the sequence $\operatorname{Seq} = \{ai \mod n \mid i = 0, 1, \ldots,\}$ is periodic with period $|\langle a \rangle| = n/d$. So if $b \in \langle a \rangle$, then b appears exactly d times in Seq.