More NP-complete Problems

CS255
Chris Pollett
May 3, 2006.

Outline

- More NP-Complete Problems

Hamiltonian Cycle

- Recall a hamiltonian cycle is a permutation of the vertices $v_{i-1}, \ldots, v_{i-\mathrm{n}}$ of a graph G so that there is an edge between $\left\{\bar{v}_{i_{-} j}, v_{i_{-j}+1}\right\}$ for each j as well an edge $\left\{v_{i_{-} \mathrm{n}}, v_{i_{-} 1}\right\}$.
- Let HAM-CYCLE be the language $\{\langle G\rangle \mid G$ contains a hamiltonian cycle $\}$.
Theorem. HAM-CYCLE is NP-complete.
Proof. First, given a permutation of the vertices, we can in polynomial time verify whether or not it is a hamiltonian cycle. So HAM-CYCLE is in NP. To see it is NPcomplete, we show VERTEX-COVER \leq_{p} HAM-CYCLE. Given a graph G and an integer k , we need to make a new graph G^{\prime} which has a hamiltonian cycle iff the original had a vertex cover of size.

We will make use of the following widget:

Proof cont'd

Here are some paths which visit each vertex in the widget
[u, v, 6]

For each edge $\{u, v\}$ in the original graph, the graph G^{\prime} contains one copy of the widget $W_{u v}$ (i.e, $W_{u v}$ and $W_{v u}$ are the same widget) and we denote the edges of the widget by $[u, v, i]$ or $[v, u, i]$ according to if they are on the left or right side. Only the tops and bottoms of widgets will be connected to the rest of the graph G^{\prime}. In our construction, a cycle must visit each widget and there are exactly three different ways (as shown above) one could visit all the vertices of the widget: start on the left side, the right side, or do the two sides separately. In addition to the vertices of the widgets, we will have selector vertices, $s_{1}, .$. , s_{k}. The edges chosen in these selector vertices will correspond to the k vertices of the vertex cover in G. We also have two additional types of edges besides those in the widgets that we describe on the next slide.

Yet More Proof.

- For each $u \in V$ of G we add edges to form a path containing all widgets corresponding to edges incident on u in G. To do this we add the edges :

$$
\left\{\left(\left[u, u^{(i)}, 6\right],\left[u, u^{(i+1)}, 1\right] \mid u \in V\right\}\right.
$$

So we can construct a path from $\left[u, u^{(1)}, 1\right]$ to $\left[u, u^{(\operatorname{deg}(u))}, 6\right]$ using these additional edges.

- The second kind of additional edges are of the form

$$
\begin{aligned}
& \left\{\left(s_{i},\left[u, u^{(1)}, 1\right]\right) \mid \mathrm{u} \text { is in } \mathrm{v} \text { and } 1 \leq \mathrm{j} \leq \mathrm{k}\right\} \cup \\
& \quad\left\{\left(s_{i},\left[u, u^{(\operatorname{deg}(u)}, 6\right] \mid u \text { is in } v \text { and } 1 \leq j \leq k\right\} .\right.
\end{aligned}
$$

If both u and $u^{(i)}$ are in a vertex cover of G then traverse as

Even More Proof.

- If $G=(V, E)$ then notice the size of a widget is constant and we have $|E|$ widgets.
- We also have only k selector vertices.
- There are at most sum of the degrees vertices of the first type
- There are at most $2 k|V|$ additional edges of the second type.
- So in all the new graph G^{\prime} will be polynomial size in G.
- Suppose G has a vertex cover $\left\{u_{1}, . . u_{\mathrm{k}}\right\}$. A Hamiltonian cycle in G^{\prime} can be obtained by starting at $i=1$ and for each i thereafter follow s_{i} to [$\left.u_{i}, u_{i}^{(1)}, 1\right]$ and then the path from the previous slide to $\left[u_{i}, u_{i}{ }^{\left(\operatorname{deg}\left(u_{-}\right)\right.}, 6\right]$. Then from here one can follow the edge $\left\{s_{i+1},\left[u_{i}, u_{i}^{\left(\operatorname{deg}\left(u_{-} i\right)\right.}, 6\right]\right\}$. Finally, one can following the edge $\left\{s_{1},\left[u_{k}, u_{k}^{\left(\operatorname{deg}\left(u_{-} k\right)\right.}, 6\right]\right\}$ back to the start.
- Since each edge in G is incident with one vertex in the vertex cover each widget will have all of vertices hit by this path if there is cover.
- On the other hand, if there is a hamiltonian cycle in G^{\prime} then
$\mathrm{V}^{*}=\left\{\mathrm{u} \in V \mid\left\{s_{\mathrm{j}},\left[u, u^{(1)}, 1\right]\right\}\right.$ is in the cycle for some $\left.\left.1 \leq j \leq k\right\}\right\}$
will be a vertex cover of size k in G.

The Traveling Salesman Problem

- In this problem a salesman must visit n cities. Between each pair of cities $\{i, j\}$ there is a cost $c_{i j}$.
- We want to know if it is possible for the salesman to see each city exactly once (except twice for the start city) with cost less than k ?
$T S P=\{\langle G, c, k\rangle \mid G$ is a complete graph c is the cost matrix, and k is an integer such that the travelling salesman has a tour of cost at most $k\}$
Theorem. TSP is NP-complete.
Proof. First given a tour we can verify if it satisfies the desired properties in polynomial time. So it is in NP. To see completeness we reduce $H A M-C Y C L E$ to it. Given an instance $G=(V, E)$ of hamiltonian cycle, we build an instance of TSP as follows. We first let G^{\prime} be the complete graph on the same vertices. Then we set $c_{i j}=0$ if $\{i, j\}$ is in E and $c_{i j}=1$ otherwise. Then $\left\langle G^{\prime}, c, 0>\right.$ is in TSP iff G was in HAMCYCLE.

