More on Number Theoretic Algorithms

CS255
Chris Pollett
Apr. 3, 2006.

Outline

- More Number Theory Definitions
- Euclid's Algorithm
- Modular Arithmetic

More Number Theory Definitions and Facts

- We say two numbers are relatively prime if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$.
- We say a list of integers $\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}$ are pairwise relatively prime if $\operatorname{gcd}\left(\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}\right)=1$ for $\mathrm{i} \neq \mathrm{j}$.
Theorem (**). If $\operatorname{gcd}(\mathrm{a}, \mathrm{p})=1$ and $\operatorname{gcd}(\mathrm{b}, \mathrm{p})=1$, then $\operatorname{gcd}(\mathrm{ab}, \mathrm{p})=1$.
Proof. We have $\mathrm{ax}+\mathrm{py}=1$ and $\mathrm{bx}{ }^{\prime}+\mathrm{py}{ }^{\prime}=1$. So $a b\left(x x^{\prime}\right)+\mathrm{p}\left(\mathrm{ybx} x^{\prime}+\mathrm{y}^{\prime} \mathrm{ax}\right.$ + pyy') $=1$ and the theorem follows.
Theorem. For all primes p, for all integers a, b, if plab then pla or plb or both.
Proof If plab but not plb and not pla. Then we know $\operatorname{gcd}(\mathrm{p}, \mathrm{a})=1$ and $\operatorname{gcd}(\mathrm{p}, \mathrm{b})=1 . \operatorname{Sog} \operatorname{gcd}(\mathrm{p}, \mathrm{ab})=1$ contradicting plab.
Fact. (Unique Factorization Theorem) A composite integer m can be written in exactlv one wav as a product of the form

$$
m=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{r}^{e_{r}}
$$

where $p_{1}<p_{2}<\cdots<p_{r}$ are primes and e_{i} are positive integers.

Towards Euclid's Algorithm

- It follows from the Unique Factorization Theorem that if:

$$
\begin{aligned}
a & =p_{1}^{e_{1}} e_{2}^{e_{2}} \cdots p_{r}^{e_{r}} \\
b & = \\
& p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{r}^{f_{r}} \\
& \text { then } \\
\operatorname{gcd}(a, b) & =p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \cdots p_{r}^{\min \left(e_{r}, f_{r}\right)}
\end{aligned}
$$

Theorem For any nonnegative integers a and any positive integer $b, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.
Proof Idea Show $\operatorname{gcd}(a, b) \mid \operatorname{gcd}(b, a \bmod b)$ and $\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{a}) \mid \operatorname{gcd}(\mathrm{a}, \mathrm{b})$ using that gcd divides any linear combination of its arguments.

Euclid's Algorithm

- The theorem of the last slide can be converted into Euclid's Algorithm for finding gcd:
Euclid (a, b) : if $b=0$ return a; else return Euclid(b, a mod b)
- Example:
$\operatorname{Euclid}(99,30)=\operatorname{Euclid}(30,9)=\operatorname{Euclid}(9,3)=$ $\operatorname{Euclid}(3,0)=3$.

Lemma

Lemma If $\mathrm{a}>\mathrm{b}>=1$ and the invocation $\operatorname{Euclid}(\mathrm{a}, \mathrm{b})$ performs $\mathrm{k}>=1$ recursive calls, then $a>=F_{k+2}$ and $b>=F_{k+1}$. Here F_{k} is the $k t h$ Fibonacci number.
Proof By induction on k. Let $k=1$. Then $b>=1=F_{2}$ and since $a>b, a>=2$ $=F_{3}$. So the statement is true. Since $b>(a \bmod b)$, in each recursive call the first argument will always be the larger number.
Assume statement is true for k-1, then try to show for k. Suppose Euclid(a,b) performs k calls. Well, this function then call Euclid(b, a mod b) which then makes k-1 calls. By the induction hypothesis we have $b>=F_{(k-1)+2}=F_{k+1}$ and $a \bmod b>=F_{k}$. Notice $a>=b+(a \bmod b)$ $>=F_{k+1}+F_{k}=F_{k+2}$.
Corollary (Lamé's Theorem) For any integer $k>=1$, if $a>b>=1$ and $b<$ $\mathrm{F}_{\mathrm{k}+1}$, then the call $\operatorname{Euclid}(\mathrm{a}, \mathrm{b})$ makes fewer than k recursive calls.

Extended Euclid

- Euclid's algorithm can be rewritten to get the x and y such that $a x+b y=d=\operatorname{gcd}(a, b)$.

Extended-Euclid(a,b)

1. if $b=0$ then return $(a, 1,0)$
2. $\left(d^{\prime}, x^{\prime}, y^{\prime}\right)=$ Extended-Euclid $(b, a \bmod b)$
3. $(d, x, y)=\left(d^{\prime}, y^{\prime}, x^{\prime}-\lfloor a / b\rfloor y^{\prime}\right)$
4. return (d, x, y)

Modular Arithmetic

- We will be interested in exploiting the operations of + and * with respect to arithmetic modulo some integer.
- This kind of structure is called a group. Formally,

Definition A group (S, \oplus) is a set together with a binary operation \oplus defined on S for which the following properties hold:

1. Closure: For all a, b in $\mathrm{S}, \mathrm{a} \oplus \mathrm{b}$ is in S .
2. Identity: There is an element e in S , called the identity of the group, such that $\mathrm{e} \oplus \mathrm{a}=\mathrm{a} \oplus \mathrm{e}=\mathrm{a}$ for every a in S .
3. Associativity: For all a, b, c in $S,(a \oplus b) \oplus c=a \oplus(b \oplus c)$.
4. Inverses: For each a in S, there exists a unique element b in S, called the inverse of a, such that $a \oplus b=b \oplus a=e$.

Example $(\mathbf{Z},+)$ is a group. If the set S is finite then the group is called a finite group. If the operation \oplus is commutative then the group is called an abelian group.

Groups defined by modular arithmetic

- Recall from last day $[\mathrm{a}]_{\mathrm{n}}=\{\mathrm{a}+\mathrm{kn} \mid$ for some integer k$\}$. This was an equivalence class for the equivalence relation $b \sim a$ iff $b-a=k n$ for some n. i.e., $b \equiv a \bmod n$.
- Let Z_{n} be the set $\left\{[b]_{n} \mid\right.$ for b an integer $\}$. Define $[a]_{n}+[b]_{n}=[a+b]_{n}$. Then last day, we argued on the board that $\left(Z_{n},+\right)$ is a finite abelian group.
- Let $Z_{n}{ }^{*}$ be the set $\left\{[b]_{n} \mid \operatorname{gcd}(b, n)=1\right\}$. Define $[a]_{n}{ }^{*}[b]_{n}=[a * b]_{n}$.

Theorem The system $\left(\mathrm{Z}_{\mathrm{n}}{ }^{*},{ }^{*}\right)$ is a finite abelian group.
Proof The set is obviously finite as it has fewer then n elements. Closure follows from Theorem $\left({ }^{* *}\right)$ on an earlier slide. $[1]_{\mathrm{n}}$ is easily seen to be an identity. To see the existence of inverses, let ($\mathrm{d}, \mathrm{x}, \mathrm{y}$) be the output of Extended-Euclid(a, $n)$. Then $\mathrm{d}=1$ since a in $\mathrm{Z}_{\mathrm{n}}{ }^{*}$ so $\mathrm{ax}+\mathrm{ny}=1$. So $\mathrm{ax} \equiv 1(\bmod n)$. So x is a's inverse. Associativety and commutativety follow from these properties for \mathbf{Z}.

More on Groups Defined by Modular Arithmetic

- We often are lazy and write b for the element $[b]_{n}$.
- We further write b^{-1} for the inverse of $b \bmod n$. For example, $-2=(5)^{-1} \bmod$ 11.
- The size of $\mathrm{Z}_{\mathrm{n}}{ }^{*}$ is denoted by $\phi(\mathrm{n})$, called Euler's phi function.
- It satisfies the equation

$$
\phi(n)=n \prod_{p \mid n}(1-1 / p)
$$

- If (S, \oplus), then a subset S^{\prime} of S^{\prime} that is also a group under \oplus, is called a subgroup of S .

Theorem. If (S, \oplus) is a finite group and S^{\prime} is any nonempty set of S closed under \oplus, then $\left(\mathrm{S}^{\prime}, \oplus\right)$ is a subgroup of $\left(\mathrm{S}^{\prime}, \oplus\right)$.
Theorem. If (S, \oplus) is a finite group and $\left(S^{\prime}, \oplus\right)$ is a subgroup, then $\left|S^{\prime}\right|$ is a divisor of S.

