
Still More Arithmetic Circuits

CS255
Chris Pollett
Mar. 1, 2006.

Outline

• Circuits for Multiplication
• Clocked Circuits

Grade School Multiplication

• Want a circuit which takes as input two n-
bit numbers a= <an-1, .. a0> and b=<bn-1,
...b0> and which outputs their at most 2n-bit
product, p = <p2n-1, .. p0>.

• The “grade school” algorithm first
computes the partial products m(i) =
a*bi*2i for each i from 0 to n-1. Then we
compute

Array Multipliers
• To make circuits for multiplication we will use an array multiplier.

This is a circuit which does three things:
1. Forms the partial products
2. Sums the partial products using carry save adders
3. Sums the two remaining numbers using either a ripple carry or

carry lookahead addition.
• To form the partial m(i) each input bit aj of a is AND’d with bi to

produce output bit m(i)
j+i of the partial product. The remaining bits

of the partial product are 0.
• Then we carry save add 0, m(0), m(1) to produce u(1) and v(1). To these

two outputs we add m(2) to get two outputs u(2) and v(2). We continue
in this until we get two 2n-1 bit numbers u(n-1) and v(n-1).

• Finally, we ripple carry or carry lookahead add these two numbers.

Analysis

• Each of these carry save additions only needs to operate on n-1 bits.
• It takes Θ(1) depth/time to do one carry save addition. We are doing

the additions of m(i)’s in series and there are n of them. So the total
time for this part Θ(n).

• Then if we do ripple carry addition we need a Θ(n) additional
depth/time. If use carry lookahead addition we need Θ(log n)
additional depth/time.

• So the total time is Θ(n).
• The circuit uses n2 AND gates and n2-n full adders. So the total size is

Θ(n2).
• We’d now like to make circuits that can do the above in Θ(log n) time.

Wallace-tree Multipliers
• A Wallace-tree allows us to parallelize the carry-save adder part of the

above circuit.
• It uses n/3 carry-save adders in parallel to convert the sum of n

numbers to the sum of 2n/3 numbers. To do this it carry-save adds
m(i), m(i+1), m(i+2) for each i = 0 , … n/3-1.

• It then recursively constructs a Wallace tree on the resulting 2n/3
numbers. This is recursed until only two numbers are left.

• So the depth satisfies the recurrence D(n) = 0 if n<=2; D(n) = 1 if n =3
and D(n) = D(2n/3) +1 if n>=4. So D(n) = Θ(log n).

• So if we use Wallace-tree multipliers and do the last addition using
carry-lookahead addition, the total depth of the circuit for
multiplication will be Θ(log n). Its size will again be Θ(n2).

Clocked Circuits
• In our circuit so far each element in the circuit is only used once

during the computation.
• We want to be able to reuse components more than once in practice in

real hardware.
• Allowing for this will tend to make our circuits much smaller.
• To do this we will introduce clocked circuits (aka sequential circuits)

and consider circuits for them.
• A clocked circuit consists of combinational circuitry together with one

or more registers (clocked memory elements).
• Each register in the circuit is controlled by a periodic signal (aka

clock). When the clock ticks, the register loads in and stores the value
at its inputs.

• In a globally clocked circuit, every register works off the same clock.
• We assume the delay of the combinational elements of our circuit is

less then the length of a tick.

Bit-serial addition
• Now suppose we want to do addition of two n-bit numbers

a, b on a clocked circuit.
• We can use a single full adder in the arrangement below.
• At time 0, we load the register with 0 and feed a0, b0 into

the inputs of the register.
• At time i, we load the register with the carry output of time

i-1, we store the sum si-1 to some external memory, and we
supply ai-1, bi-1 to the full adder’s inputs.

FA

register

ai-1 bi-1

ci-1ci

si-1

•The size is thus Θ(1).

•The time will be Θ(n)

Ripple-carry versus Bit-Serial
Addition

• Notice a ripple-carry adder is like a replicated bit-serial adder with
registers replaced by direct connections between combinational
elements.

• i.e., it is like an “unrolled” version of a bit-serial adder.
• In general, we can replace any clocked circuit by an equivalent

combinational circuit with the same asymptotic time delay by doing
this kind of unrolling.

• The clocked circuit has the advantage of fewer elements, but the
combinational has less control circuitry and will typically run faster
because it doesn’t have to wait for clock periods to end to propagate
values.

Linear Array Multipliers

• Our circuits for multiply above were of Θ(n2) size.
• We now investigate clocked multipliers which are of linear

size.
• The first such multiplier implements the Russian peasant’s

algorithm for multiplication.
• In this algorithm we make two columns one for the input

a, one for the input b.
• We then make rows where in a row, we shift right a by 1

(dropping the low order bit) and we shift left b by 1
(multiplying by 2). We keep making rows until the a
column contains just 1 (the high order bit of a).

• Then we add the b column for rows where the a column
was odd.

Russian Peasant Example

551
4641
2322
1164
589
2919
ba

1000100111
1110100001
1110100010
1110100100
1110101001
1110110011
ba

So very much like doing multiplication in binary except

we have compressed the format of the table.

Implement the Russian Peasant
Algorithm

• We use a clocked circuit consisting of a linear array of 2n cells.
• Each cell contains three registers.
• One register holds a bit from an a entry, one holds a bit from a b entry and one

holds a bit of the product p.
• We use superscripts to denote cell values at just before a time.

i.e., a(j) = <a2n-1
(j), … a0

(j)> for a just before time j.
• The invariant we will use is that a(j)*b(j) + p(j) =a*b.
• Initially, a(0) =a, b(0) =b, p(0) =0.
• The jth step of of the computation then does:

– If a(j) is odd, then add b into p: p(j+1)= b(j) + p(j) using ripple carry. (Adding
b(j) is all that needs to be done here as we’ll be shifting b below.) Other
wise, if a(j) is even, p(j+1)= p(j).

– Shift a right by one bit position
– Shift b left by one bit position.

• After n steps we output the result. So the size is Θ(n) and the runtime
is Θ(n2) as the addition in each time takes linear time.

Fast Linear Array Multipliers

• We want to reduce the time from Θ(n2) to Θ(n).
• To do this we modifier the above algorithm to use carry save addition.
• Our invariant is now a(j)*b(j) + u(j) + v(j) =a*b.
• Here u and v are the outputs of a full-adder.
• That is, if a(j) is odd then:

u(j+1)
i = parity(b(j)

i, u(j)
i, v(j)

i)
v(j+1)

i = majority(b(j)
i-1, u(j)

i-1, v(j)
i-1) if i>0

 0 otherwise
and if it is even then:
u(j+1)

i = parity(0, u(j)
i, v(j)

i)
v(j+1)

i = majority(0,, u(j)
i-1, v(j)

i-1) if i>0
 0 otherwise

• It turns out that at the last step v(2n-1)=0 so u(2n-1) will have the product.
• The total time is thus Θ(n).

