
Randomly Permuting Arrays,
More Fun with Indicator Random

Variables
CS255

Chris Pollett
Feb. 1, 2006.

Outline

• Finishing Up The Hiring Problem
• Randomly Permuting Arrays
• More uses of Indicator Random Variables

Finishing up the Hiring Problem
• Last day we analyzed the Hire-Assistant algorithm assuming the

inputs were ordered according to a random uniform permutation.
• We can use coin tosses (hence, a randomized algorithm to ensure

this situation).
Randomized-Hire-Assistant(n)
1. randomly permute the list of candidates
2. best <- dummy candidate
3. for i <- 1 to n
4. do interview of candidate i
5. if candidate i is better than best
6. then best <- i
7. hire candidate i

• So we need a way to generate a random
permutation.

Randomly Permuting Arrays
(Method 1)

• Idea:
– start with non-permuted list: A=<1,2,3,4>.
– Generate random priorities: <36,3,97,19>
– Sort the elements of A according to these priorities to

get B=<2, 4, 1, 3>
• In more detail:

Permute-By-Sorting(A)
1. n<-- length[A]
2. for i <-- 1 to n
3. do P[i] = Random(1,n3)
4. sort A, using P as sort keys
5. return A.

Analyzing Method 1
Lemma: Procedure Permute-By-Sorting produces a uniform random permutation

of the input, assuming that the priorities are distinct.
Proof: Let σ:[1 .. n] -->[1..n] be a permutation, σ(i) being where i goes under this

permutation. Let Xi to be the indicator that A[i] receives the σ(i)th smallest
priority. That is, it indicates that i will be mapped correctly after sorting by
priorities. So if Xi holds then after sorting the element original value i stored in
A[i] gets mapped to A[σ(i)]. By the definition of conditional probability,
Pr{Y|X} = Pr{X ∩Y}/Pr{X}, so Pr{X ∩Y} = Pr{X}*Pr{Y|X}. Using this, we
have Pr{X1∩… ∩Xn} =

 Pr{X1∩… ∩Xn-1}*Pr{Xn | X1∩… ∩Xn-1}. Continuing to expand, we get:

We can now fill in some of these values:
Pr{X1} = 1/n = probability that one priority chosen out of n is σ(1)th smallest.
Pr{Xi|X1∩… ∩Xi-1} = 1/(n - i + 1) = since of the remaining elements i, i+1, … n,

each is equally likely to be the σ(i)th smallest.
So Pr{X1∩… ∩Xn}=1/n*1/(n-1)*…*1/2*1/1 = 1/n!.
As σ was arbitrary, any permutation is equally likely.

More on Method 1
• What do we do if the priorities aren’t all distinct?
• Well, we just try again and draw a new list of priorities.
• What’s the likelihood this bad situation happens?
Claim: The probability that all the priorities is unique is at least 1- 1/n.
Proof: Let Xi be the indicator that the ith priority was unique. Again,

Randomly Permuting Arrays
(Method 2)

Randomize-In-Place(A)
1. n<-- length[A]
2. for i <-- 1 to n
3. do swap(A[i], A[Random(i,n)])

Analysis of Method 2
Lemma: Just prior to the ith iteration of the for loop, for each possible

(i-1)-permutation, the subarray A[1,i-1] contains this permutation with
probability (n-i+1)!/n!

Proof: By induction on i.
 Base case: When i=1, A[1..0] is the empty array. It is supposed to

contain a given 0-permutation with probability (n-1+1)!/n! =n!/n!=1.
As a 0-permutation has no elements and there is only one of them this
is true. For the

 Induction step: Assume just before the ith iteration, each (i-1)-
permutation occurs in the A[1..i-1] with probability (n-i+1)!/n!. A
particular, i-permutation <x1,…,xi-1,xi> consists of an (i-1)-permutation
followed by xi. By the induction hypotheis, the probability of the i-
permutation is thus

[(n-i+1)!/n!]*Pr{A[i]= xi|A[1..i-1]= <x1,…,xi-1>}.
 The second factor is 1/(n-i+1) since by line 3 of Randomize-in-Place, xi

is choosen at random from A[i..n]. So the probability of the i-
permutation is (n-i+1)!/n!*(1/(n-i+1)) = (n-i)!/n! as desired.

More Analysis of Method2

Theorem:Randomize-In-Place produces a
uniformly chosen random permutation.

Proof: The program could generate any n-
permutation. Further it terminates just
before its (n+1)st iternation and thus by the
lemma generates a given random n-
permutation with probability:

 (n - (n+1) +1)!/n! = 0!/n! = 1/n! as desired.

The Birthday Problem
• How many people must there be in a room before there is a 50%

chance that two were born on the same day of the year?
• Let b1, b2,.., bk be IDs for people in the room and their birthday are

independent random events.
• Let n be the number of days in a year. (i.e., n=365). Let r be the rth

day of year.
• Assume Pr{birthday(bi) = r}= 1/n.
• Pr{birthday(bi) = r and birthday(bj)=r} =

 Pr{birthday(bi) = r}*Pr{birthday(bj) = r} = 1/n2.

• So the probability bi and bj have the same birthday is:

More on the Birthday Problem
• To determine the odds of whether at least two out of the k people have

matching birthday, we look at the complementary event: What are the
odds that no-one shares a birthday?

• Let Ai indicate that for no j<i, do bj and bi have the same birthday.
• Let B1=A1 and Bi+1=Ai+1∩ Bi.
• So Pr{Bk} = Pr{Bk-1}*Pr{Ak|Bk-1}

= Pr{B1}Pr{A2|B1}*…*Pr{Ak|Bk-1}
= 1 (1- 1/n)(1- 2/n) …(1 - (k-1)/n)

Now can use 1+x <= ex to get this is less than
e-1/ne-2/n *…*e-(k-1)/n = e-(1/n)*(1+2+…+(k-1))= e-k(k-1)/2n

which is less than 1/2 if -k(k-1)/2n <= -ln 2. Solving for k using the
quadratic formula, this implies k>= [1+(1+ (8 ln 2)*n)1/2]/2. When
n=365, k >=23.

