Randomly Permuting Arrays, More Fun with Indicator Random Variables CS255
 Chris Pollett
 Feb. 1, 2006.

Outline

- Finishing Up The Hiring Problem
- Randomly Permuting Arrays
- More uses of Indicator Random Variables

Finishing up the Hiring Problem

- Last day we analyzed the Hire-Assistant algorithm assuming the inputs were ordered according to a random uniform permutation.
- We can use coin tosses (hence, a randomized algorithm to ensure this situation).
Randomized-Hire-Assistant (n)

1. randomly permute the list of candidates
2. best <- dummy candidate
3. for $i<-1$ to n
4. do interview of candidate i
5. if candidate i is better than best
6. then best <- i
7. hire candidate i

- So we need a way to generate a random permutation.

Randomly Permuting Arrays (Method 1)

- Idea:
- start with non-permuted list: $A=<1,2,3,4>$.
- Generate random priorities: <36,3,97,19>
- Sort the elements of A according to these priorities to get $B=<2,4,1,3>$
- In more detail:

Permute-By-Sorting (A)

1. $n<--\operatorname{length}[A]$
2. for $i<--1$ to n
3. $\operatorname{do} P[i]=\operatorname{Random}\left(1, n^{3}\right)$
4. sort A, using P as sort keys
5. return A.

Analyzing Method 1

Lemma: Procedure Permute-By-Sorting produces a uniform random permutation of the input, assuming that the priorities are distinct.
Proof: Let $\sigma:[1$.. n] -->[1..n] be a permutation, $\sigma(\mathrm{i})$ being where i goes under this permutation. Let X_{i} to be the indicator that $A[i]$ receives the $\sigma(i)$ th smallest priority. That is, it indicates that i will be mapped correctly after sorting by priorities. So if X_{i} holds then after sorting the element original value i stored in $A[i]$ gets mapped to $A[\sigma(i)]$. By the definition of conditional probability, $\operatorname{Pr}\{Y \mid X\}=\operatorname{Pr}\{X \cap Y\} / \operatorname{Pr}\{X\}$, so $\operatorname{Pr}\{X \cap Y\}=\operatorname{Pr}\{X\} * \operatorname{Pr}\{Y \mid X\}$. Using this, we have $\operatorname{Pr}\left\{X_{1} \cap \ldots \cap X_{n}\right\}=$ $\operatorname{Pr}\left\{X_{1} \cap \ldots \cap X_{\mathrm{n}-1}\right\} * \operatorname{Pr}\left\{\mathrm{X}_{\mathrm{n}} \mid X_{1} \cap \ldots \cap X_{\mathrm{n}-1}\right\}$. Continuing to expand, we get:
$\operatorname{Pr}\left\{X_{1} \cap X_{2} \cap \cdots \cap X_{n}\right\}=\operatorname{Pr}\left\{X_{1}\right\} \cdot \operatorname{Pr}\left\{X_{2} \mid X_{1}\right\} \cdots \operatorname{Pr}\left\{X_{n} \mid X_{n-1} \cap \cdots \cap X_{1}\right\}$
We can now fill in some of these values:
$\operatorname{Pr}\left\{X_{1}\right\}=1 / n=$ probability that one priority chosen out of n is $\sigma(1)$ th smallest.
$\operatorname{Pr}\left\{X_{\mathrm{i}} \mid X_{1} \cap \ldots \cap X_{\mathrm{i}-1}\right\}=1 /(n-i+1)=$ since of the remaining elements $\mathrm{i}, \mathrm{i}+1, \ldots \mathrm{n}$, each is equally likely to be the $\sigma(i)$ th smallest.
So $\operatorname{Pr}\left\{X_{1} \cap \ldots \cap X_{\mathrm{n}}\right\}=1 / \mathrm{n} * 1 /(\mathrm{n}-1)^{*} \ldots * 1 / 2 * 1 / 1=1 / \mathrm{n}!$.
As σ was arbitrary, any permutation is equally likely.

More on Method 1

- What do we do if the priorities aren't all distinct?
- Well, we just try again and draw a new list of priorities.
- What's the likelihood this bad situation happens?

Claim: The probability that all the priorities is unique is at least $1-1 / n$.
Proof: Let X_{i} be the indicator that the i th priority was unique. Again,

$$
\begin{aligned}
\operatorname{Pr} & \left\{X_{1} \cap X_{2} \cap \cdots \cap X_{n}\right\}=\operatorname{Pr}\left\{X_{1}\right\} \cdot \operatorname{Pr}\left\{X_{2} \mid X_{1}\right\} \cdots \operatorname{Pr}\left\{X_{n} \mid X_{n-1} \cap \cdots \cap X_{1}\right\} \\
& =\frac{n^{3} n^{3}-1}{n^{3}} \frac{n^{3}-(n-1)}{n^{3}} \cdots \frac{n^{3}}{} \\
& \geq \frac{n^{3}-n}{n^{3}} \frac{n^{3}-n}{n^{3}} \cdots \frac{n^{3}-n}{n^{3}} \\
& =\left(1-\frac{1}{n^{2}}\right)^{n-1} \geq 1-\frac{n-1}{n^{2}} \text { since }(1-a)(1-b)>(1-a-b) \text { if and nonnegative } \\
& >1-1 / n
\end{aligned}
$$

Randomly Permuting Arrays (Method 2)

Randomize-In-Place (A)

1. $n<--$ length $[A]$
2. for $i<-1$ to n
3. do $\operatorname{swap}(A[i], A[\operatorname{Random}(i, n)])$

Analysis of Method 2

Lemma: Just prior to the i th iteration of the for loop, for each possible ($i-1$)-permutation, the subarray $\mathrm{A}[1, i-1]$ contains this permutation with probability $(n-i+1)!/ n$!
Proof: By induction on i.
Base case: When $i=1, \mathrm{~A}[1 . .0]$ is the empty array. It is supposed to contain a given 0 -permutation with probability $(n-1+1)!/ n!=n!/ n!=1$. As a 0 -permutation has no elements and there is only one of them this is true. For the
Induction step: Assume just before the i th iteration, each ($i-1$)permutation occurs in the A[1..i-1] with probability ($n-i+1$)!/n!. A particular, i-permutation $<x_{1}, \ldots, x_{\mathrm{i}-1}, x_{\mathrm{i}}>$ consists of an ($i-1$)-permutation followed by x_{i}. By the induction hypotheis, the probability of the i permutation is thus

$$
[(n-i+1)!/ n!] * \operatorname{Pr}\left\{\mathrm{~A}[i]=x_{\mathrm{i}} \mid \mathrm{A}[1 . . i-1]=<x_{1}, \ldots, x_{\mathrm{i}-1}>\right\} .
$$

The second factor is $1 /(n-i+1)$ since by line 3 of Randomize-in-Place, x_{i} is choosen at random from $\mathrm{A}[i . . n]$. So the probability of the i permutation is $(n-i+1)!/ n!^{*}(1 /(n-i+1))=(n-i)!/ n!$ as desired.

More Analysis of Method2

Theorem:Randomize-In-Place produces a uniformly chosen random permutation.
Proof: The program could generate any $n-$ permutation. Further it terminates just before its $(n+1)$ st iternation and thus by the lemma generates a given random n permutation with probability:
$(n-(n+1)+1)!/ n!=0!/ n!=1 / n!$ as desired.

The Birthday Problem

- How many people must there be in a room before there is a 50% chance that two were born on the same day of the year?
- Let $b_{1}, b_{2}, . ., b_{\mathrm{k}}$ be IDs for people in the room and their birthday are independent random events.
- Let n be the number of days in a year. (i.e., $n=365$). Let r be the r th day of year.
- Assume $\operatorname{Pr}\left\{\operatorname{birthday}\left(b_{\mathrm{i}}\right)=r\right\}=1 / n$.
- $\operatorname{Pr}\left\{\operatorname{birthday}\left(b_{\mathrm{i}}\right)=r\right.$ and $\left.\operatorname{birthday}\left(b_{\mathrm{j}}\right)=r\right\}=$

$$
\operatorname{Pr}\left\{\operatorname{birthday}\left(b_{\mathrm{i}}\right)=r\right\} * \operatorname{Pr}\left\{\operatorname{birthday}\left(b_{\mathrm{j}}\right)=r\right\}=1 / n^{2}
$$

${ }^{\bullet} \operatorname{Pr}\left\{b_{i}=b_{j}\right\}=\sum_{r=1}^{n} \operatorname{Pr}\left\{\operatorname{birthday}\left(b_{i}\right)=r\right.$ and $\left.\operatorname{birthday}\left(b_{j}\right)=r\right\}$

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left(1 / n^{2}\right) \\
& =1 / n
\end{aligned}
$$

More on the Birthday Problem

- To determine the odds of whether at least two out of the k people have matching birthday, we look at the complementary event: What are the odds that no-one shares a birthday?
- Let A_{i} indicate that for no $j<i$, do b_{j} and b_{i} have the same birthday.
- Let $B_{1}=A_{1}$ and $B_{\mathrm{i}+1}=A_{\mathrm{i}+1} \cap B_{\mathrm{i}}$.
- $\operatorname{So} \operatorname{Pr}\left\{B_{\mathrm{k}}\right\}=\operatorname{Pr}\left\{B_{\mathrm{k}-1}\right\} * \operatorname{Pr}\left\{A_{\mathrm{k}} \mid B_{\mathrm{k}-1}\right\}$

$$
\begin{aligned}
& =\operatorname{Pr}\left\{B_{1}\right\} \operatorname{Pr}\left\{A_{2} \mid B_{1}\right\}^{*} \ldots * \operatorname{Pr}\left\{A_{\mathrm{k}} \mid B_{\mathrm{k}-1}\right\} \\
& =1(1-1 / \mathrm{n})(1-2 / \mathrm{n}) \ldots(1-(\mathrm{k}-1) / \mathrm{n})
\end{aligned}
$$

Now can use $1+x<=\mathrm{e}^{x}$ to get this is less than
$\mathrm{e}^{-1 / \mathrm{n}} \mathrm{e}^{-2 / \mathrm{n}} * \ldots * \mathrm{e}^{-(\mathrm{k}-1) / \mathrm{n}}=\mathrm{e}^{-(1 / \mathrm{n}) *(1+2+\ldots+(\mathrm{k}-1))}=\mathrm{e}^{-\mathrm{k}(\mathrm{k}-1) / 2 \mathrm{n}}$
which is less than $1 / 2$ if $-k(k-1) / 2 n<=-\ln 2$. Solving for k using the quadratic formula, this implies $\mathrm{k}>=\left[1+\left(1+(8 \ln 2)^{*} \mathrm{n}\right)^{1 / 2}\right] / 2$. When $n=365, k>=23$.

