
Homework 4

SJSU Students

May 10, 2006

1 Problem 31.1-7

For any integer k > 0, we say that an integer n is a kth power if there exists
an integer a such that ak = n. We say that n > 1 is a nontrivial power if
it is a kth power for some integer k > 1. Show how to determine if a given
β-bit integer n is a nontrivial power in time polynomial in β.

The goal is to check if a given β-bit integer n has any root. For this we
need to check for square roots, cube roots, · · ·, up to log n roots.

Why up to log n ?

According to the problem, n is an integer which is n > 1 and k is an integer
which is k > 1. Thus the smallest possible base is 2 satisfying above problem
assumption. Then the largest possible power k is of the smallest base 2. That
is log n.

What to do for a given kth root?

First, to check if a number had a square root. keep trying to compute 2i for
larger and larger values of I until we found i such that (2i)2 < n < (2i+1)2

then we would check if (2i + 2i−1)2 was greater or less than n, and in this
way binary search for the largest integer whose square was less than or equal
to n. If it turned out to be exactly equal then we know it has a square root.
Binary search time complexity is O(log n).

1

Then we can use the same algorithm for checking if a cube root,· · ·,log n root
exists. Checking for all of this in total will be O(log n * log n) = O(n).

Using this algorithm we can say this problem is solvable in polynomial time
because the number of steps required to complete the algorithm for a given
β-bit input n is O(n). And for each of steps need Θ(β) bit operations. n or
β is the complexity of the input.

2 Problem 31.2-4

Based on Euclid’s theorem:
If b|a then gcd(a, b) = b.
If a = bt + r, then gcd(a, b) = gcd(b, r)

EUCLID(a, b)
1. high = max(a, b) and low = min(a, b)
2. while (low > 0)
3. {
4. t = bhigh/lowc ;
5. r = high - low × t;
6. high = low;
7. low = r;
8. }
9. return high;

3 Problem 31.5-1

The given equations are : x ≡ 4 (mod 5) and x ≡ 5 (mod 11)
From the equations we have:
x1 = 4
n1 = m2 = 5
x2 = 5
n2 = m1 = 11
n = n1 × n2 = 5× 11 = 55

2

Since 11−1 = 6(mod 5) we have m−1
1 = 6

Similarly 5−1 = 20(mod 11) thus m−1
2 = 20

c1 = m1 × (m−1
1 mod n1) = 11× (6 mod 5) = 66

c2 = m2 × (m−1
2 mod n2) = 5× (20 mod 11) = 100

x ≡
∑2

i=1 xici

≡ (4 × 66) + (5 × 100) (mod 55)
≡ 764 (mod 55)
≡ 49 (mod 55)

Hence, solutions of the given equations are of the form 49 + 55 × (n) for
n ≥ 0.

4 Problem 31.7-3

Let PA be the function corresponding to Alice’s public key (e, n) and M1 and
M2 be two messages. Thus, encrypted message M1 is PA(M1) and encrypted
message M2 is PA(M2). Also, consider that

C1 ≡M e
1 mod n and C2 ≡M e

2 mod n

PA(M1) = M1 mod n = M e
1 mod n.

PA(M2) = M2 mod n = M e
2 mod n.

Multiplying,
PA(M1)PA(M2) = (M e

1 mod n)(M e
2 mod n) = (M1M2)

e mod n = C1C2.

The multiplicative property can be exploited as follows. Assume that the
attacker wants to find M which is the decryption of ciphertext C. Note that
the attacker has the knowledge of C and of public key PA = (e, n).
Then, the attacker can select integer r at random such that r ∈ Zn and cre-
ate a new “ciphertext” Ĉ = Cre mod n. If the attacker has a procedure for
decrypting 1 percent of ciphertexts, he can obtain M̂ = Ĉd.

M̂ = Ĉd = (Cre)d = Cdred = Cdr = Mr mod n.
Thus, the attacker can compute M = M̂r−1 mod n.

Zn is a finite multiplicative group of size n. It is given that the attacker

3

knows 1 percent of the messages. That means, he knows n
100

messages. Us-
ing this, he has to calculate the remaining messages.

Let m be the number of messages decrypted so far and n be total numbers
in Zn. The routine below will decrypt the remaining messages.

Algorithm
for (j=1 to n-m)
{

for(i=1 to m)
{

R ← Mi

Ĉ = Cj.r
e mod n

/ * decrypt Ĉ */

M̂ = Ĉd mod n

Mj = M̂.r−1 mod n
if (success)
{

temp = m;
n = n - m;
m = m + temp;

}
}

}

4

