
CS255 Homework 3

Student Generated Solutions

April 8, 2006

1

29.1-6 Let C be an n-input, n-output combinational circuit of depth d. If two
copies of C are connected, with the outputs of one feeding directly into
the inputs of the other, what is the maximum possible depth of this
tandem circuit? What is the minimum possible depth?

Assumption : If circuit C has elements x1,x2,...,xn at depths d1,d2,...,dn

respectively, then the max{d1,d2,...,dn} is depth d.

The maximum possible depth : 2d.

It can be achieved when maximum depth path of the first C which is
max{d1,d2,...,dn} is connected with maximum depth of the second C
which is max{d1,d2,...,dn}.
The following figure shows an example configuration where we acheive
a maximum possible depth:

The minimum possible depth : d + min{d1,d2,...dn}.
It can be achieved when maximum depth path of the first C which
is max{d1,d2,...,dn} connected with minimum depth of the second C
which is min{d1,d2,...dn}. Where the min could be as small as 1.

The following figure shows an example configuration where we acheive
a minimum possible depth:

2

29.2-1 let a= (0 1 1 1 1 1 1 1) , b (0 0 0 0 0 0 0 1), and n= 8 . Show the
sum and carry bits output by full adders when ripple-carry addition is
performed on these two sequences. Show the carry status x0,x1,...,x8

corresponding to a and b, label each wire of the parallel prefix circuit
of Figure 29.9 with the value it has given these x; inputs, and show the
resulting outputs y0,y1,...,y8

The sum and the carry bits output by full adders are as follows:

8 7 6 5 4 3 2 1 0 i
0 1 1 1 1 1 1 1 0 = carry
- 0 1 1 1 1 1 1 1 = a
- 0 0 0 0 0 0 0 1 = b
————————————
0 1 0 0 0 0 0 0 0 = sum

The values of xi and yi for i= 0,1,...,8 that correspond to the values of
ai,bi,and ci are as shown below:

ai 0 1 1 1 1 1 1 1
bi 0 0 0 0 0 0 0 1
xi k p p p p p p g k
yi k g g g g g g g k
ci 0 1 1 1 1 1 1 1 0

3

A parallel prefix circuit that correspond to the figures above is shown
below:

7

R

�

^N/

/

I

KM7

k

gpg

g

k

k

g

k

g p
g

�

�
^

K

�

�
^

K

�

�
^

K

�

�
^

K

?

6
kx0 - - y0

k
g p

g g
p p

g g

p p
g g

p k
g

k k

k

y0 x1 x2 y1 y2 x3 x4 y3 y4 x5 x6 y5 y6 x7 x8 y7

k

29.3-5 Describe an efficient circuit to compute the quotient when a binary
number x is divided by 3. Consider the equation 4

3
= 1

1−u
. Solving for

u gives u = 1/4. Recall

1 + u + u2 + · · ·uk =
1− uk+1

1− u
.

We would like x
4(1−u)

− x(1−uk+1)
4(1−u)

to be less than 1. This implies x·uk+1 <

4 − 1 = 3. Since u = 1/4 and x has n bits. This will happen when
2n/22k+1 < 3 which will sure;y hold if k > dn/2e. Notice 1 + u + u2 +
· · ·uk with be thus the string 10101.. of length n. So our circuit for
division by 3 consists of our log-depth circuit multiplication of x times
this hard-coded bit pattern. We then discard the two low order bits of
the ouput/

12.2 Devise a PRAM algorithm by which, given bi, the Si can be computed

4

(with the result contained in Pi) in O(log n) steps. Using this, show
how Stage 3 of the algorithm can be implemented in O(log n) steps.

To compute Si in O(log n) steps, we simulate arranging the processors
Pj, j = 1 . . . i, in a binary tree fashion. Each processor is essentially
a node in this tree, each non-leaf node will receive two numbers, one
from each child, calculates the sum and passes the result to its par-
ent. By dlogne steps, the sum is contained at the root of the tree.
We accomplish this with a parallel algorithm that has the processors
communicating in a binary tree fashion, using array locations to store
intermediate sums.

The folowing PRAM algorithm, using i processors, takes as input an
array b[1 . . . i] and terminates with Si stored in b[j = i]

for k ← 0 to dlogne − 1
for all j in parallel

incr ← 2k

if (j mod (2 · incr)) = 0
b[j]← b[j − incr] + b[j]

This Si result can be used to implement stage 3 of the PRAM quicksort
algorithm in O(log n) steps. For a processor Pi, Si indicates the number
of processors from 1 to i that has a value less than Ppivot’s, including
itself. For all i > pivot, if Pi’s value is greater than Ppivot’s value,
then Pi does nothing. Otherwise, Pi does a binary search on the values
contained in the processors with indeces less than pivot, looking for a
value that is larger than the pivot’s value.

We handle contentions by calculating the difference between Si and
Spivot, let that difference be called x. So to avoid having 2 or more
”right hand” processors swapping with the same ”left hand” processor
we swap with the xth left hand processor found to have a value greater
than the pivot.

5

