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Problem 1 (5.1)

Let Xi be the indicator random variable denoting the event that the counter
increases due to the INCREMENT operation and i = 1, 2, . . . , n. Thus,

Xi =

{
1 if the counter increases due to the ith INCREMENT operation
0 otherwise

Let X be a random variable denoting the value of the counter after n
INCREMENT operations. Then,

X = X1 + X2 + . . . + Xn (1)

By linearity of expectation, we have

E[X] = E[X1 + X2 + . . . + Xn] = E[
n∑

i=1

Xi] =
n∑

i=1

E[Xi] (2)

By Lemma 5.1, we have:
E[Xi] = Pr{counter increases after ith INCREMENT operation}.
Suppose, before ith INCREMENT operation, counter is equal to ni. If

the counter increases after ith INCREMENT operation, its value is ni+1 −ni

and the probability of such increase is 1
(ni+1−ni)

.

Thus,

E[Xi] = (ni+1 − ni) ×
1

(ni+1 − ni)
= 1. (3)
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and

E[X] = E[X1 + X2 + . . . + Xn] = E[
n∑

i=1

Xi] =
n∑

i=1

E[Xi] =
n∑

i=1

1 = n (4)

Thus, the expected value represented by the counter after n INCRE-
MENT operations is exactly n.

Part b

Let Xi denote the increase in counter due to ith INCREMENT operation
and i = 1, 2, . . . , n. And let X be a random variable denoting the value of
the counter after n INCREMENT operations. Then,

V ar[X] = V ar[X1] + V ar[X2] + . . . + V ar[Xn]. (5)

Also,

V ar[Xi] = E[X2
i ] − E2[Xi] (6)

Since ni = 100i, then

ni+1 − ni = 100(i + 1) − 100i = 100. (7)

and we have:
Also,

V ar[Xi] = E[X2
i ] − E2[Xi] = (1002 × 1

100
) − 12 = 100 − 1 = 99. (8)

V ar[X] = V ar[X1] + V ar[X2] + . . . + V ar[Xn] = 99n. (9)

Problem 2 (27.2-2) Prove that a comparison network N with n inputs cor-
rectly sorts the input sequence 〈n, n−1, . . . , 1〉 if and only if it correctly sorts
the n−1 zero-one sequences 〈1, 0, 0, . . . , 0〉, 〈1, 1, 0, . . . , 〉, . . . , 〈1, 1, 1, . . . , 1, 0〉.
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First, suppose a comparison network sorts the input sequence 〈n, n−1, . . . , 1〉

correctly. To see that it sorts the sequence 〈
k︷ ︸︸ ︷

1, . . . , 1,

n−k︷ ︸︸ ︷
0, . . . , 0〉, let fk(x) be

the function which outputs 1 if x − k > 0 and outputs 0 otherwise. Notice
this function is nondecreasing, so we can apply Lemma 27.1 from the book.
This and the definition of fk tells use that the following string of equalities
hold:

N(〈
k︷ ︸︸ ︷

1, . . . , 1,

n−k︷ ︸︸ ︷
0, . . . , 0〉) = N(fk(〈n, n − 1, . . . , 1〉))

= fk(N(〈n, n − 1, . . . , 1〉))
= 〈fk(1), fk(2), . . . , fk(n − 1), fk(n)〉

= 〈
n−k︷ ︸︸ ︷

0, . . . , 0,

k︷ ︸︸ ︷
1, . . . , 1〉

So N sorts 〈
k︷ ︸︸ ︷

1, . . . , 1,

n−k︷ ︸︸ ︷
0, . . . , 0〉 and as this argument works for each k from 1

to n, each of the above zero-one sequences will be sorted.
On the other hand, suppose N does not sort 〈n, n − 1, . . . , 1〉. Then for

some values j < k, the network N on input 〈n, n− 1, . . . , 1〉 swaps the order
of j and k in the output. That is, N maps j to some position jN and k to
the position kN and jN > kN . But this means by Lemma 27.1, that N maps
0 = fj(j) to jN and fj(k) = 1 to kN . So N fails to sort

〈fj(1), fj(2), . . . , fj(n − 1), fj(n)〉 = 〈
j︷ ︸︸ ︷

1, . . . , 1,

n−j︷ ︸︸ ︷
0, . . . , 0〉.

Hence, if N fails to sort 〈n, n − 1, . . . , 1〉 it fails to sort at least one of the
sequences 〈1, 0, 0, . . . , 0〉, 〈1, 1, 0, . . . , 〉, . . . , 〈1, 1, 1, . . . , 1, 0〉. In other words,
N sorts 〈n, n − 1, . . . , 1〉 only if it sorts each of

〈1, 0, 0, . . . , 0〉, 〈1, 1, 0, . . . , 〉, . . . , 〈1, 1, 1, . . . , 1, 0〉.

This completes the proof of the if and only.

Problem 3 (27.3-5) Consider two sequences of 0’s and 1’s. Prove that if
evey element in one sequence is at least as small as every element in the
other sequence, then one of the two sequences is clean.

There are three cases for this problem and for each case at least one of the
sequences is clean:
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• The first sequence contains all zero’s, which allow second sequence to
contain 0’s and 1’s, in this case the first sequence is clean (all zeros).

• The first sequence contains mix of zero’s and ones, which force the
second sequence to contain only ones (for the condition to be satisfied),
in this case the second sequence is clean (all ones).

• The first sequence contains all ones, which force the second sequence
to contain only 1’s, in this case both sequences are clean (all ones).

Problem 4 (27.5-3) Suppose we have 2n elements 〈a1, a2, ..., a2n〉 and wish
to partition them into the n smallest and the n largest. Prove that we can do
this in constant additional depth after separately sorting 〈a1, a2, ..., an〉 and
〈an+1, an+2, ..., a2n〉.

After separately sorting each list , we can have the n smallest and the n
largest by doing the following: by applying the list as and input to a modified
half cleaner, all the n smallest elements will be in one n sequence and n
largest in the other. This method is equivalent to reverse the order of the
second sorted sequence and do the half cleaner method after. Both these
methods work because by doing so we are comparing the smallest elements
of the first sequence with the largest elements of second sequence and the
largest elements of the first sequence with the smallest elements of the second
sequence. Thus all of the smallest elements are pushed up to the upper
sequence and the largest elements are pushed down to the lower sequence.
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