
Homework 1

SJSU Students

February 6 ,2006

1 Problem 5.1-2

Assumption:
We assume that every value returned by RANDOM(0, 1) is independent.
Thus we can make repeated calls to get a stream of 1’s and 0’s. We can thus
build a RANDOM(a, b) which makes use of this stream to return a random
number between a, and b(inclusive). Since individual bits of the result are
random, repeated calls to RANDOM(a, b) will return numbers which will be
independent of each other.

RANDOM(a, b)

1. range← (b− a)

2. nbits ← 1 + log2(range)

3. for i ← 0 to nbits

4. do stream← append(stream, RANDOM(0, 1))

5. randNum ← parseInt(stream)

6. if (randNum > range)

7. return RANDOM(a, b)

8. return a + randNum

1



Expected Running Time:
The expected runtime time will be the runtime for the body of the procedure
times the expected number of recursions. The number of for loop calls to
RANDOM(0,1) is dlog2(b − a)e. (Hopefully, we don’t exceed the runtime
stack with the recursions; otherwise, we should probably have used a while
loop.) The probability that we succeed is given by

p =
b− a

2dlog2(b−a)e .

The probability we fail is q = 1− p. This can be viewed as a Bernoulli trial,
and so the expected number of trials until success goes is 1/p. Since p is a
constant between 1/2 and 1, the expected increase in runtime cause by the
recursion is less than a factor of 2. So the expected runtime of the algorithm
is O(dlog2(b− a)e).

2 Problem 5.1-3

Procedure BIASED-RANDOM has outputs with Pr(1) = p and Pr(0) = 1 –
p, 0 < p < 1.

Let consider the outcome of 2 consecutive outputs by this procedure: 00,
01, 10, 11 in which they may not happen equally. However, even though the
output is biased (i.e. Pr(0) != Pr (1)), the probabilities of 01 or 10 are the
same:

Pr(01) = Pr(0)*Pr(1) = p(1-p)
Pr(10) = Pr(1)*Pr(0) = (1-p)p

Hence, by using these 2 outputs with the same probability we can produce
unbiased output. Let say when we call BIASED-RANDOM twice, if we get
01 then the answer is 0, and if we get 10 then the answer is 1. We redo the
step if getting 00 or 11 since these are biased.

Here is the exact algorithm pseudocode:

UNBIASED-RANDOM
while not found yet

2



output1 = BIASED-RANDOM()
output2 = BIASED-RANDOM()
if output1==0 and output2==1

then return 0
else if output1==1 and output2==0

then return 1

As we can see here, the expected running time of this algorithm depends
on when 01 or 10 comes out. If either 00 or 11 come out, then it must loop
back and redo it again until it gets 01 or 10.

Let consider Bernoulli distribution of 2 consecutive outputs of BIASED-
RANDOM in which it succeeds when getting either 01 or 10 and fails when
getting 00 or 11 with Pr(success) = p(1-p) as above. Then the distribution
X denotes the total number of such tries is a geometric distribution.

From the book appendix C.31, we can have:
E[X] = 1 / p(1-p)

This is exactly the expected running time of our UNBIASED-RANDOM
function.

3 Problem 5.2-4

Let X be the random variable denoting number of customers that get back
their own hat. We want to compute E[X]. Also, let X1, X2, ..., Xi, ..., Xn be
the indicator random variables to indicate that the ith customers get their
own hats back respectively. More precisely, let Xi be 1, if ith customer gets
his own hat back, and 0, otherwise.

The number of customers who get their own hat is the sum of these
indicators:

X = X1 + X2 + Xi + . . . + Xn

By taking the expected value of both sides and applying linearity of ex-

3



pectation, we get:

E[X] = E[X1+X2+. . .+Xi+. . .+Xn = E[Xi]+E[X2]+. . .+E[Xi]+. . .+E[Xn].

By definition of an indicator random variable and by Lemma 5.1, we have:
E[Xi] = Pr {ith candidate got his own hat}, i.e., Pr(Xi = 1) is 1

n
. Therefore,

E[X] =
1

n
+

1

n
+ . . . +

1

n

or E[X] =
∑n

i=1 n× 1
n

= 1.
So, the expected number of customers who that get back their own hat

is 1.

4 Problem 5.4-2

This problem is similar to the birthday problem. However, instead of 365
days, we have b number of bins; and instead of looking for collision amongst
days, we look for collisions amongst bins. Therefore, if k is the number of
tosses, then from page 108 in the book, the expected number of pairs of balls
sharing the same bin grows as

k(k − 1)

2b

So when k ≥
√

2b + 1 this expected number of pairs of balls which end up in
the same bin is 1.

4


