CHAPTER 12

Parallel and Distributed Algorithms

\

In this chapter we discuss the solution of problems by a number of processors
working in concert. In specifying an algorithm for such a setting, we must specify
not only the sequence of actions of individual processors, but also the actions
they take in response to the actions of other processors. The organization and

me to be divided into two catcgories: parallel
Processing and distributed processing. In the former, a number of processors are
coupled together fairly tightly: they are similar processors running at roughly
the same speeds and they frequently exchange information with relatively small
delays in the propagation of such information. For suc

in this model: sorting, finding maximal independent sets in graphs, and finding
maximum matchings in graphs. We also describe the randomized solution of
two problems in distributed computation: the choice coordination problem and
the Byzantine agreement problem.

12.1. The PRAM Model

which can be viewed as supporting the RAM
model of computation (see Section 1.5.1). There is 2 global memory consisting of
M locations; each processor has a (small) constant number of local registers to

335

PARALLEL AND DISTRIBUTED ALGORITHMS

which it alone has access. Each of the P processors may read from and write into
any of the M global memory locations; these global memory locations serve as
the only mechanism for communication between the processors. Computation
proceeds in a series of synchronous parallel steps. In a parallel step, each
processor first chooses a global memory location whose contents it reads; next it
executes an instruction on the operand fetched, together with any operands in fis
registers (the allowable instructions are any of those we allow for a conventional
single-processor RAM). Finally, the step ends with the processor writing into a
memory location of its choice. By our assumption of synchrony, every processor
finishes executing step i before any processor begins executing step i + 1. An
instruction for the PRAM is a specification, for each processor, of the actions
it is to perform in each of the three phases of a step. A parallel program is a
sequence of such instructions.

We now address the important issue of conflict resolution in a PRAM: our
definition of an instruction permits a number of processors to attempt to read
from or write to the same global memory location in a step. Logically, there
appears to be no problem in allowing several processors to read the contents of
the same global memory location; however, physical limitations make this action
difficult to implement in actual hardware. Of greater concern are the difficulties
that arise when several processors attempt to write into the same global memory
location; which of the (possibly differing) values is actually written into the
memory location? A number of solutions have been proposed for this problern
of concurrent writing. We will adopt the simplest of these: we insist that the
parallel program ensure that no execution will ever result in a concurrent write,
Thus we deal only with exclusive write PRAMS. -

As mentioned above, the issue of whether or not to allow concurrent reads
is a matter of attention to hardware implementation. These various read/write
models for PRAMs are abbreviated as EREW, CREW, and CRCW, where the
first two letters denote whether reading is exclusive or concurrent and the last
two denote what is permissible for writing. In this chapter, we will only consider
EREW and CREW PRAMs.

Of particular theoretical interest is the solution of problems by PRAM
aigorithms in which the number of processors P is a polynomial function of the
input size n, and the number of PRAM steps is bounded by a polylogarithmic
function of n. We define the classes NC and RNC to capture these notions.

» Definition 12.1: The class NC consists of languages L that have a PRAM
algorithm A such that for any x € X*
¢ x & L = A(x) accepts;
® x ¢ L => A(x) rejects;)

* the number of processors used by A on x is polynomial in Jxl;-

e the number of steps used by 4 on x is polylogarithmic in |x|.

For randomized PRAM algorithms, we similarly define the class RNC:

336

122 SORTING ON A PRAM

» Definition 12.2: The class RNC consists of languages L that have a PRAM
algorithm A such that for any x € Z°

x € L = Pr[A(x) accepts] > 1/2;
xg L= PrlA(x) accepts] = 0;

the number of processors used by 4 on x is polynomial in [x|;

the number of steps used by 4 on x is polylogarithmic in |x|.

~As in the case of RP, although the definition is in terms of decision or

language problems, there is an obvious generalization to function computations.
Notice that an RNC algorithm is Monte Carlo with one-sided error. We can
define the two-sided error version analogous to BPP. The Las Vegas version of
this class (zero-error and polylogarithmic expected time) is called ZNC, and is
defined similar to ZPP.

Exercise 12.1: In the above definitions, we did not distinguish between the various
models of concurrent reading and writing. Show that if a problem has a CRCW PRAM
algorithm using a number of processors that is polynomial in the input size, and
a number of steps that is polylogarithmic, then the problem has an EREW PRAM
algorithm using a number of processors that is polynemial in the input size, and a
number of steps that is polylogarithmic.

12.2. Sorting on a PRAM

In this section we study algorithms for sorting » numbers on a PRAM with »
processors. For convenience, we will assume that the input numbers to be sorted
all have distinet values. Qur eventual goal will be a randomized (ZNC) algorithm
that terminates in O(logn) steps with high probability. Such an algorithm would
thus result in a total of O(nlogn) operations among all processors, with high
probability.

Consider the implementation of the following variant of randomized quicksort
on a CREW PRAM. Initially, each of the # processors contains a distinct input
element. We first describe the structure of the algorithm. Following this high-
level description, we will break down each stage of this description into a
sequence of PRAM steps. Let P; denote the ith processor.

. If n =1 stop.

. We pick a splitter uniformly at random from the n input elements.

. Bach processor determines whether its element is bigger or smaller than the
splitter.

. Let j denote the rank of the splitter. If j € {n/4,3n/4], we declare the step a
failure and repeat starting at (1) above. If j € [n/4,3n/4], the step is a success.

i

PARALLEL AND DISTRIBUTED ALGORITHMS

We then move the splitter to P;. Each element that is smaller than the splitter is
moved to a distinct processor P; for i < j. Each element that is larger than the
splitter is moved to a distinct processor Py for k > ;.

. We sort the elements recursively in processors P, through P;_;, and the elements
in processors P;y; through P,. These recursive sorts are independent of each
other.

Let us study the number of CREW PRAM steps taken by each of the above
stages. Before we proceed with a detailed analysis, we make a prognosis of what
we need in order for the above algorithm to terminate in O(log n) steps. The best
we can hope for is success whenever we split. If we were fortunate enough that
this were to happen, every sequence of recursive splits would terminate within
O(logn) stages. Even so, in order for the algorithm to terminate in O(logn)
steps, we would require each split to be implemented in a constant number of
steps. Unfortunately we know of no way of doing this.

The second stage in our scheme is trivial and can be implemented in a single
step of a CREW PRAM. Let us turn to Stage 3 of the above description. Qur
goal is to ensure that processor P, for i < Jj, contains a distinct input ¢lement
whose rank is smaller than j, and similarly processor P, for k > J, contains a
distinct input element whose rank is larger than j. How many PRAM steps are
taken up by this process?

Processor P; sets a bit b; in one of its registers to 0 if its element is greater
than the splitter, and to 1 otherwise. For all , let S; = D i be

Exercise 12.2: Devise a PRAM algorithm by which, given the b;, the S; can be
computed (with the result contained in £;) in Oflogn) steps. Using this, show how
Stage 3 of the algorithm can be implemented in O(log.n) steps.

Thus, we see that a single splitting stage can be implemented in O(logn) steps
of a CREW PRAM. In Problem 12.1 we will see that from this, we can infer
that the above algorithm terminates in O(log2 n), steps with high probability.

The shortcoming of the above scheme is that the splitting work in Stage 3,
consuming O(logn) steps, yielded a relatively small benefit — it cuts the problem
size down from n to a constant fraction of n. To improve on this, we consider
a more efficient algorithm in which we invest the same amount of work in
splitting, but in the process break up the problem into pieces of size n!'~ for
a fixed constant e. If we could do this, we could hope for an overall parallel
rurming time of O(logn) steps: at the next level of recursion, the splitting time
would be logarithmic in n'~¢, which is a constant fraction of the splitting time
at the first level. Thus, the times for proceeding from one level of recursion
to the next would form a geometric series summing to O(logn). The following
two exercises pave the way for a concrete scheme for implementing this idea.
Exercise 123 demonstrates that we can indeed sort in Of(logn) steps if our
PRAM were endowed with many more processors than elements to be sorted.

338

12.2

SORTING ON A PRAM

Exercise 12.3: Consider a CREW PRAM having n? processors. Suppose that each of
the processors P through P, has an input element to be scoried. Give a deterministic
algorithm by which this PRAM can sort these n elements in O{log n) steps. (Hint: We
have enough processors to compare all pairs of elements.)

Next, suppose that we have n processors and n elements. Suppose that
processors Py through P, contain r of the e¢lements in sorted order, and that
processors Pp; through P, contain the remaining # —r elements. Call the sorted
clements in the first » processors the splitters. For 1 < j < r, let 5; denote the
Jjth largest splitter. Our goal is to “insert” the n — r unsorted elements among
the splitters, in the following sense.

1. Each processor should end up with a distinct input element.

2. Let i(s;) denote the index of the processor containing s; following the insertion
operation. Then, for all k < i(s;), processor Py contains an element that is smaller
than s;; similarly, for all k > i(s;), processor Py contains an element that is larger
than s;. :

In other words, the splitters are contained in processors in increasing order, and
the remaining clements are in processors between their “adjacent” splitters.

Exercise 12.4: For n processors, and n elements of which ./n are splitters, give a
deterministic scheme that completes the above insertion process in O(log n) steps.

Here are the stages of our parallel sorting algorithm, which we call BoxSort.
Note that it is a Las Vegas algorithm: it always produces the correct output.
Further, it always uses a fixed number of processors; only the number of parallel
steps is a random variable. This will be typical of all the parallel algorithms we
present. The function LogSert is described following Exercise 12.5.

Algorithm BoxSort:

Input: A set of numbers S.
Output: The elements of § sorted in increasing order.

1. Select JH elements at random from the n input elements. Using all n
processors, sort them in O(logn) steps (using the ideas in Exercise 12.3). if
two splitters are adjacent in this sorted order, we call them adjacent splitters.

2. Using the sorted elements from Stage 1 as splitters, insert the remaining -
elements among them in O{logn) steps (using the ideas in Exercise 12.4),

3. Treating the elements that are inserted between adjacent splitters as sub-
problems, recur on each sub-problem whose size exceeds logn. For sub-
problems of size logn or less, invoke LogSort.

339

PARALLE-L‘!EIi DISTRIBUTED ALGORITHMS

Note that in Step 3 we have available as many processors as elements for
each sub-problem on which we recur. The sub-problems that result from the
1 splitters have size roughly . /n, with good probability. This fits with our
paradigm for progressing from a problem of size 1 to one of size n'~ in O(log n)

elements to be sorted using logn p
and use brute force:

-_—

Exercise 12.5: Show that & CREW PRAM with m processors can sort m elements
deterministically in O(m) steps.

_

Thus, when a sub-problem size is down to logn, we can sort it with the logn
available processors in O(logn) steps; we call this operation LogSort.

We now analyze the use of random sampling for choosing-the splitters, Let us
call the set of elements that fall between adjacent splitters a box. The analysis is
similar to the one we used in the analysis of randomized selection in Section 3.3.
By invoking the Chernoff bound instead of the Chebyshey bound, the following
IS an easy consequence:

-

Exercise 12.6: Consider m splitters chosen uniformly at random from m? given
distinct elements. Show that the probability that a box has size exceeding bm is at
most ma®, for a constant a < 1.

-_

To complete the analysis of the algorithm, we represent an execution of the
algorithm by a tree. Each node of the tree i
cxecution. For this purpose, we will also regard the n input elements as forming
a box (of size n), and this is the root of our tree. The children of a node are the
boxes that arise when it is partitioned by random splitters. Each leaf is a box of
size at most logn.

We are interested in root-leaf paths in this tree. In bounding the running
time of algorithm, the quantity of interest is not the length of such root-leaf
paths, but rather the number

box. We will argue that with high probability, the
sum of the logarithms of box sizes on any root-leaf path is O(log n), and this
will yield an overall running time of O(logn). :

The idea is to partition the interval {1,#] into sub-intervals 1, Iy,..., and
bound the probability that a box whose size is in I, has a child whose size is
also in I;. To this end, let y and 4 be fixed constants such that 1/2 <y <1 and
1 <d<1/y. Fora positive integer k, define = d¥, pp = 1", and the interval
Lk = [pryr, il

340

]

e YUY e e D

123 MAXIMAL INDEPENDENT SETS

Exercise 12.7: Show that p, < logn for a value of k < cloglogn, for a constant ¢
that depends only on p.

Thus we confine our attention to O(loglogn) intervals I;. For a box B in
the tree, we say that w(B) =k if |B| € I. In terms of this notation, the time
to spiit B is O(log pa(g)). For a root-leaf path { = (By,...,B;), we will study
Z;-:l log pa(s;), since the overall running time of the algorithm is

t
O (logn + m{ax Z log pa(Bj)) .

j=1

For a path { = (By,...,By), we say that event £; holds if the sequence
a(B1),...,%(B;) does not contain the value k¥ more than 7, times, for 1 <
k < cloglogn. If £, holds, the number of PRAM steps spent on path { is at
most

o0
O (log R+ Z 7,7 log n) .
k=1 ‘

Since 1, = d*, and yd <-1, this sums to O(logn). Thus it suffices to argue that
E; holds with high probability for any {. This is an easy calculation following
the bound from Exercise 12.6.

Lemma 12.1: There is a constant § > 1 such that £, holds with probability at
least 1 — exp(—log? n).

The following sequence of three probability calculations establishes Lemma
12.1. These calculations are straightforward, and the reader is asked to perform
them in Problem 12.2.

1. Bound the probability that a(B;) = a:(BJ,—) using the result of Exercise 12.6.

2. Bound the probability that for any particular k, the value k is contained more
than z; times in the sequence a(B1),...,x(B;).

3. Bound the probabi]ify that for 1 < k < cloglogn, the value k is contained more
than 7; times in the sequence a(B1),...,a(B;).

Since the number of paths { in an execution is at most n, we have:
Theorem 12.2: There is a consiant b > O such that with probability at least
1 — exp(—log® n) the algorithm BoxSort terminates in O(log n) steps.
12.3. Maximal Independent Sets

Let G{(V,E) be an undirected graph with n vertices and m = (Yn) edges. A
subset of vertices I = V' is said to be independent in G if no edge in E has both

3

PARALLEL AND DISTRIBUTED ALGORITHMS

its end-points in 1. Equivalently, I is independent if for all v € I, T@nI=p
Recall that I'(v) is the set of vertices in V that are adjacent to v and that the
degree of v is d(v) = |[(v)|.

An independent set I is maximal if it is not properly contained in any other
independent set in G. Recall that the problem of finding a maximum independent
set is NP-hard. In contrast, finding a maximal independent set (MIS) is trivial
in the sequential setting. The following greedy algorithm constructs an MIS in
O(m) time. :

Algorithm Greedy MIS:

Input: Graph G(V, E) with Vv ={1,2,.._ n].
Qutput: A maximal independent set{ = v.
1. 1 « @

2. forv=1tondo
if INT(v}=0then’ —/u{v}.

Exercise 12.8: Prove that the Greedy MIS algorithm terminates in O(m) time with a
maximal independent set, if the input is given in the form of an adjacency list.

A greedy algorithm such as this is inherently sequential. The output of this
algorithm is called the lexicographically first MIS (LFMIS). It is known that the
existence of an NC {or RNC) algorithm for finding the LFMIS would imply
that P = NC (respectively, P = RNC), a consequence that appears almost as
unlikely as P = NP. Thus, we have the somewhat paradoxical situation that
the most trivial algorithm finds the LFMIS sequentially, whereas it appears
impossible to solve it fast in parallel. However, it turns out that there are simple
paralle] algorithms for finding an MIS (not necessarily the lexicographically first -
MIS). We start by describing an RNC algorithm and later indicate how it can
be derandomized to obtain an NC algorithm. The problem of verifying an MIS
is relatively easy to solve in parallel.

Exercise 12.9: Devise a deterministic EREW PRAM algorithm for verifying that a set
I is an MIS, using O(m/ log m) processors and O(log m) time.

Consider the variant of the Greedy MIS algorithm, which starts with I = ¢
and repeatedly performs the following step: pick any vertex v, add v to I, and
delete v and I'(v) from the graph. The algorithm terminates when all vertices
have either been deleted or added to I. Choosing v to be the lowest numbered
vertex present in the graph leads to exactly the same outcome as in Greedy MIS.

342

123 MAXIMAL INDEPENDENT SETS

The key idea behind the parallel algorithm is to generalize the basic iterative .
step in the new algorithm: find an independent set S, add S to I, and delete
S UT{S) from the graph. The trick is to ensure that each iteration can be
implemented fast in parallel, while also guaranteeing that the total number of
iterations is small. One way of ensuring that the number of iterations is small
is to choose an independent set S such that § U TS} is large. This is difficult,
but we achieve the same effect by ensuring that the number of edges incident
on S UI(S) is a large fraction of the total number of remaining edges; clearly,
this will result in an empty graph in a smail of number of iterations.

To find such an independent set S, we pick a large random set of vertices
R = V. While it is quite unlikely that R will be independent, biasing the
sampling in favor of low degree vertices will ensure that there are very few edges
with both end-points in R. To obtain the independent set from R we consider
cach edge of this type and drop the end-point of lower degree. This results in
an independent set, and the choice of the end-point retained for S ensures that
T°(S}) is likely to be large.

This idea is implemented in Algorithm Parallel MIS, where the marking of a
vertex corresponds to selecting it for the set R. We assume that each vertex (and
edge) of G is assigned a dedicated processor that performs the parallel tasks
associated with that vertex (or edge). This uses a total of O(n + m) processors.

Algorithm Parallel MIS:

Input: Graph G(V,E).
Output: A maximal independent set/ c V.

1. [« .
2. repeat

2.1. for all v € V do (in parallel)
if d{v) =0 then add v to ! and delete v from V
else mark v with probability 1/2d(v).
2.2. for all (v, v) € E do (in paraliel)
if both u and v are marked
then unmark the lower degree vertex.

2.3, for all v € ¥ do (in parallel)
if v is marked then add v to S.

24, | —1US.

2.5. delete $ UT(S) from V, and all incident edges from E.
until V =9

Ties are broken arbitrarily in Step 2.2. Tt is clear that the set S in Step 2.3 is
an independent set. The reader should verify that this algorithm is guaranteed to
terminate with a maximal independent set in a linear number of iterations. Our

) 343

PARALLEL AND DISTRIBUTED ALGORITHMS

goal is to prove that the random choices in Step 2.1 will ensure that the expected
number of iterations is in fact O(logn). We leave the details of implementing
each iteration in NC as an exercise.

Exercise 12.10: Show that each iteration of the Parallel MIS algorithm can be imple-
mented in O(logn) time using an EREW PRAM with O(n + m) processors.

The analysis is based on showing that the expected fraction of edges removed
from E during each iteration is bounded from below by a constant. In fact, we
will focus only on a specific class of good edges, defined as follows.

» Definition 12.3: A vertex v € V is good if it has at least d(r)/3 neighbors of
degree no more than d(v); otherwise, the vertex is bad. An edge is good if at least
one of its end-points is a good vertex, and it is bad if both end-points are bad
vertices.

In the following discussion, we will analyze only a single iteration of the
Parallel MIS algorithm. The notion of goodness is with respect to the vertices
and edges surviving at the start of that specific iteration. It should be clear that
the argument can be applied repeatedly to the successive iterations; together
with Theorem 1.3, this implies the result.

We start with an intuitive sketch of the analysis, which is then fleshed out in
a sequence of lemmas. A good vertex is quite likely to have one of its lower
degree neighbors in § and, thereby be deleted from V. We will show that the
number of good edges is large, and since good vertices are likely to be deleted,
a large number of edges will be deleted during each iteration.

Lemma 123: Let v € V be a good vertex with degree d(v) > 0. Then, the
probability that some vertex w € I'(v) gets marked is at least 1 — exp(—1/6}.

PROOF: Each vertex w € I'(v) is marked independently with probability 1/2d(w).
Since v is good, there exist at least d(v)/3 vertices in T (v) with degree at most
d(v). Each of these neighbors gets marked with probability at least 1/24(v).
Thus, the probability that none of these neighbors of » gets marked is at most

1\ 4073 e
— <e VS,
(1 2d(v)) <e

The remaining neighbors of v can only help in increasing the probability under
consideration. |

Lemma 12.4: During any iteration, if a vertex w is marked then it is selected to
be in S with probability at least 1/2.

123 MAXIMAL INDEPENDENT SETS

proOF: The only reason a marked vertex w becomes unmarked, and hence not
selected for S, is that one of its neighbors of degree at least d(w) is also marked.
Each such neighbor is marked with probability at most 1/2d(w), and the number
of such neighbors certainly cannot exceed d(w). Thus, the probability that a
marked vertex is selected to be in § is at least

1 -~ Pr[dx € I'(w) such that 4(x) > d(w] and x is marked]
> 1—|{x el(w)|dx)=dw)} x ==——

2d()
=
x?(w) 2d(w)
1
= 1—dw)x —— 240w)
1
= 5 O

Let v be a good vertex with d(v) > 0, and consider the event £ that some
vertex in T'(v) does indeed get marked. Let w be the lowest-numbered marked
vertex in I'(s). By Lemma 12.4, the probability that w is selected to be in § is
at least 1/2. Clearly, if w € §, then v must belong to § UT(S). Using the bound
on the probability of the event £ from Lemma 12.3, we obtain the following.

Lemma 12.5: The probability that a good vertex belongs to S U F(S) is at least
(1 —exp(—1/6)}/2.

The final step is to bound the number of good edges.

Lemma 12.6: In a graph G(V,E), the number of good edges is at least |E|/2.

PROOF; Direct the edges in E from the lower degree end-point to the higher
degree end-point, breaking ties arbitrarily. Define d;(v) and d,(v) as the in-degree
and out-degree, respectively, of the vertex v in the resulting digraph. It follows
from the definition of goodness that for each bad vertex v,

d v dﬂ v) + di(v
For all §, T < V, define the subset of the {oriented) edges E(S,T) as those
edges that are directed from vertices in § to vertices in T'; further, define e(S, T')
to be |E(S, T)|. Let ¥ and Vg be the set of good and bad vertices, respectively.
The total degree of the bad vertices is given by

2e(Vp,Vp) + e(Vp,Vg)+e(Vs.Vg)

= > (dolv) +div))
velp
< 3 (dofv) - di(0))
veVy

345

PARALLEL AND DISTRIBUTED ALGCGRITHMS

= 3 (&)~ dov))

velg
= 3[{e(Va, Vo) + e(V, V) — (e(Vs, V) + e(Ve, V)]
= 3[e(Va, Vi) —e(Vg, V)]

< 3e(Ve, Vi) + e(Vi, Vi)l

The first and last expressions in this sequence of inequalities imply that
e(Vg, Vp) < e(Ve, Vi) + e(Vg, V). Since every bad edge contributes to the
left side and only good edges contribute to the right side, the desired result
follows. O

Since a constant fraction of the edges are incident on good vertices, and good
vertices get eliminated with a constant probability, it follows that the expected
number of edges climinated during an iteration is a constant fraction of the
current set of edges. By Theorem 1.3, this implies that the expected number of
iterations of the Parallel MIS algorithm is O(logn).

Theorem 12.7: The Parallel MIS dlgorithm has an EREW PRAM implementation
running in expected time O(log2 n) using O(n + m) processors.

It is straightforward to obtain a hjgh-probability version of this result.

We briefly describe the construction of an NC algorithm for MIS obtained by
a derandomization of the RNC algorithm described above. The first step is to
show that the preceding analysis works even when the marking of the vertices is
not completely independent, but instead is only pairwise independent. Note that
the only part of the analysis that uses complete independence is Lemma 12.3. In
Problem 12.9 the reader is asked to prove that a marginally weaker version of
Lemma 12.5 holds even with pairwise independent marking of vertices. The key
advantage of pairwise independence is that only O(log#) random bits are re-
quired to generate the sample points in the corresponding probability space (see
the discussion in Section 3.4). In the current application, it is necessary to gen-
erate pairwise independent Bernoulli random variables that are not uniform. In
Problem 12.10, the reader is asked to modify the earlier construction of pairwise
independent probability space to apply to Bernoulli variables that take on the
value 1 with non-uniform probabilities, i.e., the marking probabilities of 1 /2d(v).

The final and most crucial idea is to observe that the total number of choices
of the O(log n) random bits needed for generating pairwise independent marking
is polynomially bounded. Ail such choices can be tried in parallel to see if they
yield a good marking, i.e., a marking of vertices that leads to an appropriately
large reduction in the number of edges. Note that in each iteration, we are
guaranteed that most choices of the random bits will give a good marking; in
particular, there exists at least one setting of the O(logn) random bits that will
provide a good marking. Trying all possibilities will (deterministically) identify
a good marking. Thus, each iteration can be derandomized and the entire
algorithm can be implemented in NC.

346

124 PERFECT MATCHINGS

12.4. Perfect Matchings

We now turn to the problem of finding an independent set of edges (or a
matching) in a graph. Let G(V, E) be a graph with the vertex set ¥ = {1,...,n};
without loss of generality, we may assume that » is even. Recall (Chapter 7)
that a matching in G is a collection of edges M < E no two of which are
incident on the same vertex. A maximal matching is a matching that is not
properly contained in any other matching. A maximum matching is a matching
of maximum cardinality, and a perfect matching is one confaining an edge
incident on every vertex of G.°

The matchings in a graph G(V,E) correspond to independent sets in the
line graph H obtained by creating a vertex for each edge in E, with two
such vertices being adjacent if the corresponding edges in E are incident on
the same vertex. This implies that the problem of finding matchings is a
special case of the independent set problem. A maximal matching can be
found sequentially via a greedy algorithm, and on a PRAM, as suggested in
Problem 12.6, using the algorithms discussed in Section 12.3. Unlike the case
of maximum independent sets, the problem of finding a maximum matching
has a polynomial time solution. This raises the possibility of constructing an
NC' algorithm for maximum matchings. However, randomization appears to
be an essential component of all known fast parallel algorithms for maximum
matching, and we devote this section to describing one such RNC algorithm.

For now we focus on the problem of finding a perfect matching in a graph that
is guaranteed to have one, deferring the issue of finding a maximum matching
till later. First we show that the decision problem of determining the existence
of a perfect matching is in RNC. This is based on the aigebraic techniques
developed in Chapter 7; the reader is advised to review Sections 7.2 and 7.3
from that chapter. We make use of Tutte’s Theorem described in Problem 7.8;
this is a generalization of Theorem 7.3, which dealt with the case of bipartite
matchings.

Theorem 12,8 (Tutte’s Theorem): ZLet A be the n x n (skew-symmeiric) Tutte
matrix of indeterminates obtained from G(V, E) as follows: a distinct indeterminate
Xi; is associated with the edge (v, v;), where | < j, and the corresponding matrix
entries are given by A;; = x;; and Ay = —x;;, that is,

—Xj;i (vuv;) €EE andi>
0 (ubvf) ¢ E

Then G has a perfect matching if and only if det(A) is not identically zero.

Xij (U,‘, Uj) cFE and i <J
A,‘]‘ =

The RNC algorithm for deciding the existence of a perfect matching in G
first constructs the matrix 4 with each indeterminate replaced by independently
and uniformly chosen random values from a suitably large set of integers, as
described in Section 7.2. Then, it evaluates the determinant of the resulting

347

PARALLEL AND DISTRIBUTED ALGORITHMS

integer matrix. If G has a perfect matching, then with suitably large probability,
the determinant will be non-zero. On the other hand, if G does not have any
perfect matchings, the determinant will always be zero.

The first stage of this algorithm is easily implemented in NC. Finding the
determinant of a matrix in NC is not trivial, but at least one NC algorithm is
known (see the Notes section). Thus the problem of deciding the existence of a
perfect matching is in RNC.

We turn to the task of actually finding a perfect matching in a graph. Once
again, the idea is to reduce the search problem to some matrix computations. We
summarize known results for parallel matrix computations without attempting
to describe the algorithms in any detail.

The (i, j} minor of a matrix U, denoted U¥, is the matrix obtained by deleting
the ith row and the jth column of U. The adjoint adj(U) of the matrix U is
the matrix 4 whose (j,i) entry has absolute value equal to the determinant of
the (i, /) minor of U, ie., A5 = (—1)*/ det(U¥). It is easy to verify the following
relation: Uadj(U) = det(U).

Theorem 12.9: Let U be an nxn matrix whose entries are k-bit integers. Then the
determinant, adjoint, and inverse of U can be computed in NC. In particular, let
MM(n) = O(n**"®) denote the number of arithmetic operations required to multiply

two n X n matrices. Then the determinant can be computed in O(Iog2 n) time.
using O(n*MM(n)) processors; further, there are RNC algorithms for computing

the inverse and the adjoint running in time O(IOg2 n) using O(n**k) processors.

It is instructive to attempt to search for perfect matchings using the decision
algorithm described above. It is not very hard to see that this can be done for
the special case where the graph has a unique perfect matching.

Exercise 12.11: Suppose that G has a unique perfect matching M. Analyze the effect
of removing an edge on the determinant of the Tutte matrix, considering both the
case where the edge belongs to M and where it does not belong to M. Using this
analysis, devise an RNC algorithm for finding the matching M.

As outlined in Problem 12.15, an NC algorithm is possible for finding a
unique perfect matching. In fact, it is known that there is an NC algorithm
for finding perfect maichings in graphs with a polynomial number of perfect
matchings. However, these algorithms break down when the number of perfect
matchings in the graph is large.

The problem with having a large number of perfect matchings is that it is
necessary to coordinate the processors to search for the same perfect matching.
This is the major stumbling block in the parallel solution of the matching
problem and is perhaps the main reason why no NC algorithm is known. If
the number of matchings is small, then the processors can easily focus on the

348

124 PERFECT MATCHINGS

same perfect matching. The first ingredient in the RNC algorithm is to take an
arbitrary graph and isolate a specific perfect matching. The isolation is achieved
by assigning weights to the edges and looking for a minimum weight perfect
matching. Of course, there is no reason why there should be a unique minimum
weight perfect matching but, as we show in the next section, if the weights are
chosen at random there is a good chance that isolation occurs.

12.4.1. The Isolating Lemma

Our goal now is to define a positive integer weight function over the edges of G,
say w : E — ZT, such that there is a unique minimum weight perfect matching.
Observing that the set of all possible perfect matchings can be viewed as a
family of subsets of E, we consider a more general setting involving an arbitrary
set family.

» Definition 12.4: A set system (X, F) consists of a finite universe X = {xl, 2 Xm}
and a family of subsets F = {S),...,5}, where §; € X for 1 <i < k. The
dimension of the set system is (the size of the universe) m.

Given a positive integer weight function w : X — Z*, we define the weight of
aset § = X as w(S) = 32, s w(x;)- The following lemma shows that a random
weight function is quite]Jkely to lead to a unique set of F being of minimum
weight.

Lemma 12.10 (Isolating Lemma): Suppose (X, F) is a set system of dimension m.
Let w: X — {1,...,2m} be a positive integer weight function defined by assigning
to each element of X a random weight chosen uniformly and independenily from
{1,...,2m}. Then,

. o , 1
Prlthere is a unique minimum weight set in F] = 3

Remark: This lemma is truly counterintuitive. First of all, the size of F is
completely irrelevant to the claim. This allows the family F to be of size as
large as 2™. Since the weights of the sets must lie in the range {1,...,2m*}, one
would expect that there could be as many as 2™/(2m?) sets of any given weight.
However, the weights of the sets follow the lattice structure of the family of all
subsets of X, thercby ensuring that the weights of the sets are not independent
or uniformty distributed.

PROOGF: We assume, without loss of generality, that each element of X occurs in
at least one of the sets in . Suppose that we have chosen the (random) weights
of all elements of X except one, say x;. Let W; be the weight of a minimum
weight set containing x;, computed by ignoring the (undetermined) weight of
x;. Further, let W; be the weight of a minimum weight set not containing the
element x;. Define a; = W; — W; and note that o; could be negative.

349

PARALLEL AND DISTRIBUTED ALGORITHMS

Suppose that initially x; is assigned the weight —co (actually, —2m® will
suffice). It is clear that now every set of minimum weight must contain x;.
Consider the effect of increasing the weight of x; until it reaches +oo (here, 2m?
will suffice). At this point it is clear that no set of minimum weight contains x;.

We claim that for w(x;) < o, every minimum weight set must contain x;,
because there exists a set containing x; of weight W; + w(x;) < W,, and all sets
not containing x; must have weight at least W, Similarly, we claim that for
w(x;) > a;, no minimum weight set contains x;, because any set containing x;
has weight at least W; + w(x;}).> W, and there exists a set not containing x; of
weight W,

Thus, -so long as w(x;) # ay, either every minimum weight set contains X;
or none of them contains x;,. We say that x; is ambiguous when w(x;) = a;,
since then it cannot be said for certain whether x; will belong to a minimum
weight set chosen arbitrarily. The crucial observation is that since o; depends
only on the weights of the e¢lements other than x;, and the weights are chosen
independently, the random variable o; is independent of w(x;). It follows that the
probability that x; is ambiguous is no more than 1/2m. Note that it is possible
that o; € {1,...,2m}, in which case the probability is actually zero.

While the ambiguities of the different clements are correlated, it is safe to say
that the probability that there exists an ambiguous element in X is at most

mx =k
I2m 2

It follows that with probability at least a half, none of the elements is ambiguous.
But if there exist two distinct minimum weight sets, say S; and §;, there must be
an element that belongs to one of these sets but not the other, i.e., there must be
an ambiguous element. Thus, with probability at least a half there is a unique
minimum weight set. -

Exercise 12.12: Determine the probability that there Is a unique minimum weight set
when the weights are chosen from the set {1,..., 1},

Exercise 12.13: Does a similar result hold for the maximum weight set?

The application of this lemma to the perfect matching problem is obvious.
Let X be the set of edges in the graph, and F the set of perfect matchings. It
follows that assigning random weights between 1 and 2m to the edges leads to
a unique minimum weight perfect matching with probability at least 1/2. We
now turn to the task of identifying this perfect matching,

12.4.2. The Parallel Matching Algorithm

Suppose we have chosen the random weight function w for the edges of G as
described above, and let wy; be the weight assigned to the edge (i, j). We will

350

124 PERFECT MATCHINGS

assume that there is a unique minimum weight perfect matching, and that its
weight is W. If there is more than one minimum weight perfect matching,
the following aigorithm will fail (the mode of failure will be evident from the
description below). This happens with probability at most 1/2, and the algorithm
can be repeated to reduce the error probability.

Consider the Tutte matrix 4 corresponding to the graph G. Let B be the
matrix obtained from A by setting each indeterminate x;; to the (random) integer
value 2%,

Lemma 12.11: Suppose that there is a unique minimum weight perfect matching
and that its weight is W. Then, det(B) # 0 and, moreover, the highest power of 2
that divides det(B) is 2*%.

prROOF: The proof is a generalization of the proof of Tutte’s theorem. For each
permutation ¢ € S, defined over V = {1,...,n}, define its value with respect
to B as val(c) = [], Bisy. Observe that val(s) is non-zero if and only if for
each i € V, the edge (i, o({)) is present in G. Recall from Section 7.2 that the
determinant of the matrix B is given by

det(B) = > sgn(c) x val(o),

cES,

where sgn(co) is the sign of a permutation ¢. Permutations with sign +1 are
called even, and those with sign —1 are called odd. The reader should not
confuse the sign of a permutation with the sign of its value.

We focus only on the permutations with non-zero value, since the others
do not contribute to the determinant. Let us first explicate the structure of
the non-zero permutations. The frail of a permutation o of non-zero value is
the subgraph of G containing exactly the edges (i,0(i)), for 1 < i <n TItis
convenient to view the edges (i, o(i)) as being directed from i to o(i). The n
edges corresponding to ¢ form a multiset where each edge has multiplicity 1 or
2, and the edges of multiplicity 2 occur with both orientations. Each vertex has
two edges from the trail incident on it, one incoming and the other outgoing,
and these may correspond to the two orientations of the same undirected edge
from G. Thus, the trail consists of disjoint cycles and edges, where the isolated
edges are those of multiplicity 2. The orientations on the edges are such that
the cycles are oriented, and the isolated edges may be viewed as oriented cycles
of length 2. Define an odd-cycle permutation as one whose trail contains at
least one odd-length cycle, while even-cycle permutations have only even length
cycles. : ,

In each odd-cycle permutation o, fix a canonical odd cycle C as follows; for
each cycle, sort the list of vertex indices and use the sorted sequence of indices
as label for that cycle; pick the odd cycle whose label is the lexicographically
smallest. We can pair off the odd-cycle permutations by associating with such
¢ the unigue odd-cycle permutation —¢ obtained by reversing the orientation
of the edges in the canonical odd cycle C. Given these definitions, both ¢ and

351

PARALLEL AND DISTRIBUTED ALGORITHMS

—¢ have the same canonical odd cycle and —(—o) = ¢. The skew-symmetric
pature of the matrix B implies that val{g) = —val(—o), while the identical
cycle structure of the two permutations implics that sgn(o) = sgn(—o). It
follows that their net contribution to det(B) is 0. Thus, the set of odd-cycle
permutations has a net contribution of zero toward the value of det(B). This
value of the determinant is completely determined by the value of the even-cycle
permutations. ,

Notice thai a permutation o that corresponds to a perfect matching M
has a trail consisting exactly of the set of edges in M, and each of these
edges has multiplicity 2. Also, for any perfect matching M, the value of the
permutation corresponding to it is exactly (—1)%222**0, where w(M) is the
weight of the matching M. If these were the only even-cycle permutations
to consider, the result would follow immediately. However, there are even-
cycle permutations that do not correspond to any particular perfect matching,
although as discussed below they can all be viewed as representing a union of
two perfect matchings.

An even-cycle permutation ¢ consists of a collection of even cycles, and
its trail can be partitioned into two perfect matchings, say M; and M, by
considering alternating edges from each cycle.

Exercise 12.14: Verify that |val(g)| = 2#W:+wid)

When the trail of ¢ has a cycle of length greater than 2, the two per-
fect maichings M; and M, are distinct and, since at most one of these two
perfect matchings can be the unique perfect matching of minimum weight, it
follows that |val(s)| > 22%. On the other hand, when the trail has only cy-
cles of length 2, ie¢., the permutation corresponds to a perfect matching, we
have M; = M, and |val(s)| = 2*™J = 22W. But note that cquality with
22 is achieved only when M; = M, is the unique minimum weight perfect
matching,

Thus, the absolute contribution to det(B) from each even-cycle permu-
tation is a power of 2 no smaller than 2*¥. Moreover, exactly one of
these contributions — the one from the even-cycle permutation correspond-
ing to the unique minimum weight perfect matching — is equal to 2°%_ The
determinant of B can now be viewed as a sum of powers of 2, possibly
negated, such that the exponent of every term but one is strictly greater
than 2?W. Since the term of absolute value 2*" cannot cancel out, it fol-
Jows that det(B) # 0 and in fact the largest power of 2 dividing it is 2°".

O

Exercise 12.15: Observe that, after choosing the random weights, both B and det(B)
can be computed via NC algorithms. Show that the value of W can also be determined
in NC.

per
edg
the

Lel
let

is

th
jui

ymmetric
identical
(—o). It
dd-cycle
B). This
ven-cycle

ching M
of these
le of the
f) is the
wutations
re even-
1atching,
union of

des, and
MZ: bY

WO per-
1ese two
reight, it
only cy-
nung, we
ity with
. perfect

permu-
ong of
TCSpond_
W. The
possibly
greater
, 1t fol-
is 22W.

[

id det(B)
ermined

124 PERFECT MATCHINGS

Of course, this only shows how 10 compute the weight of the minimum weight
perfect matching. The following lemma is the basis for actually determining the
edges in that matching. Recall that BY is the minor of B obtained by removing

the ith row and the jth column from B.

Lemma 12.12: Let M be the unique minimum weight perfect matching in G, and
let its weight be W. An edge (i, j) belongs to M if and only if

det(BY)2"
W

is odd.

B by zeroing out gach entry in

proOF: Consider the matrix Q obtained from
Noiice that any permutation of

the ith row and jth column of B, except for By;.
non-zero value with respect to Q must map i to J.

Exercise 12.16: Verify that

det(Q) = (—1)H/2" det(BY) = 3" sgn(e) x val(a). (12.1)

ga(i)=]

ment as in Lemma 12.11 to claim that

odd-cycle permutations (mapping i to j} will have a zero net contribution to the

sum (12.1). One possible problem with doing so is that the canonical odd cycle
in a specific permutation ¢ may contain the oriented edge going from i to j,
in which case its pariner —o will invert the orientation on that edge and hence
not belong to the set of permutations mapping i to j. This will create problems
in the canceling argument. However, note that since n is even, any odd-cycle

permutation has at least two odd cycles and so we can c¢hoose the canonical
cycle to be one not containing the edge from i to f.

If the edge (i, j) belongs to M, then (as before) exactly one even-cycle per-
mutation contributes 227 to the sum and all others contribute a strictly larger
power of 2. This implies that 22¥ is the largest power of 2 dividing the sum,
and the remainder must be an odd integer. On the other hand, if (i, j) does not
belong to M, all even-cycle permutations must contribute powers of 2 strictly
larger than 227, implying that the sum is divisible by 22%+* and the remainder
of its division by 22% is an even number.]

We can now apply the same argu

Tt is now easy to determine all the edges in the minimum weight perfect
matching M, and the algorithm is summarized below.

353

PARALLEL AND DISTRIBUTED ALGORITHMS

Algorithm Parallel Matching:

Inpul: Graph G(V, E) with at least one perfect matching.
Output: A perfect matching M < E.
1. for all edges (i,)}, in parallel do
choose random weight w;;.

. compute the Tutte matrix B from w.
. compute det{B).
. compute W such that 22¥ is the largest power of 2 dividing det(B).
compute adj(B) = det(B) x B' whose (j, /) entry has absolute value det{B").
for all edges (i, /) do (in__paralle[)

compute r; = det(B"”)2% /22¥
7. for ail edges (/. /) do (in parallel)

if r;; is odd then add (i,) to M

Exercise 12.17: Verify that each step of this aigorithm can be implemented in RNC,
implying that it is an RNC algorithm for finding perfect matchings.

The most expensive computations in this algorithm are those of finding the
determinant, inverse, and adjoint of an n x n matrix whose entries are O(m)-bit

integers (since the matrix entries have magnitudes that are exponential in the
edge weights).

Theorem 12.13: Given a graph G with at least one perfect matching, the Parallel
Matching algorithm finds a perfect matching with probability at least 1/2. For a

graph G with n vertices it requires O(log2 n) time and O(n*°m) processors.

This is a Monte Carlo algorithm with (one-sided) error probability of 1/2,
and this probability can be reduced by repetitions. The only possible error
arises when, even though the graph does have a perfect matching, the algorithm
determines a set of edges that do not form a perfect matching because the
random choice of weights did not yield a unique perfect matching. Tt is a simple
matter to check for this error and convert this into a Las Vegas algorithm.
Although we assumed throughout that the number of vertices n is even, it is
possible to apply this algorithm to the case of odd n.

Exercise 12.18: In a graph G(V, E) with n vertices, when n is odd we define a perfect

matching to be a matching of cardinality [n/2]. Explain how the Paraliel Matching
algorithm may be adapted to this case.

354

Final
algorith

‘We now
we thus
and dis
possibil
of the (
“natura
studied
parasite
are pre
used by
by the
thereby
of mite
and the
faced v
infectir
The pr
gars of
Qur
Consid
They b
speeds.
of a o
comim!
registe
attemy
that th
sole ac
all the
conter
a prot
ensuri
specia
in ten
n Pro
situati
Tt i
compl

125 THE CHOICE COORDINATION PROBLEM

Finally, the Parallel Matching algorithm can be adapted to obtain a Las Vegas
algorithm for finding a maximum matching, as outlined in Problems 12.16-12.18,

12.5. The Choice Coordination Problem

We now move on to distributed computation, in this section and in Section 12.6;
we thus no longer use the' PRAM model. A problem often arising in parallel
and distributed computing is that of destroying the symmeiry between a set of
possibilities. This may be achieved by the use of randomization as in the case
of the Choice Coordination Problem (CCP) discussed below. That this is a very
“natural” problem is demonstrated by the following situation, which has been
studied in biology. A particular class of mites (genus Myrmoyssus) reside as
parasites on the ear membrane of the moths of family Phaenidae. The moths
are prey to bats and the only defense they have is that they can hear the sonar
used by an approaching bat. Unfortunately, if both ears of the moth are infected
by the mites, then their ability to detect the sonar is considerably diminished,
thereby severely decreasing the survival chances of both the moth and its colony
of mites. The mites would like to ensure the continued survival of their host,
and they can do so by infecting only one ear ai a time. The mites are therefore
faced with a “choice coordination problem”: how does any collection of mites
infecting a particular ear ensure that every other mite chooses the same ear?
The protocol used by these mites involves leaving chemical trails around the
ears of the moth.

Our interest in this abstract problem has a more computational motivation.
Consider a collection of n identical processors that operate in total asynchrony.
They have no global clock and no assumptions can be made about ther relative
speeds. The processors have to reach a consensus on a unique choice out
of a collection of m identical options. We use the following simple model of
communication between the processors. There is a collection of m read-write
registers accessible to all n processors. Several processors may simultaneously
attempt to access or modify a register. To deal with such conflicts, we assume
that the processors use a Jocking mechanism whereby a unique processor obtains
sole access to a register when several processors attempt to access it; moreover,
all the remaining processors then wait until the lock is released, and then
contend once again for access to the register. The processors are required to run
a protocol for picking a unique option out of the m choices. This is achieved by
ensuring that at the end of the protocol exactly one of the m registers contains a
special symbol v. The complexity of a choice coordination protocol is measured
in terms of the total number of read and write operations performed by the
n processors. (Clearly, running time has little meaning in an asynchronous
situation.)

It is known that any deterministic protocol for solving this problem will have a
complexity of Q(n'/?) operations. We now illustrate the power of randomization

355

PARALLEL AND DISTRIBUTED ALGORITHMS

in this context by showing that there is a randomized protocol which, for any
¢ > 0, will solve the problem using ¢ operations with a probability of success at
least 1 — 27), For simplicity we will consider only the case where n = m = 2,
although the protocol and the analysis generalize in a rather straightforward
manner.

We start by restricting ourselves to the rather simple case where the two
processors are synchronous and operate in lock-step according to some global
clock. The following protocol is executed by each of the two processors. We
index the processors P; and the possible choices by C; for i € {0,1}. The
processor P; initially scans the register C;. Thereafter, the processors exchange
registers after every iteration of the protocol. This implies that at no time will
the two processors scan the same register. Each processor also maintains a local
variable whose value is denoted by B;.

Algorithm SYNCH-CCP:

Input: Registers C, and Cy initialized to 0.
Qutput: Exactly one of the two registers has the value .

0. 7, is initially scanning the register C; and has its local varfable B; initialized
fo 0.

1. Read the current register and obtain a bit R;.
2. Select one of three cases.
case: 2.1 [R; =]
halt;
case: 22 [R, =0, B; = 1]
Write into the current register and halt;
case: 2.3 [otherwise] ,
Assign an unbiased random bit to B; and write B; into the current
register;

3. P; exchanges its current register with P,_; and returns to Step 1.

To verify the correctness of this protocol it suffices to see that at most one
register can ever have v written into it. Suppose that both registers get the value
V. We claim that both registers must have had v written into them during the
same iteration; otherwise, Case 2.1 will ensure that the protocol halis before
this error takes place. Let us assume that the error takes place during the fth
iteration. Denote by Bj{t} and R;(z) the values used by processor P; just after Step
1 of the tth iteration of the protocol. By Case 2.3, we know that Ry(t) = By (¢)
and Ry(f) = By(t). The only case in which P; writes v during the tth iteration is
when R; =0 and B; = 1; then, R;_; = 1 and By_; =0, and P,_; cannot write
during that iteration.

We have shown that the protocol terminates correctly by making a unique
choice. But this assumes that the protocol terminates in a finite number

356

for any
1ceess at
=m =2,
forward

the two
e global
ors. We
[}. The
xchange
ime will
s a local

alized

urrent

1050 one
he value
ring the
s before
' the tth
‘ter Step
= Bi(t)
ration is
write

. unique
number

125 THE CHOICE COORDINATION PROBLEM

of iterations. Why should this happen? Notice that during each iteration,
the probability that both the random bits By and By are the same is 1/2.
Moreover, if at any stage these two bits take on distinct values, then the
protocol terminates within the next two stages. Thus, the probability that
the number of stages exceeds ¢ is O(1/2'}. The computational cost of each
iteration is bounded, so that this protocol does O(f) work with probability
1—0(1/2Y.

We now generalize this protocol to the asynchronous case where the two
processors may be operating at varying speeds and cannot “exchange” the
registers after each iteration. In fact, we no longer assume that the two processors
begin by scanning different registers — choosing a unique starting register Cy
or C; is in itself an instance of the choice coordination problem. Instead, we
assume that each processor chooses its starting register at random. Thus, the
two processors could be in a conflict at the very first step and must use the
lock mechanism to resolve this conflict. The basic idea is to put time-stamps
t; on the register C;, and T; on the local variable B;, We assume that a read
operation on C; will yield a pair {t;, R,), where 1; is the time-stamp and R; is
the value of that register. If the processors were to operate synchronously, these
time-siamps would be exactly the same as the iteration number ¢ of the previous

protocol.

Algorithm ASYNCH-CCP:

Input: Registers C; and C; initialized to (0,0).
Output: Exactly one of the two registers has the value V.

0. P, is initially scanning a randomly chosen register. Thereafter, it changes its
current register at the end of each iteration. The local variables T, and B;
are initialized to 0.

1. P, obtains a lock on the current register and reads {t;, Ri).

2. P; selects one of five cases.

Case 2.1; [R; =]
halt;
Case 2.2: [T, < t]
T; «t; and B, < R,.
Case 2.3: [T; > t]
Write into the current register and halt;
Case 2.4: [T, =1, R =0, B, =1]
Write + into the current register and halt;
Case 2.5: [otherwise]
T, « Ti+1, t; «— t; +1, assign a random (unbiased) bit to B; and write
{t;,, B;) into the current register.

3. P, releases the lock on its current regisier, moves to the other register, and

returns io Step 1.

357

PARALLEL AND DISTRIBUTED ALGORITHMS

Theorem 12.14: For any ¢ > 0, Algorithm ASYNCH-CCP has total cost exceed-
ing ¢ with probability at most 279,

prOOF: The only real difference from the previous protocol is in Cases 2.2 and
2.3. A processor in Case 2.2 is playing catch-up with the other processor, and
the processor in Case 2.3 realizes that it is ahead of the other processor and
is thus free to make the choice. To prove the correctness of this protocol, we
consider the two cases where a processor can write v into its current cell — these
are Cases 2.3 and 2.4, Whenever a processor finishes an iteration, its personal
time-stamp T; equals that of the current register t;. Further, v cannot be written
during the very first iteration of either processor,

Suppose P; has just entered Case 2.3 with time-stamp T, and its current cell
is C; with time-stamp ¢;, where ¢ < T;". The only possible problem is that P;_;
may write (or already have written) v into the register Cy._;. Suppose this error
does indeed occur, and let ¢]_; and T, be the time-stamps during the iteration
of Py_; when it writes v into Cy_;.

Now P; comes to C; with a time-stamp of 7}, and so it must have left C;_;
with a time-stamp of the same value before P,_; could write v into it. Since
time-stamps cannot decrease, t]_; > T,. Moreover, P;_; cannot have its time-
stamp T;_; exceeding ¢;, since it must go to C;—; from C; and the time-stamp of
that register never cxceeds #;. We have established that T} , < ¢ < T, < t]_,.
But Py_; must enter Case 2.2 for T;_; < t;_,, contradicting the assumption that
it writes v into C;_; for these values of the time-stamps.

Case 2.4 can be analyzed similarly, except that we finally obtain that T} ; <
t; = T} < tj_,. This may cause a problem since it allows T, ;, = ¢]_,, and so
Case 2.4 can cause Py_; to write v; however, we can now invoke the analysis of
the synchronous case and rule out the possibility of error.

The complexity of this protocol is easy to analyze. The cost is proportional
to the largest time-stamp obtained during the execution of this protocol. The
time-stamp of a register can go up only in Case 2.5, and this happens only when
Case 2.4 fails to apply. Moreover, the processor P; that raiscs the time-stamp
must have ifs current B; value chosen during a visit to the other register. Thus,
the analysis of the synchronous case applies. O

12.6. Byzantine Agreement

The subject of this section is the classic Byzantine agreement problem in dis-
tributed computation. As in Section 12.5, we study a process by which n
processors reach an agreement. However, in the scenario we consider here, ¢
of the n processors are faulty processors. We further assume that the faulty
processors may collude in order to try and subvert the agreement process. A
protocol designed to withstand such strong adversaries should certainly work in

358

the
tha

inil
ith
ide
the

be
the
rot
otl
pr
sa
mi¢

pr
as:
th
g0
ac
th

ag

the face of weaker faulty behavior arising in practice. The goal is a protocol
that achieves agreement while tolerating as large a value of t as possible.

126 BYZANTINE AGREEMENT

The Byzantine agreement problem is the following. Each of the n processors
initially has a value that is 0 or 1; let b; denote the value initially held by the
ith processor. There are ¢ faulty processors, and we refer to the remaining n—1
identical processors as good processors. Following communication according to
the rules below, the ith processor ends the protocol with a decision d; € {0, 1},

which must satisfy the following properties.

1. All the good processors should finish with the same decision.

2. If all the good processors begin with the same value v, then they all finish with

their (common) decision equaling v.

The set of faulty processors is determined before the execution of the protocol
begins (though of course the good processors do mot know the identities of
the faulty processors). The agreement protocol proceeds in a sequence of

rounds. During each round, each processor may send one message to each
ives a message from each of the remaining

other processor. Each processor rece
‘processors, before the following round begins. A processot need not send the

same message to all the other processors. In the protocol described below, every
message will be a single bit. All good processors follow the protocol exactly.
A faulty processor may send messages that are totally inconsistent with the
protocol, and may send different messages to different processors. In fact, we
assume that the ¢ faulty processors work in collusion: at the start of each round,
they decide among themselves what messages each of them will send to each
good processor, with the goal of inflicting the maximum damage. Agreement is
achieved when every good processor has computed its decision consistent with
the two properties above. We study the number of rounds it takes to achieve

agreement.
It is known (see the Notes section) that any deterministic protocol for agree-

nds. We now exhibit a simple randomized

ment in this model requires ¢ + 1 rou
algorithm that terminates in a number of steps whose expectation is a constant.

'The number of rounds is a random variable, but the protocol is always correct
in that it results in agreement as defined above; thus we have a Las Vegas pro-
tocol. We assume that at each step there is a global coin toss that a frusted party
performs. The coin toss equiprobably results in a HEADS or a TAILS, and this
result (denoted coin) is correctly conveyed to all the processors. This assumption
can be dispensed with in more complicated protocols, but we do not discuss
these here (see the Notes section).

For the remainder of the discussion,
of t < n/8; however, this is not a fund

the reader may find it convenient to think
amental barrier, and the protocol in fact
works for somewhat larger values of t. (This is the subject of Problem 12.27.)
During each round of the protocol, each processor transmits a single bit, called
its vote, to each other processor. A good processor sends the same vote to all
other processors. Faulty processors may send arbitrary, inconsistent votes to
good processors. Assume that n is a muliiple of 8 for simplicity of exposition;

359

PARALLEL AND DISTRIBUTED ALGORITHMS

let I. denote (5n/8) + 1, H denote (3n/4)+ 1, and G denote 7n/8. (In fact, the

proiocol only requires that L > (n/2) +t+ 1 and H > L + ¢ in order to work.)
The ith processor executes the following routine, for 1 <i < n.

Algorithm ByzGen:

Input: A value b;.
Output: A decision d;.
1. vote = by;

2. For each round, do

. Broadcast vote;
. Receive votes from all other processors;
maj « majority value {0 or 1) among votes received including own vote;

tally «— number of occurrences of maj among votes received;

if coin = HEADS then threshoid « L;
else threshold « H,

8. if talfy = threshold then vote «— maj;
else vole « C;

Noe o kow

8. if tally = G then set d; to maj permanently,

We begin the analysis with an easy exercise:

Exercise 12.19: Show that if all the good processors begin a round with the same
initial value, they all set their decisions to this value in a constant number of rounds.

The more interesting case for analysis is when the good processors do not all
start with the same initial value. In the absence of faulty processors, a solution
would be for all processors to broadcast their values, and then set their decisions
to the majority of these values. The algorithm ByzGen implements this idea in
the face of malicious faulis.

If two good processors compute different values for maj in Step 3, tally does
not exceed threshold regardless of whether L or H was chosen as threshold. Then,
all good processors sct vote = 0 in Step 8.2. As a result, all good processors set
their decisions to 0 in the following round. It thus remains to consider the case
when all good processors compute the same value for maj in Step 5.

We say that the faulty processors foil a threshold x € {L, H} in a round if, by
sending different messages to the good processors, they cause tally to exceed x
for at least one good processor, and to be no more than x for at least one good
processor. Since the difference between the two possible thresholds L and H is

360

at least t
the thres
at most
threshol
compuit
process
5. Then
process:
G=H

Theore
is a co

The

Exerci
proces

Exerci
detern

Karp
good
and 1
to R
algor
by A
Pater
proc

Coo
also
requ

rand
con
nd
it

lim
wil
for
an
co

the
iwk.)

126 BYZANTINE AGREEMENT

at least ¢, the faulty processors can foil at most one threshold in a round. Since
the threshold is chosen equiprobably from {L,H}, it is foiled with probability
at most 1/2. Thus, the expected number of rounds before we have an unfoiled
threshold is at most 2. If the threshold is not foiled, then all good processors
compute the same value v for vote in Step 8. In the following round, every good
processor receives at least G > H > L votes for v, and sets maj to v in Step
5. Then, in Step 9, tally excceds whichever threshold is chosen. When a good
processor sets d; the other good processors must have tally > threshold, since
G > H +t. Therefore they will all vote the same as d; henceforth.

Theorem 12.15: The expected number of rounds for ByzGen to reach agreement
is a constant.

The protocol ByzGen above does not include a termination criterion.

-

Exercise 12.20: Suggest a modification to the protocol ByzGen in which all good
processors halt upon agreement.

Exercise 12.21: in the protocol ByzGen, is it always true that all good processors
determine their decisions in the same round? :

-

Notes

Karp and Ramachandran [241] give a comprehensive survey of PRAM algorithms. Some
good references for parallel aigorithms are the books by JaJa [208] and Leighton [271]
and the volume edited by Reil [354]. The BoxSort algorithm of Section 12.2 is due
to Reischuk [356]. Following Reischuk’s work, a number of deterministic sorting
algorithms running in O{log n) steps using n processors have been devised, most notably
by Ajtai, Komlos, and Szemerédi [8] with later simplifications and improvements by
Paterson [328]; Cole [110] gave a different deterministic parallel algorithm using n
processors and O(log ») steps.

The intractability of the parallel solution of the LFMIS problem was established by
Cook [111]. The first RNC algorithm for MIS is due to Karp and Wigderson [25 1]; they
also provided a derandomized version of their algorithm. This was a complex algorithm
requiring a large running time and a high processor count. The Parallel MIS algorithm
and its derandomization is due to Luby [282]; this paper pioneered the idea of using
random variables of limited independence 0 lead to a deterministic algorithm for a
concrete problem (see also the Notes section of Chapter 3). Alon, Babai, and Ttai [19]
independently gave an RNC algorithm for the MIS problem and also derandomized
it to obtain an NC algorithm. A more efficient NC algorithm was later provided by
Goldberg and Spencer [173]. The paradigm of derandomizing parallel algorithms using
limited independence has found a variety of applications. Luby [284] has combined it
with the method of conditional probabilities (Section 5.6) to achieve processor efficiency
for the maximal independent set problem. Berger and Rompel [55] and Motwani, Naof,
and Naor [313] have used a combination of log n-wise independence and the method of
conditional probabilities to derive NC algorithms for a variety of problems. Karger and

361

PARALLEL AND DISTRIBUTED ALGORITHMS

Motwani [233] have used the combination of pairwise independence with the random
walk technique for recycling random bits described in Chapter 6 to construct an NC
algorithm for the min-cut problem. The min-cut problem is closely related to the
matching problem — an NC algorithm for min-cut in directed graphs would result in an
NC algorithm for maximum matching in bipartite graphs.

The reader may refer to the survey article by von zur Gathen [412] for a survey of
parallel matrix algorithms. The first NC algorithm for matrix determinants is due to
Csanky [115], but it applies only to fields of characteristic zero. Borodin, von zur Gathen,
and Hoperoft [79] gave an NC algorithm for the general case (see Berkowitz [56] for a
more clegant version). The algorithm due to Chistov [95] is currently the best known
solution, and it requires only O(]og2 n) time. The computation of adjoinis and inverses
of a matrix can be reduced to the determinant computation at the cost of an increase
in time and processor count. The randomized algorithm cited in Theorem 12.9 is due to
Pan [323].

The book by Lovasz and Plummer {281] is an excellent source for combinatorial and
algorithmic results related to matchings, and Vazirani [405] surveys parallel matching
algorithms, Section 7.8.3 gives a history of results establishing the connection between
matchings and matrix determinants. Israeli and Shiloach [207] give an NC algorithm for
finding maximal matchings. The NC algorithm in the case of a unique perfect matching
is due to Rabin and Vazirani [348, 349], and in the case of polynomially small aumber of
perfect matchings is due to Grigoriev and Karpinski [184]. The first RNC algorithm for
matchings was given by Karp, Upfal, and Wigderson [242], and this was subsequently
improved by Galil and Pan [162]. This work raised several interesting questions with
respect to the parallel complexity of search versus decision problems, and this theme is
explored by Karp, Upfal, and Wigderson [250]. The Isolating Lemma and the Parallel
Matching algorithm are due to Mulmuley, Vazirani, and Vazirani [317]. These Monte
Carlo algorithms were converted into Las Vegas algorithms by Karloff [237). The
best known deterministic algorithm using a polynomial number of processors, due to
Goldberg, Plotkin, and Vaidya [172], requires Q(n?*/3) time. An interesting special case
for which NC algorithms are known is that of finding perfect matchings in regular
bipartite graphs. Lev, Pippenger, and Valiant [274] derived this result by providing an
algorithm for edge coloring (which is a partition into matchings) a bipartite graph of
maximum degree A with A colors. In the non-bipartite case, Karloff and Shmoys gave
an RNC algorithm for approximate edge coloring, and this was derandomized by Berger
and Rompel [55] and Motwani, Naor, and Naor [313]. Some interesting open problems
are:

» Research Problem 12.1: Devise an NC algorithm for finding a maximum match-
ing in a given graph.

» Research Problem 12.2: Devise an NC or an RNC algorithm for edge coloring a
graph of maximum degree A using at most A+1 colors (see Vizing’s Theorem [71]).

» Research Problem 12.3: Aggarwal and Anderson [4] have shown that the prob-
lem of finding a depth-first search tree in a graph can be solved in RNC using
RNC algorithms for finding maximum matchings; once again, the issue of an NC
algorithm is unresolved.

362

PROBLEMS

The algorithm for the choice coordination problem in Section 12.5 is due to Ra-
bin [344], and the biological analog is described in a paper by Treat [397]. The
Byzantine agreement problem was introduced by Pease, Shostak and Lamport [330].
Fischer and Lynch [148] showed that in out model, any deterministic protocol requires
t + 1 rounds to reach agreement, in the worst case. This lower bound matches an upper
bound given in [330]. The ByzGen protocol of Section 12.6 is due to Rabin [347]. Our
Chor and Dwork [96], who give 2 comprehensive account of the
history of the problem, the various models under which it has been studied, and the many
variants and improvements of Rabin’s scheme. They point out that if the processors
do not operate in synchrony, it is impossible to achieve agreement using a deterministic
protocol; this result is due to Fischer, Lynch, and Paterson [149]. On the other hand,

ByzGen and other randomized protocols can be shown to achieve agreement even in an

asynchronous setting.

presentation follows

Problems

cksort described in Sec-

121 Show that the parallel variant of randomized qui
CREW PRAM, with high

tion 12.2 sorts n elements with n processors on 2
probability in O(log? n) steps.

12.2 Prove Lemma 12.1. The following outline is suggested (refer to Section 12.2

for the notation).

1. Bound the probability that a(Bj1) = a(B)) using the result of Exer-

cise 12.6.

2. Bound the probability that for any particular k, the value k i
more than 1 times in the sequence alB). ..., o0(Bs).

3. Bound the probability that for 1 < k < ¢ loglogn, the value k is contained
more than 7, times in the sequence a(By). ... a(By).

s contained

at the random samples in Stage 1 of BoxSort are chosen using
pairwise independent, rather than completely independent random variables
{(the choices made by the various boxes are independent of each other,
though). Derive the best upper bound you can on the number of parallel
steps taken by BoxSori.

12.4 Using the ideas of section 12.2, devise a CREW PRAM algorithm that selecis
- the kth largest of n input numbers in Oflog n) steps using n/ logn processors.
Assume that the n input numbers are initially located in global memory

locations 1 through ».

123 Suppose th

12.5 Devise a ZNC aigorithm for generating a random {uniformly distributed)
permutation of a set S containing n elements. (Hint: Consider assigning
random weights to the elements of §. !f the weights are drawn from a
sufficiently large set, each element will have a distinct weight.)

12.6 A maximal matching in a graph is a matching that is not properly contained
in any other maiching. Use the parallel algerithm for the MIS problem to
devise an RNC algorithm for finding a maximal matching in a graph.

363

12.7

12.8

12.9

12.10

12.11

12,12

12.13

PARALLEL AND DISTRIBUTED ALGORITHMS

Gonsider a graph G(V, E} with maximum degree A. Show that a sequential
greedy algorithm will color the vertices of the graph using at most A+1 colors
such that no two adjacent vertices are assigned the same color. Employing
the parallel algorithm for MIS, devise an RNC algorithm for finding a A + 1
coloring of a given graph.

(Due to M. Luby [282].) The vertex partition problem is defined as follows:
given a graph G(V, E) with edge weights, partition'the vertices into sets Vv,
and V. such that the net weight of the edges crossing the cut (Vy, Vo) is at
least a half of the total weight of the edges in the graph. Describe an RNC
algorithm for this problem, and explain how you will convert this into an NC
algorithm using the idea of pairwise independence.

{Due to M. Luby [282].) In the Parallel MIS algorithm, suppose that the
randem marking of the vertices is only pairwise independent. Show that the
probability that a good vertex belongs to § UT(S) is at least 1/24.

{Due to M. Luby [282].) Suppose that you are provided with a collection
of n pairwise independent random numbers uniformty distributed over the
set {0.1,...,p — 1}, where p = 2n. It is desired to construct a collection of
n pairwise independent Bernoulli random variables where the ith random
variable should take on the value 1 with probability 1/t;,, for 1 <, < n/8. Show
how you can achieve this goal approximately by constructing a collection of
pairwise independent Bernoulli random variables such that the ith variable
takes on the value 1 with probability 1/T; where for a constant ¢ > 1, T;
satisfies

T,' <L <cT;.

{Due to M. LLuby [282].) Combining the resuits of Problems 12.9 and 12.10,
show that the Parallel MIS algorithm can be derandomized to yieid an NC
algorithm for the MIS problem. Note that the approach in Problem 12.10 will
not work for marking vertices with degree exceeding n/16, and these will
have to be dealt with separately.

(Due to M. Luby [282].) In this problem we consider a variant of the Parallel
MIS algorithm. For each vertex v € V, independently and uniformly choose
a random weight w(v) from the set {1,...,n*}. Repeatedly strip off an
independent set § and its neighbors (S} from the graph G, where at each
iteration the set § is the set of marked vertices generated by the following
process: mark all vertices in V, and then in parallel for each edge in £ unmark
the end-point of larger weight. Show that this yields an RNC algorithm for
MIS. Can this algorithm be derandomized using pairwise independence?

{Due to D.R. Karger [231].} Recall the randomized algorithm for min-cuts
discussed in Section 1.1 (see also Section 10.2). Describe an RNC imple-
mentation of this algorithm. (Hint: While contracting the edges appears to
be sequential process, it can be implemented In parailel using the following
observation. Consider generating a random permutation on the edges, as
described in Problem 12.5 and using this to determine the order in which
the edges are contracted. The contraction algorithm will terminate at that
point in the permutation where the preceding edges constitute a graph with

364

12

12

12

12

12

12

itial
lors
fing

WS

s at
'NC

the
the

tion
the
n of
iom
how
n of
able
v T

210,
NC
will
will

aliel
)os€e
fan
qach
ving
nark
1 for

cuts
ple-
's to
~ning
i, as
hich
that
with

12.14

12.15

12.16

12147

12.18

12.19

PROBLEMS

exactly two connected components. Assume that there is an NC algorithm
for determining connected compenents.)

(Due to M. Luby, J. Naor, and M. Naor [285].} Using the idea of pairwise
independence, construct an RNC algorithm for the min-cut problem that
uses only a polylogarithmic number of random bits {see also Problem 12.13).
What implications does this have for placing the min-cut problem in NC?
{Hint: Select a set of edges by choosing each edge pairwise independently
with probability 1/c, where ¢ is the size of the min-cut; see Problem 12.10.
in parallel, contract all edges in this set. Repeat this process until the graph
is reduced to iwo vertices.)

(Due to M.O. Rabin and VV. Vazirani [349],) Let G(V,E) be a graph with
a unique perfect matching. Devise an NC algorithm for finding the perfect
matching in G. {Hint: Consider substituting 1 for each indeterminate in the
Tutte matrix. What is the significance of the entries in the adjoint of the Tutte
matrix?)

{Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317].) Consider the
problem of finding a minimum-weight perfect matching in a graph G(V.E),
given edge-weights w(e) for each edge e € E in unary. Note that it is not
possible to apply the Isolating | emma directly to this case since the random
weights chosen there would conflict with the input weights. Explain how you
would devise an RNC algorithm for this problem. The parallel complexity of
the case where the edge-weights are given in binary is as yet unresolved
— do you see why the RNC algorithm does not apply to the case of binary
weights? (Hint: Start by scaling up the input edge weights by a polynomially
large factor. Apply random perturbations to the scaled edge weights and
prove a variant of the Isclating Lemma for this situation.)

(Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317].} Devise an
RNC algorithm for the problem of finding a maximum matching in a graph.
Observe that the Parallel Matching algorithm does not work (as stated) when
the maximum matching is not a perfect matching. -

(Due to H.J. Karloff [237].}) Suppose you are given a Monte Carlo RNC
algorithm for finding a maximum matching in a bipartite graph. Explain how
you would convert this into a Las Vegas algorithm. Can the solution be
generalized to the case of non-bipartite graphs? (Hint: While this conversion
is trivial for perfect matching algorithms, for maximum matching algorithms
you will need to devise a parallel algorithm for determining an upper bound
on the size of a maximum matching in a graph. This requires a non-trivial
use of structure theorems for matchings in graphs.)

This problem explores a different method for converting the Monte Carlio
maximum matching into a Las Vegas one. Recall from Problem 7.7 that
the rank of the matrix of indeterminates constructed for a bipartite graph is
exactly equal to the size of the maximum matching (a similar result holds for
the general case). Consider the followlng approach for determining the size
of the maximum mafching: replace the indeterminates by random values
and compute the rank of the resulting matrix. The rank of an integer matrix

365

e P e —e=t -+ T~ LA U A e

PARALLEL AND DISTRIBUTED ALGORITHMS

can be computed in NC, and one would hope that the random substitution
method would preserve the rank with high probability. We would like to use
this to verify that the matching algorithm is indeed producing the maximum
matching, and thereby obtain a Las Vegas algorithm. Does this method
work?

(Due to R.M. Karp, E. Upfal, and A. Wigderson [242].) In a bipartite graph
G(U.V,E), for any set F = E define the rank r(F} as the maximum size of
intersection of F with a perfect matching, i.e., r(F) is the largest number of
edges in F that appear together in some perfect matching. Devise an RNC
algorithm for computing the rank for any given set F. Can this be generalized
to non-bipartite graphs?

(Due to R.M. Karp, E. Upfal, and A. Wigderson [242].) Assume you are given
the algorithm from Problem 12.20. Using this, we will outline the construction
of an alternative RNC algorithm for perfect matchings.

+ Assuming that the input graph is sparse in that it has a total of n vertices
and fewer than 3n/4 edges, devise an NC algorithm for finding a large
set § of edges that are guaranteed to belong to every perfect matching
in G.

e Suppose now that the input graph has more than 3n/4 edges. Using
the rank algorithm, devise an RNC algorithm for finding a large set T
of edges such that there exists a perfect matching in G none of whose
edges belong to 7.

Using the above tools, describe an alternative RNC algorithm for perfect
matchings.

(Due to V.V. Vazirani [405].) Prove that the Isolating Lemma holds even
when the weight of a set is defined to be the product (instead of sum) of the
weights of its elements. Can you identify any general family of mappings
from the weights of elements to the welights of sets for which the Isolating
Lemma is guaranteed to be valid?

{Due to K. Muimuley, U.V. Vazirani, and V.V. Vazirani [317].) An intriguing
application of the Isolating Lemma is to the class of “uniqueness” problems,
i.e., determining whether some problem in AP has a unique solution. Con-
sider the following two problems, which take as input a graph G(V,E)and a
positive integer k:

CLIQUE: Determine whether the graph has a clique of size k.]
UNIQUE CLIQUE: Determine whether there is exactly one clique of size k.

The complexity of unique solutions has been studied with respect to ran-
domized reductions, which are the natural generalization of polynomial time
reductions to allowing randomized polynomial time reductions. Devise a ran-
domized polynomial time reduction from the CLIQUE problem to the UNIQUE
CLIQUE.

{Due to J. Naor.) Let G(V.E) be an unweighted, undirected graph with n
vertices and m edges. Under any weight function w : E — {0,.... w}, the

366

w

12.25

12.26

12.27

12.28

PROBLEMS

fength of a path in G is the sum of the weights of the edges in that path.
A welght function is sald io be good it the following two conditions hoid for
each vertex x € V.

1. For all vertices y € V, the shortest path from x to y Is unique.

2. For any palr of vertices y, z € V, the net weight of the shortest path
from x to y is different from the net weight of the shortest path from x
to z.

What is the smallest value of W (as a function of n and m) for which you can
guarantee the existence of a good weight assignment?

(Due to K. Mulmuley, U.V. Vazirani, and V.V. Vazirani [317]) An even
more intriguing application of the Isolating Lemma is to the Exact Maiching
problem — given a graph G(V. E) with a subset of edges R < E colored red,
and a positive integer k, determine whether there is a perfect matching using
exactly k red edges. This problem is not known to be In P, but can be shown
to be in RNC via a (non-trivial) application of the isolating Lemma. Devise
RNC algorithms for the decision and search versions of this problem.

{Due to M.O. Rabin [344].) Show that Algorithm ASYNCH-CCP works equally
well in the case where the numbers of processors and choices are both
greater than 2. How does the complexity depend on the number of processors
and choices?

How large a value of { can the ByzGen algorithm tolerate? (Modify the
parameters L, H, and G if necessary.)

Consider what happens if the outcome of the coin toss generated by the
trusted party in the ByzGen algorithm is corrupted before it reaches some
good processors.

{a) Can disagreement occur if different good processors see different out-
comes? What happens if, instead of a global coin toss, sach processor
chooses a random coin independently of other processors, at every round?

(b} Suppose that we were guaranteed that at least 4 good processors receive
the correct outcome of each coin toss. Give a modification for the protocol
ByzGen that achieves agreement in an expected constant number of rounds,
under this assumption.

367

30.3 Brent’s theorem and work efficiency 709

30.2-2

Give an EREW algorithm for FIND-ROOTS that runs in O(lgn) time on a
forest of n nodes.

30.2-3

Give an n-processor CRCW algorithm that can compute the OR of n
boolean values in O(1) time.

30.2-4

Describe an efficient CRCW algorithm to multiply two n x n boolean ma-
trices using n® processors.

30.2-5

Describe an O(Ig n)-time EREW algorithm to multiply two # x n matrices
of real numbers using n® processors. Is there a faster common-CRCW al-
gorithm? Is there a faster algorithm in one of the stronger CRCW models?

30.2-6 x*

Prove that for any constant € > 0, there is an O(1)-time CRCW algorithm
using O(n'*€) processors to find the maximum element of an n-element
array.

30.2-7

Show how to merge two sorted arrays, each with n numbers, in O(1) time
using a priority-CRCW algorithm. Describe how to use this algorithm to
sort in O(lgn) time. Is your sorting algorithm work-efficient?

30.2-8

Complete the proof of Theorem 30.1 by describing how a concurrent read
on a p-processor CRCW PRAM is implemented in O(lgp) time on a p-
processor EREW PRAM.

30.2-9

Show how a p-processor EREW PRAM can implement a p-processor com-
bining-CRCW PRAM with only O(lgp) performance loss. (Hint: Use a
parallel prefix computation.)

30.3 Brent’s theorem and work efficiency

Brent’s theorem shows how we can efficiently simulate a combinational
circuit by a PRAM. Using this theorem, we can adapt many of the results
for sorting networks from Chapter 28 and many of the results for arith-
metic circuits from Chapter 29 to the PRAM model. Readers unfamiliar
with combinational circuits may wish to review Section 29.1.

710

Chapter 30 Algorithms for Parallel Computers

A combinational circuit is an acyclic network of combinational elements.
Each combinational element has one or more inputs, and in this section,
we shall assume that each element has exactly one output. (Combinational
elements with k& > 1 outputs can be considered to be k separate elements.)
The number of inputs is the fan-in of the element, and the number of
places to which its output feeds is its fan-out. We generally assume in
this section that every combinational element in the circuit has bounded
(O(1)) fan-in. It may, however, have unbounded fan-out.

The size of a combinational circuit is the number of combinational ele-
ments that it contains. The number of combinational elements on a longest
path from an input of the circuit to an output of a combinational element
is the element’s depth. The depth of the entire circuit is the maximum
depth of any of its elements.

Theorem 30.2 (Brent’s theorem)
Any depth-d, size-n combinational circuit with bounded fan-in can be
simulated by a p-processor CREW algorithm in O(n /p +d) time.

Proof We store the inputs to the combinational circuit in the PRAM’s
global memory, and we reserve a location for each combinational element
in the circuit to store its output value when it is computed. A given com-
binational element can then be simulated by a single PRAM processor in
O(1) time as follows. The processor simply reads the input values for the
element from the values in memory corresponding to circuit inputs or el-
ement outputs that feed it, thereby simulating the wires in the circuit. It
then computes the function of the combinational element and writes the
result in the appropriate position in memory. Since the fan-in of each
circuit element is bounded, each function can be computed in O(1) time.

Our job, therefore, is to find a schedule of the p processors of the PRAM
such that all combinational elements are simulated in O(n/p+d) time. The
main constraint is that an element cannot be simulated until the outputs
from any elements that feed it have been computed. Concurrent reads
are employed whenever several combinational elements being simulated
in parallel require the same value.

Since all elements at depth 1 depend only on circuit inputs, they are the
only ones that can be simulated initially. Once they have been simulated,
all elements at depth 2 can be simulated, and so forth, until we finish with
all elements at depth d. The key idea is that if all elements from depths 1
to / have been simulated, we can simulate any subset of elements at depth
i+ 1 in parallel, since their computations are independent of one another.

Our scheduling strategy, therefore, is quite naive. We simulate all the
elements at depth i before proceeding to simulate those at depth i + 1.
Within a given depth i, we simulate the elements p at a time. Figure 30.8
illustrates such a strategy for p = 2.

Let us analyze this simulation strategy. For i = 1,2,...,d, let n; be the
number of elements at depth / in the circuit. Thus,

30.3 Brent’s theorem and work efficiency 711

n; depth i
3 1
5 2
2 3
2 4
3 5

Figure 30.8 Brent’s theorem. The combinational circuit of size 15 and depth 5 is
simulated by a 2-processor CREW PRAM in 9 < 15/2 + 5 steps. The simulation
proceeds from top to bottom through the circuit. The shaded groups of circuit
elements indicate which elements are simulated at the same time, and each group
is labeled with a number corresponding to the time step when its elements are
simulated.

d
Zn,':n o
i=1

Consider the n; combinational elements at depth i. By grouping them into
[ni/p] groups, where the first [n;/p| groups have p elements each and the
leftover elements, if any, are in the last group, the PRAM can simulate the
computations performed by these combinational elements in O([#;/p])
time. The total simulation time is therefore on the order of

>[4 < 5 (%)

= 2,4
p

Brent’s theorem can be extended to EREW simulations when a combi-
national circuit has O(1) fan-out for each combinational element.

Chapter 30 Algorithms for Parallel Computers

Corollary 30.3
Any depth-d, size-n combinational circuit with bounded fan-in and fan-out
can be simulated on a p-processor EREW PRAM in O(n/p + d) time.

Proof We perform a simulation similar to that in the proof of Brent’s
theorem. The only difference is in the simulation of wires, which is where
Theorem 30.2 requires concurrent reading. For the EREW simulation,
after the output of a combinational element is computed, it is not directly
read by processors requiring its value. Instead, the output value is copied
by the processor simulating the element to the O(1) inputs that require
it. The processors that need the value can then read it without interfering
with each other. u

This EREW simulation strategy does not work for elements with un-
bounded fan-out, since the copying can take more than constant time at
each step. Thus, for circuits having elements with unbounded fan-out,
we need the power of concurrent reads. (The case of unbounded fan-in
can sometimes be handled by a CRCW simulation if the combinational
elements are simple enough. See Exercise 30.3-1.)

Corollary 30.3 provides us with a fast EREW sorting algorithm. As
explained in the chapter notes of Chapter 28, the AKS sorting network
can sort n numbers in O(lgn) depth using O(nlgn) comparators. Since
comparators have bounded fan-in, there is an EREW algorithm to sort n
numbers in O(lgn) time using n processors. (We used this result in The-
orem 30.1 to show that an EREW PRAM can simulate a CRCW PRAM
with at most logarithmic slowdown.) Unfortunately, the constants hid-
den by the O-notation are so large that this sorting algorithm has solely
theoretical interest. More practical EREW sorting algorithms have been
discovered, however, notably the parallel merge-sorting algorithm due to
Cole [46].

Now suppose that we have a PRAM algorithm that uses at most p pro-
cessors, but we have a PRAM with only p’ < p processors. We would
like to be able to run the p-processor algorithm on the smaller p’-processor
PRAM in a work-efficient fashion. By using the idea in the proof of Brent’s
theorem, we can give a condition for when this is possible.

Theorem 30.4

If a p-processor PRAM algorithm A runs in time ¢, then for any p' < p,
there is an p’-processor PRAM algorithm A’ for the same problem that
runs in time O(pt/p’).

Proof Let the time steps of algorithm 4 be numbered 1,2,...,t. Al-
gorithm A’ simulates the execution of each time step i=12,...,tin
time O([p/p"]). There are ¢ steps, and so the entire simulation takes time
O([p/p'1t) = O(pt/p"), since p’ < p. =

30.3 Brent’s theorem and work efficiency 713

The work performed by algorithm A is pt, and the work performed by
algorithm 4’ is (pt/p')p’ = pt; the simulation is therefore work-efficient.
Consequently, if algorithm A is itself work-efficient, so is algorithm A'.

When developing work-efficient algorithms for a problem, therefore, one
needn’t necessarily create a different algorithm for each different number
of processors. For example, suppose that we can prove a tight lower bound
of ¢ on the running time of any parallel algorithm, no matter how many
processors, for solving a given problem, and suppose further that the best
serial algorithm for the problem does work w. Then, we need only develop
a work-efficient algorithm for the problem that uses p = O(w /t) processors
in order to obtain work-efficient algorithms for all numbers of processors
for which a work-efficient algorithm is possible. For p’ = o(p), Theo-
rem 30.4 guarantees that there is a work-efficient algorithm. For p’ = w(p),
no work-efficient algorithms exist, since if ¢ is a lower bound on the time
for any parallel algorithm, p't = w(pt) = w(w).

Exercises

30.3-1

Prove a result analogous to Brent’s theorem for a CRCW simulation of
boolean combinational circuits having AND and OR gates with unbounded
fan-in. (Hint: Let the “size” be the total number of inputs to gates in the
circuit.)

30.3-2

Show that a parallel prefix computation on 7 values stored in an array of
memory can be implemented in O(lg n) time on an EREW PRAM using
O(n/lgn) processors. Why does this result not extend immediately to a
list of n values?

30.3-3

Show how to multiply an n x n matrix 4 by an n-vector b in O(lgn) time
with a work-efficient EREW algorithm. (Hint: Construct a combinational
circuit for the problem.)

30.3-4
Give a CRCW algorithm using n? processors to multiply two n x n ma-
trices. The algorithm should be work-efficient with respect to the normal

©(n3)-time serial algorithm for multiplying matrices. Can you make the
algorithm EREW?

30.3-5

Some parallel models allow processors to become inactive, so that the
number of processors executing at any step varies. Define the work in
this model as the total number of steps executed during an algorithm
by active processors. Show that any CRCW algorithm that performs w

	Handout2a.pdf
	Handout2a.pdf
	Handout2b.pdf

	Handout2.pdf

