
CS254 Homework 3

Shawn Tice

October 31, 2011

Problem 1

Prove the general case of the deterministic time hierarchy theorem. We have a TM D that takes input
x, and runs U (with logarithmic slowdown) for a limited number of steps to simulate Mx on x. If
U outputs a bit b, then D outputs the opposite bit (1� b), and otherwise outputs 0.

By the statement of the Time Hierarchy Theorem, we have functions f and g satisfying f(n)logf(n) =
o(g(n)). If we limit the number of steps that Umay take to exactly g(|x|), then the language L decided
by D is by definition DTIME(g(|x|)). We claim that L /2 DTIME(f(|x|)). Suppose for the sake of
contradiction that there were a TM M and constant c

1

such that on input x 2 {0, 1}? M outputs
D(x) in c

1

· f(|x|) steps.
The time to simulate M by U on every input x is at most c

2

c
1

f(|x|)logf(|x|) for some constant c
2

that depends only on the size of the alphabet, the number of tapes, and the number of states of M ,
and not on x. By the definition of o(·), there is some integer n

0

such that g(n
0

) > c
2

c
1

f(n
0

)logf(n
0

)
for all n � n

0

. Since every TM can be represented by infinitely many strings, there is a string x that
encodes M and is of length at least n

0

, such that even if a smaller encoding of M doesn’t halt before
time runs out, a larger equivalent encoding will. D(x) will then output b = M(x) within at most g(|x|)
steps, but by the definition of D, D(x) = 1� b 6= M(x), giving the contradiction.

Problem 2

Prove the definition of H(n) in Ladner’s theorem implies an O(n3)-time algorithm to compute H(n)
from n. To compute H(n) from n by brute force, we just need to iterate through the possible values
of i up to log log n, and for each one simulate the TM Mi for i|x|i steps on every x in {0, 1}? with
|x|  log n, and for each x verify that the output is SATH(x), which requires recursively computing
H(|x|) and solving the instance of SAT encoded in x. If we find an i for which all of this works out,
then we’re done, and if we get through log log n without finding a suitable i, then H(n) is just log logn.

In the worst case we need to compute H(i) for each i  log n (to know how many 1s to append to in-
stances of SATH), simulate log log n machines on inputs of length at most log n (that’s O(2logn) = O(n)
inputs total) for a maximum of log log n(log n)log logn = o(n) steps, and compute SAT on O(log log n·n)
formulas of size at most log n. Solving an instance of SAT on inputs of size log n takes just O(n)
time, so if the time to compute H(n) is T (n), T (n)  log nT (log n) + O(log log n · n · (n + n)) =
log nT (log n) +O(n3) = O(n3).

Problem 3

Prove that SATA
is NPA

-complete. SATA is in NPA; as with SAT, the variable assignment will serve
as a certificate. To show that SATA isNP-hard, we use a modified version of the Cook-Levin reduction.
The idea is to reduce the problem of deciding any language L 2 NPA to the problem of deciding SATA

by transforming a TM MA that decides L and an input x into an instance of SATA.
We need to modify the Cook-Levin reduction to account for the special oracle tape that the verifier

MA has access to. We can encode the oracle tape on the single work/output tape of the oblivious

1

TM, which is okay because we still know exactly where the T (n) cells of the oracle tape reside. The
snapshots remain the same, but the function F that verifies that snapshot zi follows from the previous
snapshot, the current bit of input, and the snapshot from the last time that M was at the same position
needs to be modified to deal with the oracle. The function must now take as an extra argument the
contents of the oracle tape, which will be used to verify that the next state is q

no

or q
yes

if the current

state is q
query

. The extra argument can be translated to an A clause from the definition of SATA,
so that although it will depend on the entire T (n) cells of the oracle tape, it will add a maximum of
T (n)2 variables to the final formula �x, keeping the size of the formula polynomial. We have access to
the contents of the oracle tape via the snapshots, which encode the symbol on each cell of the query
tape the last time it was visited before snapshot zi. This process requires running through at most
T (n) snapshots T (n) times, so the time to build the formula is still polynomial.

Show there exists an A such that SATA
is not in PA. We can use the same construction used by

Baker, Gill, and Solovay to show that there is an oracle B such that their language UB /2 PB . We
can do this because UB (SATA. Any instance of UB is just an instance of SATA with one A clause
and no other restrictions on the variables x

1

. . . xn. To construct the language A, we enumerate every
oracle TM, and ensure that each one cannot decide instances of SATA with just one A clause of any
size in polynomial time. We build the language A in phases, starting with A clauses of size 1, then
2, and so on. We do this by simulating, for every i, each Mi on an input of a single A clause for up
to 2n/10 steps. For each machine that we simulate, we choose an A clause for the input of size larger
than any A clause we’ve already ruled out, and make sure that whatever Mi decides, it is wrong. If
Mi queries whether some string is in A we answer consistently for strings we’ve already determined,
and “no” otherwise. If Mi accepts some input, we remove all inputs of that size from A. Conversely,
if Mi rejects some input, we pick an input of that size that we haven’t already rejected, and add it to
A. Thus we guarantee that no A clause can be decided in polynomial time, and consequently SATA

can’t be decided in polynomial time either.

Problem 4

Show that 2SAT is in NL. The proof relies on the observation that the clauses of an instance of 2SAT
are implications. For example, the clause a _ b ⌘ ¬a =) b, and the clause ¬a _ b ⌘ a =) b. Each
implication can be thought of as an edge in a graph from a vertex labeled by the first variable to a
vertex labeled by the second (where ¬x and x are di↵erent vertices). The conjunction of each of these
implications describes a graph, and if there is a path in that graph from x to ¬x and from ¬x back
to x (for any variable x), then the formula is unsatisfiable because such paths are equivalent to the
unsatisfiable formula x () ¬x.

We can use the proof of the Immerman-Szelepcsényi theorem that decides PATH in log space to
confirm that for each variable in an instance of 2SAT, there is no path from that variable to its negation
and back. If for all variables there are no such paths, then the formula is satisfiable, and otherwise
it is not. We define an NDTM M that takes as input x, an instance of 2SAT, and outputs 1 if the
formula is satisfiable, and 0 otherwise.

M can convert any clause of a 2SAT instance into an implication x =) y in log space, and
can guess another clause that converts to the implication y =) z. In this way, M can use its
nondeterminism to guess a path from some variable x to ¬x, and to go in the other direction. We need
to check each variable for a path to its negation and back, but again this is fine because we can reuse
space between checking each pair of paths for a given variable, and we can stop and reject the formula
if there ever is such a pair of paths, and otherwise accept once we’ve checked all variables. We only
need to remember which variable we’re checking at any given time, which we can do in log space.

Problem 5

Show that TQBFk is ⌃p
k-complete under logspace reductions. First, TQBFk 2 ⌃p

k because its k alternat-
ing quantifiers with outermost 9 correspond to the quantifiers of the ⌃p

k definition, and the polynomial

2

TM M just needs to verify that the � of the TQBFk instance is true for the assignment of variables
given by u

1

, . . . , uk. To show that TQBFk is ⌃p
k-complete, we use the Cook-Levin reduction on the

TM M from the definition of ⌃p
k. The reduction produces a polynomial-sized formula, so we just need

to ensure that the reduction can be done in log space.
The main concern is calculating inputpos(i) and prev(i), both of which require simulating the

oblivious TM M in the original reduction. We don’t have the space to do the usual simulation, but
because M is oblivious, and we only need to track where the input head is, and the last step before
some step i on which the work/output tape head was at a certain position, we don’t actually need to
store the contents of all of the tapes. Instead, we can just store some counters to track where the input
and work/output heads are, and which step we’re on, all of which are logarithmic in some polynomial
of the input to M . Writing the parts of the boolean formula that verify that the input in the boolean
function matches the input to M , that we start in the start state, and that we end in the end state
can all be done by simple copying from M and its input, and certainly in log space.

Show TQBF is PSPACE-complete under logspace reductions. We can follow the proof from the
book that TQBF is PSPACE-complete. We have the same concern as with the Cook-Levin reduction,
because the construction of the function �M (C,C 0), which checks that two configurations are adjacent
in the configuration graph of M , depends upon inputpos(i) and prev(i) as well. We can use the same
technique as above to calculate these values in log space. The size of the final formula is O(m2), but
that’s fine because it’s polynomial, and we can calculate it one bit at a time.

3

