
More Completeness, coNP,
FNP,etc.

CS254
Chris Pollett
Oct 30, 2006.

Outline

• A last complete problem for NP
• coNP, coNP∩NP
• Function problems

MAX-CUT

• A cut in a graph G=(V,E) is a set of nodes S used to
partition G. The size of the cut is the number of edges
between S and V-S.

• Finding the smallest cut in a graph, MIN-CUT, is in P.
• This is because finding the smallest cut that separates two

nodes s and t can be found from our MAX-FLOW
algorithm.

• MAX-CUT is the problem given a graph G and a integer k:
Is there a cut in G of size k or more?

Thm. MAX-CUT is NP-complete.

Proof
MAX-CUT is in NP because you can always guess a cut and verify it has

the desired properties.
To see it is NP-complete we reduce NAE-SAT to it. Given an instance of

NAE-SAT, F, we create a graph with 2n nodes corresponding to the
variable x1,..xn and their negations. For each clause (a V b V c), we
add to E the three edges of the triangle of these literals. If two literals
are the same then we omit the edge. Finally, if xi or its negations
occurs n times in F then we add n edges between it and its negation.
(We generalize the notion of graph to allow this.)

Suppose there is a cut of of size 5m where m is the number of clauses.
WLOG, we can assume that both a variable and its negation are on the
opposite sides of a cut. We can think of the literals in the cut as true
and those on the other side as false. The total number of edges in the
cut from variables and their negations is thus 3m. The remaining 2m
edges must come from cutting triangles. Each triangle must contribute
at most two to the cut, so all m triangles must be split. The splitting of
a triangle corresponds to two literals in it getting different values.

NP and coNP

• NP consists of those languages with polynomial
length, poly time proofs of membership.

• coNP consists of those languages whose
complements are in NP. So languages in it have
poly-size, poly-time proofs of non-membership.

• For example, consider the problem VALIDITY.
This is the language of encodings of valid
propositional formulas.

• Given a formula F, a proof of nonmembership in
this language is a satisfying assignment for ¬F.

coNP-complete
Prop. If a language L is NP-complete then its complement is

coNP-complete.
Thm. VALIDITY is co-NP complete.
Proof. It is in coNP, because its complement VALIDITY is

in NP (one can guess an assignment and check if it falsifies
the formula). SAT is coNP-complete by the previous
proposition. A formula F is in this language iff ¬F is valid
so SAT reduces to VALIDITY.

Prop. If a coNP-complete language is in NP then NP=coNP.
Note: This does not imply P=NP. Call a language L in

NP∩coNP if it is in NP and in coNP. Unlike the situation
with R= r.e. ∩co-r.e., it is unknown if P is equal to
NP∩coNP.

Function Problems
• So far we have looked at languages.
• Usually we are interested in computing functions. i.e., given a formula we

want to find a satisfying assignment. Call this FSAT.
• Notice if we can solve SAT we can solve an FSAT problem. To do this, we

can ask for a formula F if it is satisfiable? Then if it is satisfiable we can set a
variable to true and ask if the the resulting formula is satisifiable. Repeating,
this polynomially many times we can find a satisfying assignment.

• Given a language L in NP, we know we can find a polynomially balanced
relation RL(x,y) such that x is in L iff there exists a polynomial length string
such that RL(x,y).

• Let FL be the function problem given x find a string y such that RL(x,y) holds
if it exists and return “no” otherwise.

• FNP is the class of all such function problems. FP is the subset of FNP for
languages in P. An example, of an FP function is FHornSat.

• We can define complete for these function classes in the same way as we did
for language classes.

Prop. FP =FNP iff P=NP.

Total Functions

• We call a problem in FNP total if for every string
x there is at least one y such that R(x,y).

• We denote by TFNP the function problems in
FNP which are total.

Ex: Given an integer N, find its prime factorization
N=p1

i_1…pk
i_k. Since primes is in P, this problem

is in TFNP.
Ex: One can show if a cubic graph has a Hamiltonian

cycle, that it in fact has a second cycle. Thus, the
problem ANOTHER HAMILTONIAN CYCLE
on a cubic graph is NP-complete.

