
Oracles, Hierarchies, and
Monotone Circuits.

CS254
Chris Pollett

Nov. 29, 2006.

Outline

• Oracle Machines
• Baker-Gill-Solovay
• Monotone Circuits

Oracle Machines

• We now consider TM which have access to a black box
called an oracle.

• It turns out many of the proofs about relationships between
complexity classes carry over to the oracle setting.

• So oracle results give us bounds on what can happen for
the usual complexity classes without oracles.

• The oracle setting also tells us something about the
strength of reductions.

• Namely, one might ask: Can an “NP-reduction” be more
powerful that a “P-reduction”?

Definition
A Turing Machine M? with oracle is a multi-tape DTM (a similar

definition works for NTMs) with a special query tape. It also has three
distinguished states q?, qyes, qno. We feed into the “?” slot of M? an
oracle language A⊆Σ* to get a machine MA. On input x, MA computes
as normal unless it enters the state q?, in which case if y is the contents
of the query tape then the next state will be qyes if y is in A and will be
qno if y is not in A. The computation keeps going until a halt state is
reached.

• MA might enter the query state q? several times during its computation,
so might ask for several different strings if they belong to A.

• Given a DTM or NTM space or time bounded complexity class C, let
CA denote the class of languages one gets by allowing the machines in
C to be oracle machines with access to A. That is, PA is the class of
languages recognized in p-time by DTMs MA.

Baker-Gill-Solovay
Thm. There are oracle sets A, B such that PA=NPA and

PB≠NPB.
Proof. From the homework we know there is a PSPACE-

complete language A. For this language we have:
PSPACE ⊆ PA ⊆ NPA⊆NPSPACE ⊆PSPACE.

The construction for B is a little more involved. Let L be
the following language:
L={ 0n | There is an x in B with |x|=n}.
This language is in NPB. We guess an x of length n and
check if it is in B using the oracle. We will show that we
can choose B so that this language is not in PB.

BGS proof cont’d
• To build B we enumerate oracle DTMs, M?

1, M?
2,.. by

listing out strings in lex order and then checking if they are
oracle DTMs.

• We define B in stages (B = ∪i Bi) based on which oracle
DTM we have just enumerated.

• Our construction has the property that Bi contains all
strings in B of length ≤ i.

• B0 is the empty set.
• Assume we have constructed Bi-1 and have just written M?

i
on the tape where we are doing the enumeration. We then
simulate MB

i(0i) for ilog i steps.
• Notice this is more than polynomially many steps.
• Since we haven’t completed B yet how do we

answer oracle queries? …

Yet More proof
• Answering queries “y in B?”:

– If |y| < i then answer according to Bi-1.
– If |y| ≥ i then answer “no” and make sure to remember y in some “no” set stored on

another string, so that we never add y to B.
• Suppose after ilog i steps MB

i rejects. Then we pick some string of length i that
was never queried by any MB

j for j≤i.
• This is possible since

∑i
j=1 jlog j ≤ ∑i

j=1 ilog i = i*2log^2 i < 2i.
• On the other hand, if MB

i accepts, we set Bi= Bi-1, so that there are no strings of
length i in B and so L does not contain 0i.

• The last case is that MB
i did not halt within ilog i steps. This might happen even

if MB
i is p-time if the cofficients in the polynomial bounding p(i) its runtime

are such that ilog i ≤ p(i). Again, we set Bi= Bi-1. We know that an
equivalent machine to MB

i will evenetually be listed out with large enough
index I so that Ilog I ≥ p(I) in which case the first two cases will ensure that
MB

i ’s is not L.

Monotone Circuits
• We earlier saw that if we could prove super-polynomial

lower bounds on circuit size for some NP language we
would know that P/poly≠NP and hence P≠NP.

• Such lower bound results are hard to obtain.
• We also know that at least as far as the CVP goes

monotone circuits are also P-complete, so in some sense
are at least as hard as nonmonotone circuits.

• Maybe, it is easier to prove circuit lower bounds for
monotone circuits?

• Is it possible to express any NP-complete problem so that
it could even be solved by monotone circuits?

CLIQUEn,k
• We have seen that whether a graph has a clique of size k is

NP-complete. Call the n node version of this problem
CLIQUEn,k .

• One can also build monotone exponential size circuits to
test if a graph G=(V,E) of n nodes has a clique of size k:
– The inputs gij correspond to the entries of the adjacency matrix for

G.
– There are gates such gij and a given one is true iff there is an

edge from i to j in G.
– For each subset S of V, with |S|=k, we have an AND of the O(k2)

many gates which correspond to a clique on this set of vertices.
– We then have a big OR over the many different subsets S.
– This circuit thus has size O(k2).

Razborov’s Theorem

Thm. There is a constant c such that for large
enough n all monotone circuits for
CLIQUEn,k with k = (n)1/4 have size at lest
2c(n)^{1/8}.

Proof. We will give the proof next day.

