Oracles, Hierarchies, and Monotone Circuits.

CS254
Chris Pollett
Nov. 29, 2006.

Outline

- Oracle Machines
- Baker-Gill-Solovay
- Monotone Circuits

Oracle Machines

- We now consider TM which have access to a black box called an oracle.
- It turns out many of the proofs about relationships between complexity classes carry over to the oracle setting.
- So oracle results give us bounds on what can happen for the usual complexity classes without oracles.
- The oracle setting also tells us something about the strength of reductions.
- Namely, one might ask: Can an "NP-reduction" be more powerful that a "P-reduction"?

Definition

A Turing Machine $\mathbf{M}^{\text {? }}$ with oracle is a multi-tape DTM (a similar definition works for NTMs) with a special query tape. It also has three distinguished states $\mathrm{q}_{2}, \mathrm{q}_{\mathrm{yes}}, \mathrm{q}_{\mathrm{no}}$. We feed into the "?" slot of $\mathrm{M}^{?}$ an oracle language $\mathrm{A} \subseteq \Sigma^{*}$ to get a machine M^{A}. On input $\mathrm{x}, \mathrm{M}^{\mathrm{A}}$ computes as normal unless it enters the state $\mathrm{q}_{\text {? }}$, in which case if y is the contents of the query tape then the next state will be $q_{y e s}$ if y is in A and will be q_{no} if y is not in A . The computation keeps going until a halt state is reached.

- M^{A} might enter the query state $q_{\text {? }}$ several times during its computation, so might ask for several different strings if they belong to A.
- Given a DTM or NTM space or time bounded complexity class C, let C^{A} denote the class of languages one gets by allowing the machines in C to be oracle machines with access to A . That is, P^{A} is the class of languages recognized in p-time by DTMs M ${ }^{\mathrm{A}}$.

Baker-Gill-Solovay

Thm. There are oracle sets A, B such that $\mathrm{P}^{\mathrm{A}}=\mathrm{NP}^{\mathrm{A}}$ and $\mathrm{P}^{\mathrm{B}} \neq \mathrm{NP}^{\mathrm{B}}$.
Proof. From the homework we know there is a PSPACEcomplete language A. For this language we have: PSPACE $\subseteq \mathrm{P}^{\mathrm{A}} \subseteq \mathrm{NP}^{\mathrm{A}} \subseteq$ NPSPACE \subseteq PSPACE .
The construction for B is a little more involved. Let L be the following language:
$\mathrm{L}=\left\{0^{\mathrm{n}} \mid\right.$ There is an x in B with $\left.|\mathrm{x}|=\mathrm{n}\right\}$.
This language is in N^{B}. We guess an x of length n and check if it is in B using the oracle. We will show that we can choose B so that this language is not in P^{B}.

BGS proof cont'd

- To build B we enumerate oracle DTMs, $\mathrm{M}^{?}, \mathrm{M}_{2}{ }_{2}, .$. by listing out strings in lex order and then checking if they are oracle DTMs.
- We define B in stages $\left(B=\cup_{i} B_{i}\right)$ based on which oracle DTM we have just enumerated.
- Our construction has the property that B_{i} contains all strings in B of length $\leq \mathrm{i}$.
- B_{0} is the empty set.
- Assume we have constructed $\mathrm{B}_{\mathrm{i}-1}$ and have just written M_{i} on the tape where we are doing the enumeration. We then simulate $\mathrm{M}^{\mathrm{B}}{ }_{\mathrm{i}}\left(0^{\mathrm{i}}\right)$ for ${ }^{\log \mathrm{i}}$ steps.
- Notice this is more than polynomially many steps.
- Since we haven't completed B yet how do we answer oracle queries? ...

Yet More proof

- Answering queries "y in B?":
- If $|y|<i$ then answer according to B_{i-1}.
- If lyl $\geq i$ then answer "no" and make sure to remember y in some "no" set stored on another string, so that we never add y to B.
- Suppose after $i^{\log \mathrm{i}}$ steps $\mathrm{M}_{\mathrm{i}}^{\mathrm{B}}$ rejects. Then we pick some string of length i that was never queried by any $\mathrm{M}^{\mathrm{B}}{ }_{\mathrm{j}}$ for $\mathrm{j} \leq i$.
- This is possible since

$$
\sum_{\mathrm{j}=1}^{\mathrm{i}} \mathrm{j}^{\log \mathrm{j}} \leq \sum_{\mathrm{j}=1}^{\mathrm{i}} 1^{\mathrm{i} \log \mathrm{i}}=\mathrm{i}^{*} 2^{\log \wedge 2 \mathrm{i}}<2^{\mathrm{i}} .
$$

- On the other hand, if $\mathrm{M}^{\mathrm{B}}{ }_{\mathrm{i}}$ accepts, we set $\mathrm{B}_{\mathrm{i}}=\mathrm{B}_{\mathrm{i}-1}$, so that there are no strings of length i in B and so L does not contain 0^{i}.
- The last case is that M^{B} i did not halt within $\mathrm{i}^{\log \mathrm{i}}$ steps. This might happen even if $\mathrm{M}^{\mathrm{B}}{ }_{\mathrm{i}}$ is p -time if the cofficients in the polynomial bounding $\mathrm{p}(\mathrm{i})$ its runtime are such that $\mathrm{i}^{\log \mathrm{i}} \leq \mathrm{p}(\mathrm{i})$. Again, we set $\mathrm{B}_{\mathrm{i}}=\mathrm{B}_{\mathrm{i}-1}$. We know that an equivalent machine to $\mathrm{M}^{\mathrm{B}}{ }_{\mathrm{i}}$ will evenetually be listed out with large enough index I so that $\mathrm{I}^{\log \mathrm{I}} \geq \mathrm{p}(\mathrm{I})$ in which case the first two cases will ensure that M_{i}^{B} 's is not L.

Monotone Circuits

- We earlier saw that if we could prove super-polynomial lower bounds on circuit size for some NP language we would know that $\mathrm{P} /$ poly $\neq \mathrm{NP}$ and hence $\mathrm{P} \neq \mathrm{NP}$.
- Such lower bound results are hard to obtain.
- We also know that at least as far as the CVP goes monotone circuits are also P-complete, so in some sense are at least as hard as nonmonotone circuits.
- Maybe, it is easier to prove circuit lower bounds for monotone circuits?
- Is it possible to express any NP-complete problem so that it could even be solved by monotone circuits?

CLIQUE $_{\mathrm{n}, \mathrm{k}}$

- We have seen that whether a graph has a clique of size k is NP-complete. Call the n node version of this problem CLIQUE $_{\mathrm{n}, \mathrm{k}}$.
- One can also build monotone exponential size circuits to test if a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ of n nodes has a clique of size k :
- The inputs g_{ij} correspond to the entries of the adjacency matrix for G.
- There are $\binom{n}{2}$ gates such g_{ij} and a given one is true iff there is an edge from i to j in G .
- For each subset S of V, with $|S|=k$, we have an AND of the $O\left(k^{2}\right)$ many gates which correspond to a clique on this set of vertices.
- We then have a big OR over the $\binom{n}{k}$ many different subsets S .
- This circuit thus has size $\mathrm{O}\left(\mathrm{k}^{2}\binom{n}{k}\right.$).

Razborov's Theorem

Thm. There is a constant c such that for large enough n all monotone circuits for CLIQUE $_{n, k}$ with $k=(n)^{1 / 4}$ have size at lest $\left.2^{c(n)}\right)^{\wedge}\{1 / 8\}$.
Proof. We will give the proof next day.

