Oracles, Hierarchies, and Monotone Circuits.

CS254

Chris Pollett

Nov. 29, 2006.

Outline

- Oracle Machines
- Baker-Gill-Solovay
- Monotone Circuits

Oracle Machines

- We now consider TM which have access to a black box called an oracle.
- It turns out many of the proofs about relationships between complexity classes carry over to the oracle setting.
- So oracle results give us bounds on what can happen for the usual complexity classes without oracles.
- The oracle setting also tells us something about the strength of reductions.
- Namely, one might ask: Can an "NP-reduction" be more powerful that a "P-reduction"?

Definition

- A **Turing Machine M**[?] with oracle is a multi-tape DTM (a similar definition works for NTMs) with a special query tape. It also has three distinguished states q_2 , q_{yes} , q_{no} . We feed into the "?" slot of M[?] an oracle language $A \subseteq \Sigma^*$ to get a machine M^A. On input x, M^A computes as normal unless it enters the state q_2 , in which case if y is the contents of the query tape then the next state will be q_{yes} if y is in A and will be q_{no} if y is not in A. The computation keeps going until a halt state is reached.
- M^A might enter the query state q₂ several times during its computation, so might ask for several different strings if they belong to A.
- Given a DTM or NTM space or time bounded complexity class C, let C^A denote the class of languages one gets by allowing the machines in C to be oracle machines with access to A. That is, P^A is the class of languages recognized in p-time by DTMs M^A.

Baker-Gill-Solovay

- **Thm.** There are oracle sets A, B such that $P^A = NP^A$ and $P^B \neq NP^B$.
- **Proof.** From the homework we know there is a PSPACEcomplete language A. For this language we have: $PSPACE \subseteq P^A \subseteq NP^A \subseteq NPSPACE \subseteq PSPACE.$
 - The construction for B is a little more involved. Let L be the following language:
 - L={ 0^n | There is an x in B with |x|=n }.
 - This language is in NP^B. We guess an x of length n and check if it is in B using the oracle. We will show that we can choose B so that this language is not in P^B.

BGS proof cont'd

- To build B we enumerate oracle DTMs, M[?]₁, M[?]₂,.. by listing out strings in lex order and then checking if they are oracle DTMs.
- We define B in stages $(B = \bigcup_i B_i)$ based on which oracle DTM we have just enumerated.
- Our construction has the property that B_i contains all strings in B of length $\leq i$.
- B₀ is the empty set.
- Assume we have constructed B_{i-1} and have just written $M_{i}^{?}$ on the tape where we are doing the enumeration. We then simulate $M_{i}^{B}(0^{i})$ for $i^{\log i}$ steps.
- Notice this is more than polynomially many steps.
- Since we haven't completed B yet how do we answer oracle queries? ...

Yet More proof

- Answering queries "y in B?":
 - If |y| < i then answer according to B_{i-1} .
 - If $|y| \ge i$ then answer "no" and make sure to remember y in some "no" set stored on another string, so that we never add y to B.
- Suppose after i^{log i} steps M^B_i rejects. Then we pick some string of length i that was never queried by any M^B_i for j≤i.
- This is possible since

 $\sum_{j=1}^{i} j^{\log j} \le \sum_{j=1}^{i} i^{\log i} = i^* 2^{\log^{4} 2i} < 2^i.$

- On the other hand, if M^{B}_{i} accepts, we set $B_{i} = B_{i-1}$, so that there are no strings of length i in B and so L does not contain 0^{i} .
- The last case is that $M_i^{B_i}$ did not halt within $i^{\log i}$ steps. This might happen even if $M_i^{B_i}$ is p-time if the cofficients in the polynomial bounding p(i) its runtime are such that $i^{\log i} \le p(i)$. Again, we set $B_i = B_{i-1}$. We know that an equivalent machine to $M_i^{B_i}$ will evenetually be listed out with large enough index I so that $I^{\log I} \ge p(I)$ in which case the first two cases will ensure that $M_i^{B_i}$'s is not L.

Monotone Circuits

- We earlier saw that if we could prove super-polynomial lower bounds on circuit size for some NP language we would know that P/poly≠NP and hence P≠NP.
- Such lower bound results are hard to obtain.
- We also know that at least as far as the CVP goes monotone circuits are also P-complete, so in some sense are at least as hard as nonmonotone circuits.
- Maybe, it is easier to prove circuit lower bounds for monotone circuits?
- Is it possible to express any NP-complete problem so that it could even be solved by monotone circuits?

CLIQUE_{n.k}

- We have seen that whether a graph has a clique of size k is \bullet NP-complete. Call the n node version of this problem CLIQUE_{n.k}.
- One can also build monotone exponential size circuits to \bullet test if a graph G=(V,E) of n nodes has a clique of size k:
 - The inputs g_{ii} correspond to the entries of the adjacency matrix for G.
 - There are $\binom{n}{2}$ gates such g_{ij} and a given one is true iff there is an edge from i to j in G.
 - For each subset S of V, with |S|=k, we have an AND of the O(k^2) many gates which correspond to a clique on this set of vertices.
 - We then have a big OR over the $\binom{n}{k}$ many different subsets S. This circuit thus has size $O(k^2 \binom{n}{k})$.

Razborov's Theorem

- Thm. There is a constant c such that for large enough n all monotone circuits for $CLIQUE_{n,k}$ with $k = (n)^{1/4}$ have size at lest $2^{c(n)^{1/8}}$.
- **Proof.** We will give the proof next day.