Oracles, Hierarchies, and
Monotone Circuits.

CS254
Chris Pollett
Nov. 29, 2006.

Outline

e QOracle Machines
e Baker-Gill-Solovay

e Monotone Circuits

Oracle Machines

We now consider TM which have access to a black box
called an oracle.

It turns out many of the proofs about relationships between
complexity classes carry over to the oracle setting.

So oracle results give us bounds on what can happen for
the usual complexity classes without oracles.

The oracle setting also tells us something about the
strength of reductions.

Namely, one might ask: Can an “NP-reduction” be more
powertful that a “P-reduction™?

Definition

A Turing Machine M? with oracle is a multi-tape DTM (a similar
definition works for NTMs) with a special query tape. It also has three
distinguished states ¢, qy.,, q,,- We feed into the “?” slot of M’ an
oracle language ACZ"to get a machine M#. On input x, M* computes
as normal unless it enters the state q,, in which case if y 1s the contents
of the query tape then the next state will be g, if y is in A and will be
qd,, 1f y 1s not in A. The computation keeps going until a halt state is
reached.

e M might enter the query state q, several times during its computation,
so might ask for several different strings if they belong to A.

e Given a DTM or NTM space or time bounded complexity class C, let
CA denote the class of languages one gets by allowing the machines in
C to be oracle machines with access to A. That is, PA is the class of
languages recognized in p-time by DTMs M4,

Baker-Gill-Solovay

Thm. There are oracle sets A, B such that PA=NPA and
PB£NPB.
Proof. From the homework we know there is a PSPACE-
complete language A. For this language we have:
PSPACE C PAC NPACNPSPACE CPSPACE.

The construction for B is a little more involved. Let L be
the following language:

L={ 0"| There 1s an X in B with Ix|=n}.

This language is in NPB. We guess an x of length n and
check 1f it 1s in B using the oracle. We will show that we
can choose B so that this language is not in PB,

BGS proot cont’d

To build B we enumerate oracle DTMs, M’,, M’,,.. by
listing out strings 1n lex order and then checking if they are
oracle DTMs.

We define B 1n stages (B = U, B,) based on which oracle
DTM we have just enumerated.

Our construction has the property that B. contains all
strings in B of length < 1.

B, 1s the empty set.

Assume we have constructed B. ; and have just written M’
on the tape where we are doing the enumeration. We then
simulate MB.(0") for i'°¢! steps.

Notice this 1s more than polynomially many steps.

Since we haven’t completed B yet how do we
answer oracle queries? ...

Yet More proot

Answering queries “y in B?”:
— If lyl <1 then answer according to B, ;.
— If lyl =1 then answer “no” and make sure to remember y in some “no” set stored on
another string, so that we never add y to B.
Suppose after i'°¢ i steps MB. rejects. Then we pick some string of length i that
was never queried by any MBJ. for j=<i.

This is possible since

Zi‘ 1jlogj < Zi‘ | jlogi= j*2log"2i « Di
= il '
On the other hand, if MB. accepts, we set B.= B. , so that there are no strings of

length i in B and so L does not contain 0.

The last case is that M. did not halt within i'°¢ ! steps. This might happen even
if MB. is p-time if the cofficients in the polynomial bounding p(i) its runtime
are such that i'¢' < p(i). Again, we set B.= B, ;. We know that an
equivalent machine to MB. will evenetually be listed out with large enough

index I so that I'°2T > p(I) in which case the first two cases will ensure that
MB. ’s is not L.

Monotone Circuits

We earlier saw that if we could prove super-polynomial
lower bounds on circuit size for some NP language we
would know that P/poly=NP and hence P=NP.

Such lower bound results are hard to obtain.

We also know that at least as far as the CVP goes
monotone circuits are also P-complete, so in some sense
are at least as hard as nonmonotone circuits.

Maybe, it 1s easier to prove circuit lower bounds for
monotone circuits?

Is it possible to express any NP-complete problem so that
it could even be solved by monotone circuits?

CLIQUE,,

* We have seen that whether a graph has a clique of size k 1s

NP-complete. Call the n node version of this problem
CLIQUE , .

* One can also build monotone exponential size circuits to
test 1f a graph G=(V,E) of n nodes has a clique of size k:

The inputs g;; correspond to the entries of the adjacency matrix for
G.
T

There are (2) gates such g;; and a given one is true iff there is an
edge from1ito jin G.

For each subset S of V, with ISI=k, we have an AND of the O(k?)
many gates which correspond to a clique on this set of vertices.

We then have a big OR over the (:) many different subsets S.
This circuit thus has size O(k?(}))

Razborov’s Theorem

Thm. There 1s a constant ¢ such that for large

enough n all monotone circuits for

CLIQUE, , with k = (n)""* have size at lest
IemM{1/8}

Proof. We will give the proof next day.

