Oracles, Hierarchies, and Monotone Circuits.

CS254
Chris Pollett
Nov. 29, 2006.
Outline

- Oracle Machines
- Baker-Gill-Solovay
- Monotone Circuits
Oracle Machines

- We now consider TM which have access to a black box called an oracle.
- It turns out many of the proofs about relationships between complexity classes carry over to the oracle setting.
- So oracle results give us bounds on what can happen for the usual complexity classes without oracles.
- The oracle setting also tells us something about the strength of reductions.
- Namely, one might ask: Can an “NP-reduction” be more powerful than a “P-reduction”?
Definition

A Turing Machine \(M' \) with oracle is a multi-tape DTM (a similar definition works for NTMs) with a special query tape. It also has three distinguished states \(q'_?, q_{yes}, q_{no} \). We feed into the “?” slot of \(M' \) an oracle language \(A \subseteq \Sigma^* \) to get a machine \(M^A \). On input \(x \), \(M^A \) computes as normal unless it enters the state \(q'_? \), in which case if \(y \) is the contents of the query tape then the next state will be \(q_{yes} \) if \(y \) is in \(A \) and will be \(q_{no} \) if \(y \) is not in \(A \). The computation keeps going until a halt state is reached.

- \(M^A \) might enter the query state \(q'_? \) several times during its computation, so might ask for several different strings if they belong to \(A \).
- Given a DTM or NTM space or time bounded complexity class \(C \), let \(C^A \) denote the class of languages one gets by allowing the machines in \(C \) to be oracle machines with access to \(A \). That is, \(P^A \) is the class of languages recognized in p-time by DTMs \(M^A \).
Baker-Gill-Solovay

Thm. There are oracle sets A, B such that $P^A=NP^A$ and $P^B \neq NP^B$.

Proof. From the homework we know there is a PSPACE-complete language A. For this language we have:

$$PSPACE \subseteq P^A \subseteq NP^A \subseteq NPSPACE \subseteq PSPACE.$$

The construction for B is a little more involved. Let L be the following language:

$L = \{ 0^n \mid \text{There is an } x \text{ in } B \text{ with } |x|=n \}.$

This language is in NP^B. We guess an x of length n and check if it is in B using the oracle. We will show that we can choose B so that this language is not in P^B.
BGS proof cont’d

• To build B we enumerate oracle DTMs, $M_1^?, M_2^?,...$ by listing out strings in lex order and then checking if they are oracle DTMs.

• We define B in stages ($B = \bigcup_i B_i$) based on which oracle DTM we have just enumerated.

• Our construction has the property that B_i contains all strings in B of length $\leq i$.

• B_0 is the empty set.

• Assume we have constructed B_{i-1} and have just written $M_i^?$ on the tape where we are doing the enumeration. We then simulate $M^B_i(0^i)$ for $i^{\log i}$ steps.

• Notice this is more than polynomially many steps.

• Since we haven’t completed B yet how do we answer oracle queries? …
Yet More proof

• Answering queries “y in B?”:
 – If |y| < i then answer according to B_{i-1}.
 – If |y| ≥ i then answer “no” and make sure to remember y in some “no” set stored on another string, so that we never add y to B.

• Suppose after $i^{\log i}$ steps M^B_i rejects. Then we pick some string of length i that was never queried by any M^B_j for $j \leq i$.

• This is possible since
 $$\sum_{j=1}^{i} j^{\log j} \leq \sum_{j=1}^{i} i^{\log i} = i \cdot 2^{\log^2 i} < 2^i.$$

• On the other hand, if M^B_i accepts, we set $B_i = B_{i-1}$, so that there are no strings of length i in B and so L does not contain 0^i.

• The last case is that M^B_i did not halt within $i^{\log i}$ steps. This might happen even if M^B_i is p-time if the coefficients in the polynomial bounding $p(i)$ its runtime are such that $i^{\log i} \leq p(i)$. Again, we set $B_i = B_{i-1}$. We know that an equivalent machine to M^B_i will eventually be listed out with large enough index I so that $I^{\log I} \geq p(I)$ in which case the first two cases will ensure that M^B_i ’s is not L.
Monotone Circuits

- We earlier saw that if we could prove super-polynomial lower bounds on circuit size for some NP language we would know that P/poly ≠ NP and hence P ≠ NP.
- Such lower bound results are hard to obtain.
- We also know that at least as far as the CVP goes monotone circuits are also P-complete, so in some sense are at least as hard as nonmonotone circuits.
- Maybe, it is easier to prove circuit lower bounds for monotone circuits?
- Is it possible to express any NP-complete problem so that it could even be solved by monotone circuits?
We have seen that whether a graph has a clique of size k is NP-complete. Call the n node version of this problem $\text{CLIQUE}_{n,k}$.

One can also build monotone exponential size circuits to test if a graph $G=(V,E)$ of n nodes has a clique of size k:

- The inputs g_{ij} correspond to the entries of the adjacency matrix for G.
- There are $\binom{n}{2}$ gates such g_{ij} and a given one is true iff there is an edge from i to j in G.
- For each subset S of V, with $|S|=k$, we have an AND of the $O(k^2)$ many gates which correspond to a clique on this set of vertices.
- We then have a big OR over the $\binom{n}{k}$ many different subsets S.
- This circuit thus has size $O(k^2 \binom{n}{k})$.

$\text{CLIQUE}_{n,k}$
Razborov’s Theorem

Thm. There is a constant c such that for large enough n all monotone circuits for $\text{CLIQUE}_{n,k}$ with $k = (n)^{1/4}$ have size at least $2^{c(n)^{1/8}}$.

Proof. We will give the proof next day.