More Complexity Theory via
Reachability

CS254
Chris Pollett
Aug. 28, 2006.



Outline

e Maximum Flow
e Bipartite Matching

* Traveling Salesman



Motivation

Reachability last day was a decision problem.

Our notion of tractable versus intractable 1s based
on decision problems.

Many real-world problems however return values.
In particular, one often has optimization problems.

It turns out that feasibility for these problems is
closely connected to feasibility of decision
problems.



Maximum Flow

As an example...

— A network N=(V, E, s, t, ¢) 1s a graph (V,E) with two
distinguished vertices s,t and with a capacity 0<c(1,J) on
edge (1,)) 1n the graph.

— s should be a source and t a sink.

— A flow f 1s an assignment to each edge (1,)) other than s
and t of a value 1(1,J) such that O < 1(1,J) < c(1,j) and such
that X .1(1,)) = 2, 1(.k).

— The value of a flow 1s X, {(s,k).

— The problem MAX FLOW is to determine the
maximum possible value of a flow on a network.

— Since we are doing a maximization it 1s called an
optimization problem.



An Algorithm For MAX FLOW

Notice if f is a flow and {~ 1s another flow with greater value the Af = {~
- f is almost a flow except some f(1,j)’s might be negative.

It is a flow in a modified network N(f) = (V, E’, s, t, ¢”), where
E"=E - {(1)) () = c@)IU {@p | §,1) in E, £(1,)) >0},
and c’(i,j) = c(i,)) - f(i,)) for (i,j) in E
and c’(i,j) = f(i,j) for (i,j)) in E” - E.
So telling if a flow f is a maximum is the same as deciding if there is a
positive flow in N(f).

But there will be such a flow if there is path in N(f) from s to t. i.e., an
instance of REACHABILITY.

Thus, REACHABILITY suggests an algorithm for MAX FLOW:
(1) Start from the initially all zero flow.
(i1) Choose a path of positive capacities from s to t, if it exists.
If so, add to the current flow the value of the least edge on this
path to make a new larger flow.
(i11) Generate new N(f) based on this flow and repeat untit no path.



Runtime of MAX FLOW
algorithm

Each iteration of the algorithm is O(n?) -- the time to do
REACHABILITY.

There can be at most nC phases where C 1s the maximum
value of C(1,)) for any edge.

This 1s because the graph has n edges, so there are fewer
than n edges leaving s. So the maximum value of the flow
1s nC. Since our flows have integer values, each
intermediate flow must go up by at least one.

So the total time for this algorithm is O(n°C).
This could be bad if C=Q(2").

It turns out if one always augments by the shortest path
then the algorithm is O(n).



Some More Motivation

e Another reason to study polynomial time as
our notion of tractable 1s its closure
properties under reductions.

e That 1s, if we can solve one problem 1n
polynomial time and we can show another
problem polynomial time reduces to the first
problem, then the second problem will also
be in polynomial time.




Bipartite Matching

As an example...

— A bipartite graph is a triple B=(U,V, E) where U is a set of nodes
called boys, V is a set of nodes called girls, [U|I=IVI=n, and
E C U x V is a set of edges.

— A matching is a set M C E of n edges, such that for any two edges
(u,v), (u”, v)in M, u#u” and v&v’.

— MATCHING is the problem to determine whether or not a
bipartite graph has a matching.

— Let MAX FLOW (D) be the decision problem: Does a graph have
a maximum flow with value greater than D?

— We have an O(n?) algorithm for this.

— Given bipartite graph B, we can make a network N by adding
vertices s, t and connecting s to each edge in U and connecting
each edge in V to t. Set c(1,)) = 1 for all edges (i,)).

— Notice B has a matching iff N has a maximum flow of value = n.

— As this reduction is easily computable this gives an O(n?)
algorithm for MATCHING.



Traveling Salesman Problem

So what 1s the dividing line between tractable and
intractable?

Consider the following problem given n cities and a
distance function d(1,j) between pairs of cities is there a
way to visit all cities with a total cost less than D?

Obviously given a tour of each city it is easy to check if it
has cost less than D.

A particular tour is essentially a permutation and there are
n! permutations. So searching all of them is intractable.

It 1s unknown however if there is no better algorithm.
This 1s an example of a problem in NP.
This class 1s also closed under polynomial time reductions.

One of our goals this semester will be to understand the
relationship of P to NP.



