
One Way Functions and Sparse
Sets.

CS254
Chris Pollett

Nov. 27, 2006.

Outline

• Cryptography
• UP
• UP and One-way functions
• Sparse, Unary Languages, and the P=NP

problem

Cryptography

• Alice and Bob want to communicate and have agreed on an encryption and
decryption algorithms E and D.

• E takes a key string e and and a string x and outputs some encrypted text y.
E(e,x) = y. Here y is at most polynomially longer than x.

• D takes a decryption key string d (often d=e, but in public key cryptography
they are different) and acts so that D(d, y) = x.

• We want it to be difficult for an Eavesdropper Eve to be able to determine x if
she knows the algorithms E and D as well as the encryption key e and the
string y.

• In public key cryptography (PKC), e is well known and called the public key
of Bob. Anyone wanting to send a secret message to Bob can use this key.

• On the other hand, only Bob might know d. d is called the private key.
• Since y is at most polynomially longer than x, there is an FNP algorithm to

guess it. So PKC is possible only if FNP ≠ FP. I.e., P≠NP.

Alice Bob

Eve

One way functions
• The functions in FNP-FP that are needed for cryptography

are called one-way functions.
Defn. Let f be a map from strings to strings. We say that f is a

one-way function if the following hold of f:
(1) it is one-to-one, and for all strings x, |x|1/k≤|f(x)| ≤ |x|k.
(2) f is in FP.
(3) f-1, the inverse of f, is not in FP.

• For example, given p < q primes, the function f(p,q) = p*q
is suspected to be one way.

• Public Key systems like RSA require this function to be
one way to be secure.

UP
• We are now going to connect the existence of one-way

functions to a complexity.
• It would be nice if one could build one-way functions based

on NP-complete sets.
• This has been tried (Merkle-Hellmann). Nowadays, though,

we have some evidence this approach is unlikely to work.
Defn. Call an NTM unambiguous if for any input x there is at

most one accepting computation. Let UP be the class of
languages accepted by unambiguous p-time NTMs.

• So P⊆UP⊆NP. We expect P≠UP.
Thm. P=UP iff there are no one-way functions.
• As a promise class, UP seems unlikely to have

complete problems, so is unlikely to equal NP.

Proof of Theorem
Suppose f is 1-way. Define the language:

Lf = {(x,y) | there is a z such that f(z)=y and z≤x}.
Less equal of strings above is with respect to lex ordering. We claim that

Lf is in UP-P. It is in UP since given (x,y) we can always guess a string
z and check if it works. As 1-way implies f is 1-1, at most one string z
will work. Suppose Lf were in P. Then we can invert f by binary
search. Given y we’d like to invert, we first determine the length of x
such that f(x)=y by asking queries of our Lf algorithm of the form: “Is
(1|y|^k, y) in Lf ?”, “Is (1|y|^{k-1}, y) in Lf ?”, .., “Is (1|y|^{1/k}, y) in Lf ?”.
Until we get our first negative answer, this will be the first length
which is lex smaller than x, and so will give us the length l of x. Using
l, we can then make the query: “Is (01l-1,y) in Lf?”. If not, we know
first digit of x is 1. If yes, we make the query “Is (001l-2,y) in Lf?” and
continue in the same way. The next query after that would be “Is (101l-
2,y) in Lf?” This would invert f in p-time contradicting f being 1-way.
Therefore, Lf is not in P.

For the other direction…

Proof cont´d

Suppose L is in UP - P. Let U be the unambiguous
NTM for L. If x is the accepting computation of U
on input y, define fU(x) =1y; otherwise, if x is not
an accepting computation of U, then define fU(x) =
0x. As one can verify if a string is a legal
computation of an NTM in p-time, fU is p-time.
The lengths of the inputs and outputs of the above
function are polynomially related. It is also 1-1.
Finally, if we could invert fU in deterministic p-
time we could tell if y was in L in deterministic p-
time, contradicting L in UP-P.

Density
• The UP languages are one class of languages in NP which

are unlikely to all be in P.
• We now investigate another class of languages which are

unlikely to be hard for NP: the sparse languages.
Defn Let L be a language.The density of L is the function

densL(n)=|{x in L | |x|≤n}|. A language is said to be sparse
if there is a polynomial p(n) such that densL(n) ≤ p(n) for
all n.

• For example, a unary language L is a language which is a
subset of {0}*. So densL(n) ≤ n, so such an L is sparse.

• Mahaney has shown that there are no sparse NP-
complete sets unless P=NP. Today, we will show
a weaker result…

Unary languages and NP-
completeness

Thm. Suppose that a unary language U is NP-
complete. Then P=NP.

Proof. Let U be an NP-complete unary language. Let
R reduce SAT to U. We can assume the output of
R is always in {0}*

, as if the output is not a unary
string we immediately know it is not in U.
Given a formula F in x1,..,xn. Our algorithm for
SAT considers partial truth assignments to the first
j variables. We represent such assignments as
strings t in {0,1}j. Let F[t] be the formula resulting
from substituting the values of the first j variables
in F according to t. (cont´d next page)

Proof cont´d
In our computation, we will make use of a hash table which associates

strings t with values v of the formula under than assignment. I.e., The
table has entries (H(t),v), where H is a hash function to be specified.
Our algorithm for SAT is:
Initialize t = empty string. Call SAT-COMPUTE(F,t) where
SAT-COMPUTE(F,t):
If |t| = n then return “yes” if F[t] has no clauses, else return “no”.
Otherwise, look up H(t) in the table if there is an entry (H(t),v) return v.
Otherwise, compute SAT-COMPUTE(F,t0) or SAT-COMPUTE(F, t1).

Based on this update the table with (H(t),v) and return v where v is “yes”
if either of the above said “yes” and is no otherwise.

That is the algorithm. Now need to show that is a
choice of H which makes it p-time…

Proof cont´d some more
• We want an H so that:

1. If H(t)=H(t´) then either F[t] and F[t´] are both satisfiable or
both not.

2. We want the range of H to be small so that it can be searched
efficiently and many values succeed.

• Let H(t) = R(F[t]).
• Notice if H(t) = H(t´) then R(F[t]) = R(F([t´]) and this in

turn means they are either both in U or not -- and hence,
both satisfiable or not. Thus, (1) hold of this H.

• All length of all values of H(t) can be bounded by p(n),
so (2) will also hold.

• To see this let’s estimate the run-time of
algorithm…

Even more proof
• The time to look up a value in the table is O(p(n)), so the runtime is

O(M*p(n)) where M is the number of invocations of the algorithm.
• The invocations form a binary tree of depth at most n.
Claim There is a set T={t1,t2..} of invocations of the algorithm such that

(a) |T| ≥ M/2n, (b) all invocations in T are recursive (not leaves), (c)
none of the elements in T is a prefix of the other.

Proof. First we delete the leaves from the tree, leaving M/2 nodes. Select
any bottom not yet deleted node and add it to T. Delete it and all its
parents from the tree. Notice the ancestors are all prefixes so couldn’t
be in T. Repeat the above on the remaining tree. Notice at each step we
delete at most n nodes. Hence, T will have size at least M/2n. Notice if
ti≠tj then H(ti)≠H(tj) since if they did, then the one that occurred second
would have been able to look up the value in the hash table and thus not
have been recursive.

• We have shown there are M/2n different values in the table.
• But we also know the table has size at most p(n).
• Hence, M≤ 2np(n) so the whole algorithm is polynomial.

