Completeness

CS254
Chris Pollett
Oct 23, 2006.

Outline

- Polynomially Verifiable
- Complete problems for P and NP

Polynomially Verifiable Languages

- NP is sometimes called the class of languages which are polynomial time verifiable.
- Call a relation $\mathrm{R} \subseteq \Sigma^{*} \mathrm{x} \Sigma^{*}$ polynomial decidable if there a DTM which decides the language $\{<\mathrm{x}, \mathrm{y}\rangle \mid(\mathrm{x}, \mathrm{y})$ is in R$\}$. We say R is polynomially balanced if (x, y) is in R implies $|\mathrm{y}| \leq|\mathrm{x}|^{\mathrm{k}}$ for some $\mathrm{k} \geq 1$.
- The next proposition shows what polynomial time verifiable means

Prop. Let L be a language. L is in NP iff there is a polynomially decidable and polynomially balanced (by $|x|^{\mathrm{k}}$ for some k) relation R , such that $\mathrm{L}=\left\{\mathrm{x}\left|\exists \mathrm{y}, \mathrm{y} \leq|\mathrm{x}|^{\mathrm{k}}\right.\right.$ and (x, y) is in R$\}$

- So given x, if we had in $|x|^{k}$ proof string y we could verify in polynomial time whether x was in L.
Proof. Any L of the form $\left\{x|\exists y, y \leq x|^{k}\right.$ and (x, y) is in $\left.R\right\}$ can be decided in NP by a machine which first nondeterministically guesses y and then runs R on (x, y). On the other hand, if L is NP via M, some NDTM, then we can let R be the p time DTM which acts like M except when M needs to do its ith nondeterministic move, R instead consults the ith square of y and uses this value to say which possible next transition to follow.

Variations on SAT

- k-SAT is the variant of SAT where each clause has at most k literal.
Prop. 3SAT is NP-complete.
Proof. Notice our reduction of CIRCUIT-SAT to SAT is actually a reduction to 3SAT.
Prop. 3SAT remains NP-complete for expressions in which each variable appears at most three times and each literal at most twice.
Proof. Suppose a variable x appears k times in a 3SAT instance. We would replace this variable with k variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}$ and add the clause: $\left(\neg \mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge\left(\neg \mathrm{x}_{2} \mathrm{~V} \mathrm{x}_{3}\right) \ldots \wedge$ $\left(\neg \mathrm{x}_{\mathrm{k}} \vee \mathrm{x}_{1}\right)$

2SAT is in P

Given a 2SAT instance I we can build a graph $G(I)$ as

 follows:- the vertices of V are the variables of I and there negations.
- there is an edge (a, b) in the graph iff there is a clause $(\neg a \mathrm{Vb})$ in I. These edges can be viewed as capturing logical implication
Thm One can show I is unsatisfiable iff there is a variable x such that there are paths from from x to $\neg x$ and from $\neg x$ to x in $G(I)$.
Proof. Suppose such a path exists then assigning x true and following the path of implications gives true=>false. Similarly, if one assigned x false.
On the other hand if there is no such path, we could pick a node a that has not been assigned and such that there is no path from a to $\neg \mathrm{a}$, and assign it true. We also assign true all nodes reachable from a and assign false the negations of these nodes. Then we repeat.
This proves 2SAT is in P since reachability is in P-time.

2SAT is in NL

Recall NL is closed under complement. So it suffices to recognize unsatisfiable expression in NL. In NL, we guess a variable x and a sequence of successive pairs of vertices along a path from x to $\neg \mathrm{x}$ and back.

MAX2SAT is NP-complete

- MAX2SAT is the problem give a 2SAT instance I, and an integer k: Is there an assignment which makes at least k clauses true?
Thm. MAX2SAT is NP-complete.
Proof. Consider the ten clauses:
(x)(y)(z)(w)
$(\neg x V \neg y)(\neg y V \neg z)(\neg z V \neg x)$
($\mathrm{x} V \neg \mathrm{w}$) $(\mathrm{y} V \neg \mathrm{w})(\mathrm{z} \mathrm{V} \neg \mathrm{w})$
There is no way to satisfy all these clauses. Notice if a truth assignment satisfies (x $\mathrm{V} y \mathrm{~V}$ z) then we can satisfy 7 of these clauses. For all other truth assignments we can satisfy at most 6 . So we can use this to reduce a 3SAT instance of m clauses to a MAX2SAT instance with $\mathrm{k}=7 \mathrm{~m}$.

