
Completeness

CS254
Chris Pollett
Oct 23, 2006.

Outline

• Polynomially Verifiable
• Complete problems for P and NP

Polynomially Verifiable
Languages

• NP is sometimes called the class of languages which are polynomial time
verifiable.

• Call a relation R ⊆∑*x∑* polynomial decidable if there a DTM which decides
the language {<x,y> | (x,y) is in R}. We say R is polynomially balanced if
(x,y) is in R implies |y| ≤ |x|k for some k≥1.

• The next proposition shows what polynomial time verifiable means
Prop. Let L be a language. L is in NP iff there is a polynomially decidable and

polynomially balanced (by |x|k for some k) relation R, such that
L={x| ∃y, y≤|x|k and (x,y) is in R}

• So given x, if we had in |x|k proof string y we could verify in
polynomial time whether x was in L.

Proof. Any L of the form {x| ∃y, y≤|x|k and (x,y) is in R} can be decided in NP by
a machine which first nondeterministically guesses y and then runs R on (x,y).
On the other hand, if L is NP via M, some NDTM, then we can let R be the p-
time DTM which acts like M except when M needs to do its ith
nondeterministic move, R instead consults the ith square of y and uses this
value to say which possible next transition to follow.

Variations on SAT
• k-SAT is the variant of SAT where each clause has at

most k literal.
Prop. 3SAT is NP-complete.
Proof. Notice our reduction of CIRCUIT-SAT to SAT is

actually a reduction to 3SAT.
Prop. 3SAT remains NP-complete for expressions in which

each variable appears at most three times and each literal at
most twice.

Proof. Suppose a variable x appears k times in a 3SAT
instance. We would replace this variable with k variables
x1,…,xk and add the clause:(¬x1 V x2) ∧ (¬x2 V x3)…∧
(¬xk V x1)

2SAT is in P
Given a 2SAT instance I we can build a graph G(I) as

follows:
– the vertices of V are the variables of I and there negations.
– there is an edge (a,b) in the graph iff there is a clause (¬a V b) in I.

These edges can be viewed as capturing logical implication
Thm One can show I is unsatisfiable iff there is a variable x such that there are

paths from from x to ¬x and from ¬x to x in G(I).
Proof. Suppose such a path exists then assigning x true and following the path of

implications gives true=>false. Similarly, if one assigned x false.
On the other hand if there is no such path, we could pick a node a that
has not been assigned and such that there is no path from a to ¬a, and
assign it true. We also assign true all nodes reachable from a and assign false
the negations of these nodes. Then we repeat.

This proves 2SAT is in P since reachability is in P-time.

2SAT is in NL

Recall NL is closed under complement. So it suffices
to recognize unsatisfiable expression in NL. In
NL,we guess a variable x and a sequence of
successive pairs of vertices along a path from x to
¬x and back.

MAX2SAT is NP-complete

• MAX2SAT is the problem give a 2SAT instance I, and an integer k: Is
there an assignment which makes at least k clauses true?

Thm. MAX2SAT is NP-complete.
Proof. Consider the ten clauses:
(x)(y)(z)(w)
(¬x V ¬y) (¬y V ¬z) (¬z V ¬x)
(x V ¬w) (y V ¬w) (z V ¬w)
There is no way to satisfy all these clauses. Notice if a truth assignment satisfies (x

V y V z) then we can satisfy 7 of these clauses. For all other truth assignments
we can satisfy at most 6. So we can use this to reduce a 3SAT instance of m
clauses to a MAX2SAT instance with k=7m.

