
Circuits and Derandomization.

CS254
Chris Pollett

Nov. 20, 2006.

Outline

• Polynomial size circuits
• Derandomization

Polynomial Size Circuits

• We have already defined what a Boolean circuit
is.

• The size of a circuit is the number of gates in it.
• We next would like to define what it means for a

family of circuits to recognize a language.
Defn. A family of circuits is an infinite sequence

(C0, C1, …) of Boolean circuits, where Cn has n
input variables. We say a language L has
polynomial size circuits, if there is a polynomial p
such that size(Cn)≤ p(n) and Cn accepts exactly
those strings in L of length n.

P is in P/Poly

• We call the class of languages with
polynomial circuits P/poly.

Thm. All languages in P have polynomial size
circuits.

Proof. This essentially follows from our proof
that CVP is P-complete -- however, rather
than encode a particular x into the inputs we
instead let its value come from variables.

Uniformity
Defn. We call a circuit family (C0, C1, …) uniform if there

is a log n-space machine N which on input 1n outputs Cn.
We say that a language L has uniformly polynomial
circuits if there is a uniform family of p-size circuits that
decides L.

Thm. A language L has uniformly polynomial circuits iff L is
in P.

Proof. One direction follows from the theorem of the last
slide recall completeness of CVP was logspace
computable. For the other direction suppose that L has
uniformly polynomial circuits. In p-time we can decide x
in L by first running the logspace machine to get C|x| then
doing circuit evaluation on x in p-time.

Advice Classes
• An advice string is a map from positive integers to

strings.
• We say a machine M decides a language L with advice

string A(n) if x in L implies M(x, A(|x|)) output yes. And
if x is not in L then M(x, A(|x|)) outputs “no”.

• Let poly denote the set of advice strings A(n) such that
|A(n)|≤p(n) for some polynomial n.

• We say a language L is in P/poly if there is a a p-time M
that decides L using an advice string in poly.

Prop. This and our previous definition of P/poly are
equivalent.

Some Conjectures

• Conjecture A: NP-complete problems have no
uniformly polynomial circuits.

• This can be viewed as a restatement of P≠NP.
• Conjecture B: NP-complete problems have no

polynomial circuits, uniform or not.
• So if Conjecture B is true, proving circuit lower

bounds for problems in NP might be an approach
to the P versus NP problem.

• The next result show that circuit lower bounds are
useless in proving P≠BPP. It also gives our first
derandomization result.

BPP ⊆P/Poly

Theorem. BPP ⊆ P/poly
Proof. Let L be in BPP decided by NTM N with a clear

majority. We claim that L has a p-size circuit family (C0 ,
C1, …Cn).
Cn is based on a sequence of bit strings An=(a1,…,am)
where each ai has length p(n), and where m=12(n+1). Each
bit string represents a string of nondeterministic choice that
N might have used. The idea is that Cn will simulate N on
each of these 12(n+1) many paths and take the majority
outcome. Since given the path we can use the tableau
method to simulate N on inputs of length n, Cn will be
poly-size in n. So it suffices to prove that there exists an An
which has the desired properties…

Proof Cont’d

Call ai bad if it leads Cn to a false positive or a false
negative answer.

Claim. For all n>0 there is a set An of 12(n+1) bit
strings such that for all x with |x|=n fewer than
half of the choices in An are bad.

Proof. Consider a sequence An of bit strings of
length p(n) obtained by m independent random
samples. What is the probability that for each x in
{0,1}n more than half the choices are correct?

Proof cont’d some more

• For each x of length n at most 1/4 of the
computations are bad. So we expect at most
(1/4)*m many bad ones in An. By Chernoff
bounds the probability that the number of bad bit
strings is (1/2)*m or more is at most e-m/12 <
1/2n+1.

• This holds for each x of length n. Thus the
probability that there is an x with no accepting
sequence in An is at most the sum of the
probabilities among all x of length n; and this
gives 2n* 1/2n+1=1/2. So with probability at least
1/2 our random selection has the desired property.

