Circuits and Derandomization.

CS254
Chris Pollett
Nov. 20, 2006.

Outline

- Polynomial size circuits
- Derandomization

Polynomial Size Circuits

- We have already defined what a Boolean circuit is.
- The size of a circuit is the number of gates in it.
- We next would like to define what it means for a family of circuits to recognize a language.
Defn. A family of circuits is an infinite sequence $\left(\mathrm{C}_{0}, \mathrm{C}_{1}, \ldots\right)$ of Boolean circuits, where C_{n} has n input variables. We say a language L has polynomial size circuits, if there is a polynomial p such that $\operatorname{size}\left(C_{n}\right) \leq p(n)$ and C_{n} accepts exactly those strings in L of length n .

P is in $\mathrm{P} / \mathrm{Poly}$

- We call the class of languages with polynomial circuits $\mathrm{P} /$ poly.
Thm. All languages in P have polynomial size circuits.
Proof. This essentially follows from our proof that CVP is P-complete -- however, rather than encode a particular x into the inputs we instead let its value come from variables.

Uniformity

Defn. We call a circuit family $\left(\mathrm{C}_{0}, \mathrm{C}_{1}, \ldots\right)$ uniform if there is a $\log \mathrm{n}$-space machine N which on input 1^{n} outputs C_{n}. We say that a language L has uniformly polynomial circuits if there is a uniform family of p -size circuits that decides L.
Thm. A language L has uniformly polynomial circuits iff L is in P .
Proof. One direction follows from the theorem of the last slide recall completeness of CVP was logspace computable. For the other direction suppose that L has uniformly polynomial circuits. In p-time we can decide x in L by first running the logspace machine to get $\mathrm{C}_{\mathrm{xx} \mid}$ then doing circuit evaluation on x in p -time.

Advice Classes

- An advice string is a map from positive integers to strings.
- We say a machine M decides a language L with advice string $A(n)$ if x in L implies $M(x, A(|x|))$ output yes. And if x is not in L then $M(x, A(|x|))$ outputs "no".
- Let poly denote the set of advice strings $A(n)$ such that $|A(n)| \leq p(n)$ for some polynomial n.
- We say a language L is in $\mathbf{P} / \mathbf{p o l y}$ if there is a a p-time M that decides L using an advice string in poly.
Prop. This and our previous definition of P/poly are equivalent.

Some Conjectures

- Conjecture A: NP-complete problems have no uniformly polynomial circuits.
- This can be viewed as a restatement of $\mathrm{P} \neq \mathrm{NP}$.
- Conjecture B: NP-complete problems have no polynomial circuits, uniform or not.
- So if Conjecture B is true, proving circuit lower bounds for problems in NP might be an approach to the P versus NP problem.
- The next result show that circuit lower bounds are useless in proving $\mathrm{P} \neq \mathrm{BPP}$. It also gives our first derandomization result.

$\mathrm{BPP} \subseteq \mathrm{P} /$ Poly

Theorem. BPP \subseteq P/poly
Proof. Let L be in BPP decided by NTM N with a clear majority. We claim that L has a p-size circuit family $\left(C_{0}\right.$, $\mathrm{C}_{1}, \ldots \mathrm{C}_{\mathrm{n}}$).
C_{n} is based on a sequence of bit strings $A_{n}=\left(a_{1}, \ldots, a_{m}\right)$ where each a_{i} has length $p(n)$, and where $m=12(n+1)$. Each bit string represents a string of nondeterministic choice that N might have used. The idea is that C_{n} will simulate N on each of these $12(\mathrm{n}+1)$ many paths and take the majority outcome. Since given the path we can use the tableau method to simulate N on inputs of length $\mathrm{n}, \mathrm{C}_{\mathrm{n}}$ will be poly-size in n. So it suffices to prove that there exists an A_{n} which has the desired properties...

Proof Cont'd

Call a_{i} bad if it leads C_{n} to a false positive or a false negative answer.
Claim. For all $n>0$ there is a set A_{n} of $12(n+1)$ bit strings such that for all x with $|x|=n$ fewer than half of the choices in A_{n} are bad.
Proof. Consider a sequence A_{n} of bit strings of length $p(n)$ obtained by m independent random samples. What is the probability that for each x in $\{0,1\}^{n}$ more than half the choices are correct?

Proof cont'd some more

- For each x of length n at most $1 / 4$ of the computations are bad. So we expect at most $(1 / 4) * \mathrm{~m}$ many bad ones in A_{n}. By Chernoff bounds the probability that the number of bad bit strings is $(1 / 2) * \mathrm{~m}$ or more is at most $\mathrm{e}^{-\mathrm{m} / 12}<$ $1 / 2^{\mathrm{n}+1}$.
- This holds for each x of length n . Thus the probability that there is an x with no accepting sequence in A_{n} is at most the sum of the probabilities among all x of length n ; and this gives $2^{n^{*}} 1 / 2^{n+1}=1 / 2$. So with probability at least $1 / 2$ our random selection has the desired property.

